Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_256_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
88     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
97     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
98     __m256i          ewitab;
99     __m128i          ewitab_lo,ewitab_hi;
100     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
102     real             *ewtab;
103     __m256           dummy_mask,cutoff_mask;
104     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
105     __m256           one     = _mm256_set1_ps(1.0);
106     __m256           two     = _mm256_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm256_set1_ps(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
125     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
126     beta2            = _mm256_mul_ps(beta,beta);
127     beta3            = _mm256_mul_ps(beta,beta2);
128
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
132
133     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134     rcutoff_scalar   = fr->ic->rcoulomb;
135     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
136     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
137
138     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
139     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147     j_coord_offsetE = 0;
148     j_coord_offsetF = 0;
149     j_coord_offsetG = 0;
150     j_coord_offsetH = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
176
177         fix0             = _mm256_setzero_ps();
178         fiy0             = _mm256_setzero_ps();
179         fiz0             = _mm256_setzero_ps();
180
181         /* Load parameters for i particles */
182         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
183         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
184
185         /* Reset potential sums */
186         velecsum         = _mm256_setzero_ps();
187         vvdwsum          = _mm256_setzero_ps();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             jnrE             = jjnr[jidx+4];
199             jnrF             = jjnr[jidx+5];
200             jnrG             = jjnr[jidx+6];
201             jnrH             = jjnr[jidx+7];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204             j_coord_offsetC  = DIM*jnrC;
205             j_coord_offsetD  = DIM*jnrD;
206             j_coord_offsetE  = DIM*jnrE;
207             j_coord_offsetF  = DIM*jnrF;
208             j_coord_offsetG  = DIM*jnrG;
209             j_coord_offsetH  = DIM*jnrH;
210
211             /* load j atom coordinates */
212             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
213                                                  x+j_coord_offsetC,x+j_coord_offsetD,
214                                                  x+j_coord_offsetE,x+j_coord_offsetF,
215                                                  x+j_coord_offsetG,x+j_coord_offsetH,
216                                                  &jx0,&jy0,&jz0);
217
218             /* Calculate displacement vector */
219             dx00             = _mm256_sub_ps(ix0,jx0);
220             dy00             = _mm256_sub_ps(iy0,jy0);
221             dz00             = _mm256_sub_ps(iz0,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
225
226             rinv00           = avx256_invsqrt_f(rsq00);
227
228             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
229
230             /* Load parameters for j particles */
231             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
232                                                                  charge+jnrC+0,charge+jnrD+0,
233                                                                  charge+jnrE+0,charge+jnrF+0,
234                                                                  charge+jnrG+0,charge+jnrH+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237             vdwjidx0C        = 2*vdwtype[jnrC+0];
238             vdwjidx0D        = 2*vdwtype[jnrD+0];
239             vdwjidx0E        = 2*vdwtype[jnrE+0];
240             vdwjidx0F        = 2*vdwtype[jnrF+0];
241             vdwjidx0G        = 2*vdwtype[jnrG+0];
242             vdwjidx0H        = 2*vdwtype[jnrH+0];
243
244             /**************************
245              * CALCULATE INTERACTIONS *
246              **************************/
247
248             if (gmx_mm256_any_lt(rsq00,rcutoff2))
249             {
250
251             r00              = _mm256_mul_ps(rsq00,rinv00);
252
253             /* Compute parameters for interactions between i and j atoms */
254             qq00             = _mm256_mul_ps(iq0,jq0);
255             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
256                                             vdwioffsetptr0+vdwjidx0B,
257                                             vdwioffsetptr0+vdwjidx0C,
258                                             vdwioffsetptr0+vdwjidx0D,
259                                             vdwioffsetptr0+vdwjidx0E,
260                                             vdwioffsetptr0+vdwjidx0F,
261                                             vdwioffsetptr0+vdwjidx0G,
262                                             vdwioffsetptr0+vdwjidx0H,
263                                             &c6_00,&c12_00);
264
265             /* EWALD ELECTROSTATICS */
266             
267             /* Analytical PME correction */
268             zeta2            = _mm256_mul_ps(beta2,rsq00);
269             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
270             pmecorrF         = avx256_pmecorrF_f(zeta2);
271             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
272             felec            = _mm256_mul_ps(qq00,felec);
273             pmecorrV         = avx256_pmecorrV_f(zeta2);
274             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
275             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
276             velec            = _mm256_mul_ps(qq00,velec);
277             
278             /* LENNARD-JONES DISPERSION/REPULSION */
279
280             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
281             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
282             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
283             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
284                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
285             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
286
287             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             velec            = _mm256_and_ps(velec,cutoff_mask);
291             velecsum         = _mm256_add_ps(velecsum,velec);
292             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
293             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
294
295             fscal            = _mm256_add_ps(felec,fvdw);
296
297             fscal            = _mm256_and_ps(fscal,cutoff_mask);
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm256_mul_ps(fscal,dx00);
301             ty               = _mm256_mul_ps(fscal,dy00);
302             tz               = _mm256_mul_ps(fscal,dz00);
303
304             /* Update vectorial force */
305             fix0             = _mm256_add_ps(fix0,tx);
306             fiy0             = _mm256_add_ps(fiy0,ty);
307             fiz0             = _mm256_add_ps(fiz0,tz);
308
309             fjptrA             = f+j_coord_offsetA;
310             fjptrB             = f+j_coord_offsetB;
311             fjptrC             = f+j_coord_offsetC;
312             fjptrD             = f+j_coord_offsetD;
313             fjptrE             = f+j_coord_offsetE;
314             fjptrF             = f+j_coord_offsetF;
315             fjptrG             = f+j_coord_offsetG;
316             fjptrH             = f+j_coord_offsetH;
317             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
318
319             }
320
321             /* Inner loop uses 127 flops */
322         }
323
324         if(jidx<j_index_end)
325         {
326
327             /* Get j neighbor index, and coordinate index */
328             jnrlistA         = jjnr[jidx];
329             jnrlistB         = jjnr[jidx+1];
330             jnrlistC         = jjnr[jidx+2];
331             jnrlistD         = jjnr[jidx+3];
332             jnrlistE         = jjnr[jidx+4];
333             jnrlistF         = jjnr[jidx+5];
334             jnrlistG         = jjnr[jidx+6];
335             jnrlistH         = jjnr[jidx+7];
336             /* Sign of each element will be negative for non-real atoms.
337              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
338              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
339              */
340             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
341                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
342                                             
343             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
344             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
345             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
346             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
347             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
348             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
349             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
350             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
351             j_coord_offsetA  = DIM*jnrA;
352             j_coord_offsetB  = DIM*jnrB;
353             j_coord_offsetC  = DIM*jnrC;
354             j_coord_offsetD  = DIM*jnrD;
355             j_coord_offsetE  = DIM*jnrE;
356             j_coord_offsetF  = DIM*jnrF;
357             j_coord_offsetG  = DIM*jnrG;
358             j_coord_offsetH  = DIM*jnrH;
359
360             /* load j atom coordinates */
361             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
362                                                  x+j_coord_offsetC,x+j_coord_offsetD,
363                                                  x+j_coord_offsetE,x+j_coord_offsetF,
364                                                  x+j_coord_offsetG,x+j_coord_offsetH,
365                                                  &jx0,&jy0,&jz0);
366
367             /* Calculate displacement vector */
368             dx00             = _mm256_sub_ps(ix0,jx0);
369             dy00             = _mm256_sub_ps(iy0,jy0);
370             dz00             = _mm256_sub_ps(iz0,jz0);
371
372             /* Calculate squared distance and things based on it */
373             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
374
375             rinv00           = avx256_invsqrt_f(rsq00);
376
377             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
378
379             /* Load parameters for j particles */
380             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
381                                                                  charge+jnrC+0,charge+jnrD+0,
382                                                                  charge+jnrE+0,charge+jnrF+0,
383                                                                  charge+jnrG+0,charge+jnrH+0);
384             vdwjidx0A        = 2*vdwtype[jnrA+0];
385             vdwjidx0B        = 2*vdwtype[jnrB+0];
386             vdwjidx0C        = 2*vdwtype[jnrC+0];
387             vdwjidx0D        = 2*vdwtype[jnrD+0];
388             vdwjidx0E        = 2*vdwtype[jnrE+0];
389             vdwjidx0F        = 2*vdwtype[jnrF+0];
390             vdwjidx0G        = 2*vdwtype[jnrG+0];
391             vdwjidx0H        = 2*vdwtype[jnrH+0];
392
393             /**************************
394              * CALCULATE INTERACTIONS *
395              **************************/
396
397             if (gmx_mm256_any_lt(rsq00,rcutoff2))
398             {
399
400             r00              = _mm256_mul_ps(rsq00,rinv00);
401             r00              = _mm256_andnot_ps(dummy_mask,r00);
402
403             /* Compute parameters for interactions between i and j atoms */
404             qq00             = _mm256_mul_ps(iq0,jq0);
405             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
406                                             vdwioffsetptr0+vdwjidx0B,
407                                             vdwioffsetptr0+vdwjidx0C,
408                                             vdwioffsetptr0+vdwjidx0D,
409                                             vdwioffsetptr0+vdwjidx0E,
410                                             vdwioffsetptr0+vdwjidx0F,
411                                             vdwioffsetptr0+vdwjidx0G,
412                                             vdwioffsetptr0+vdwjidx0H,
413                                             &c6_00,&c12_00);
414
415             /* EWALD ELECTROSTATICS */
416             
417             /* Analytical PME correction */
418             zeta2            = _mm256_mul_ps(beta2,rsq00);
419             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
420             pmecorrF         = avx256_pmecorrF_f(zeta2);
421             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
422             felec            = _mm256_mul_ps(qq00,felec);
423             pmecorrV         = avx256_pmecorrV_f(zeta2);
424             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
425             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
426             velec            = _mm256_mul_ps(qq00,velec);
427             
428             /* LENNARD-JONES DISPERSION/REPULSION */
429
430             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
431             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
432             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
433             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
434                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
435             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
436
437             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
438
439             /* Update potential sum for this i atom from the interaction with this j atom. */
440             velec            = _mm256_and_ps(velec,cutoff_mask);
441             velec            = _mm256_andnot_ps(dummy_mask,velec);
442             velecsum         = _mm256_add_ps(velecsum,velec);
443             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
444             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
445             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
446
447             fscal            = _mm256_add_ps(felec,fvdw);
448
449             fscal            = _mm256_and_ps(fscal,cutoff_mask);
450
451             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
452
453             /* Calculate temporary vectorial force */
454             tx               = _mm256_mul_ps(fscal,dx00);
455             ty               = _mm256_mul_ps(fscal,dy00);
456             tz               = _mm256_mul_ps(fscal,dz00);
457
458             /* Update vectorial force */
459             fix0             = _mm256_add_ps(fix0,tx);
460             fiy0             = _mm256_add_ps(fiy0,ty);
461             fiz0             = _mm256_add_ps(fiz0,tz);
462
463             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
464             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
465             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
466             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
467             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
468             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
469             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
470             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
471             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
472
473             }
474
475             /* Inner loop uses 128 flops */
476         }
477
478         /* End of innermost loop */
479
480         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
481                                                  f+i_coord_offset,fshift+i_shift_offset);
482
483         ggid                        = gid[iidx];
484         /* Update potential energies */
485         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
486         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
487
488         /* Increment number of inner iterations */
489         inneriter                  += j_index_end - j_index_start;
490
491         /* Outer loop uses 9 flops */
492     }
493
494     /* Increment number of outer iterations */
495     outeriter        += nri;
496
497     /* Update outer/inner flops */
498
499     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*128);
500 }
501 /*
502  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_256_single
503  * Electrostatics interaction: Ewald
504  * VdW interaction:            LennardJones
505  * Geometry:                   Particle-Particle
506  * Calculate force/pot:        Force
507  */
508 void
509 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_256_single
510                     (t_nblist                    * gmx_restrict       nlist,
511                      rvec                        * gmx_restrict          xx,
512                      rvec                        * gmx_restrict          ff,
513                      struct t_forcerec           * gmx_restrict          fr,
514                      t_mdatoms                   * gmx_restrict     mdatoms,
515                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
516                      t_nrnb                      * gmx_restrict        nrnb)
517 {
518     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
519      * just 0 for non-waters.
520      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
521      * jnr indices corresponding to data put in the four positions in the SIMD register.
522      */
523     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
524     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
525     int              jnrA,jnrB,jnrC,jnrD;
526     int              jnrE,jnrF,jnrG,jnrH;
527     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
528     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
529     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
530     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
531     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
532     real             rcutoff_scalar;
533     real             *shiftvec,*fshift,*x,*f;
534     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
535     real             scratch[4*DIM];
536     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
537     real *           vdwioffsetptr0;
538     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
539     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
540     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
541     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
542     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
543     real             *charge;
544     int              nvdwtype;
545     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
546     int              *vdwtype;
547     real             *vdwparam;
548     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
549     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
550     __m256i          ewitab;
551     __m128i          ewitab_lo,ewitab_hi;
552     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
553     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
554     real             *ewtab;
555     __m256           dummy_mask,cutoff_mask;
556     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
557     __m256           one     = _mm256_set1_ps(1.0);
558     __m256           two     = _mm256_set1_ps(2.0);
559     x                = xx[0];
560     f                = ff[0];
561
562     nri              = nlist->nri;
563     iinr             = nlist->iinr;
564     jindex           = nlist->jindex;
565     jjnr             = nlist->jjnr;
566     shiftidx         = nlist->shift;
567     gid              = nlist->gid;
568     shiftvec         = fr->shift_vec[0];
569     fshift           = fr->fshift[0];
570     facel            = _mm256_set1_ps(fr->ic->epsfac);
571     charge           = mdatoms->chargeA;
572     nvdwtype         = fr->ntype;
573     vdwparam         = fr->nbfp;
574     vdwtype          = mdatoms->typeA;
575
576     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
577     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
578     beta2            = _mm256_mul_ps(beta,beta);
579     beta3            = _mm256_mul_ps(beta,beta2);
580
581     ewtab            = fr->ic->tabq_coul_F;
582     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
583     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
584
585     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
586     rcutoff_scalar   = fr->ic->rcoulomb;
587     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
588     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
589
590     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
591     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
592
593     /* Avoid stupid compiler warnings */
594     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
595     j_coord_offsetA = 0;
596     j_coord_offsetB = 0;
597     j_coord_offsetC = 0;
598     j_coord_offsetD = 0;
599     j_coord_offsetE = 0;
600     j_coord_offsetF = 0;
601     j_coord_offsetG = 0;
602     j_coord_offsetH = 0;
603
604     outeriter        = 0;
605     inneriter        = 0;
606
607     for(iidx=0;iidx<4*DIM;iidx++)
608     {
609         scratch[iidx] = 0.0;
610     }
611
612     /* Start outer loop over neighborlists */
613     for(iidx=0; iidx<nri; iidx++)
614     {
615         /* Load shift vector for this list */
616         i_shift_offset   = DIM*shiftidx[iidx];
617
618         /* Load limits for loop over neighbors */
619         j_index_start    = jindex[iidx];
620         j_index_end      = jindex[iidx+1];
621
622         /* Get outer coordinate index */
623         inr              = iinr[iidx];
624         i_coord_offset   = DIM*inr;
625
626         /* Load i particle coords and add shift vector */
627         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
628
629         fix0             = _mm256_setzero_ps();
630         fiy0             = _mm256_setzero_ps();
631         fiz0             = _mm256_setzero_ps();
632
633         /* Load parameters for i particles */
634         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
635         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
636
637         /* Start inner kernel loop */
638         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
639         {
640
641             /* Get j neighbor index, and coordinate index */
642             jnrA             = jjnr[jidx];
643             jnrB             = jjnr[jidx+1];
644             jnrC             = jjnr[jidx+2];
645             jnrD             = jjnr[jidx+3];
646             jnrE             = jjnr[jidx+4];
647             jnrF             = jjnr[jidx+5];
648             jnrG             = jjnr[jidx+6];
649             jnrH             = jjnr[jidx+7];
650             j_coord_offsetA  = DIM*jnrA;
651             j_coord_offsetB  = DIM*jnrB;
652             j_coord_offsetC  = DIM*jnrC;
653             j_coord_offsetD  = DIM*jnrD;
654             j_coord_offsetE  = DIM*jnrE;
655             j_coord_offsetF  = DIM*jnrF;
656             j_coord_offsetG  = DIM*jnrG;
657             j_coord_offsetH  = DIM*jnrH;
658
659             /* load j atom coordinates */
660             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
661                                                  x+j_coord_offsetC,x+j_coord_offsetD,
662                                                  x+j_coord_offsetE,x+j_coord_offsetF,
663                                                  x+j_coord_offsetG,x+j_coord_offsetH,
664                                                  &jx0,&jy0,&jz0);
665
666             /* Calculate displacement vector */
667             dx00             = _mm256_sub_ps(ix0,jx0);
668             dy00             = _mm256_sub_ps(iy0,jy0);
669             dz00             = _mm256_sub_ps(iz0,jz0);
670
671             /* Calculate squared distance and things based on it */
672             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
673
674             rinv00           = avx256_invsqrt_f(rsq00);
675
676             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
677
678             /* Load parameters for j particles */
679             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
680                                                                  charge+jnrC+0,charge+jnrD+0,
681                                                                  charge+jnrE+0,charge+jnrF+0,
682                                                                  charge+jnrG+0,charge+jnrH+0);
683             vdwjidx0A        = 2*vdwtype[jnrA+0];
684             vdwjidx0B        = 2*vdwtype[jnrB+0];
685             vdwjidx0C        = 2*vdwtype[jnrC+0];
686             vdwjidx0D        = 2*vdwtype[jnrD+0];
687             vdwjidx0E        = 2*vdwtype[jnrE+0];
688             vdwjidx0F        = 2*vdwtype[jnrF+0];
689             vdwjidx0G        = 2*vdwtype[jnrG+0];
690             vdwjidx0H        = 2*vdwtype[jnrH+0];
691
692             /**************************
693              * CALCULATE INTERACTIONS *
694              **************************/
695
696             if (gmx_mm256_any_lt(rsq00,rcutoff2))
697             {
698
699             r00              = _mm256_mul_ps(rsq00,rinv00);
700
701             /* Compute parameters for interactions between i and j atoms */
702             qq00             = _mm256_mul_ps(iq0,jq0);
703             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
704                                             vdwioffsetptr0+vdwjidx0B,
705                                             vdwioffsetptr0+vdwjidx0C,
706                                             vdwioffsetptr0+vdwjidx0D,
707                                             vdwioffsetptr0+vdwjidx0E,
708                                             vdwioffsetptr0+vdwjidx0F,
709                                             vdwioffsetptr0+vdwjidx0G,
710                                             vdwioffsetptr0+vdwjidx0H,
711                                             &c6_00,&c12_00);
712
713             /* EWALD ELECTROSTATICS */
714             
715             /* Analytical PME correction */
716             zeta2            = _mm256_mul_ps(beta2,rsq00);
717             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
718             pmecorrF         = avx256_pmecorrF_f(zeta2);
719             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
720             felec            = _mm256_mul_ps(qq00,felec);
721             
722             /* LENNARD-JONES DISPERSION/REPULSION */
723
724             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
725             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
726
727             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
728
729             fscal            = _mm256_add_ps(felec,fvdw);
730
731             fscal            = _mm256_and_ps(fscal,cutoff_mask);
732
733             /* Calculate temporary vectorial force */
734             tx               = _mm256_mul_ps(fscal,dx00);
735             ty               = _mm256_mul_ps(fscal,dy00);
736             tz               = _mm256_mul_ps(fscal,dz00);
737
738             /* Update vectorial force */
739             fix0             = _mm256_add_ps(fix0,tx);
740             fiy0             = _mm256_add_ps(fiy0,ty);
741             fiz0             = _mm256_add_ps(fiz0,tz);
742
743             fjptrA             = f+j_coord_offsetA;
744             fjptrB             = f+j_coord_offsetB;
745             fjptrC             = f+j_coord_offsetC;
746             fjptrD             = f+j_coord_offsetD;
747             fjptrE             = f+j_coord_offsetE;
748             fjptrF             = f+j_coord_offsetF;
749             fjptrG             = f+j_coord_offsetG;
750             fjptrH             = f+j_coord_offsetH;
751             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
752
753             }
754
755             /* Inner loop uses 66 flops */
756         }
757
758         if(jidx<j_index_end)
759         {
760
761             /* Get j neighbor index, and coordinate index */
762             jnrlistA         = jjnr[jidx];
763             jnrlistB         = jjnr[jidx+1];
764             jnrlistC         = jjnr[jidx+2];
765             jnrlistD         = jjnr[jidx+3];
766             jnrlistE         = jjnr[jidx+4];
767             jnrlistF         = jjnr[jidx+5];
768             jnrlistG         = jjnr[jidx+6];
769             jnrlistH         = jjnr[jidx+7];
770             /* Sign of each element will be negative for non-real atoms.
771              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
772              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
773              */
774             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
775                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
776                                             
777             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
778             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
779             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
780             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
781             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
782             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
783             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
784             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
785             j_coord_offsetA  = DIM*jnrA;
786             j_coord_offsetB  = DIM*jnrB;
787             j_coord_offsetC  = DIM*jnrC;
788             j_coord_offsetD  = DIM*jnrD;
789             j_coord_offsetE  = DIM*jnrE;
790             j_coord_offsetF  = DIM*jnrF;
791             j_coord_offsetG  = DIM*jnrG;
792             j_coord_offsetH  = DIM*jnrH;
793
794             /* load j atom coordinates */
795             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
796                                                  x+j_coord_offsetC,x+j_coord_offsetD,
797                                                  x+j_coord_offsetE,x+j_coord_offsetF,
798                                                  x+j_coord_offsetG,x+j_coord_offsetH,
799                                                  &jx0,&jy0,&jz0);
800
801             /* Calculate displacement vector */
802             dx00             = _mm256_sub_ps(ix0,jx0);
803             dy00             = _mm256_sub_ps(iy0,jy0);
804             dz00             = _mm256_sub_ps(iz0,jz0);
805
806             /* Calculate squared distance and things based on it */
807             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
808
809             rinv00           = avx256_invsqrt_f(rsq00);
810
811             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
812
813             /* Load parameters for j particles */
814             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
815                                                                  charge+jnrC+0,charge+jnrD+0,
816                                                                  charge+jnrE+0,charge+jnrF+0,
817                                                                  charge+jnrG+0,charge+jnrH+0);
818             vdwjidx0A        = 2*vdwtype[jnrA+0];
819             vdwjidx0B        = 2*vdwtype[jnrB+0];
820             vdwjidx0C        = 2*vdwtype[jnrC+0];
821             vdwjidx0D        = 2*vdwtype[jnrD+0];
822             vdwjidx0E        = 2*vdwtype[jnrE+0];
823             vdwjidx0F        = 2*vdwtype[jnrF+0];
824             vdwjidx0G        = 2*vdwtype[jnrG+0];
825             vdwjidx0H        = 2*vdwtype[jnrH+0];
826
827             /**************************
828              * CALCULATE INTERACTIONS *
829              **************************/
830
831             if (gmx_mm256_any_lt(rsq00,rcutoff2))
832             {
833
834             r00              = _mm256_mul_ps(rsq00,rinv00);
835             r00              = _mm256_andnot_ps(dummy_mask,r00);
836
837             /* Compute parameters for interactions between i and j atoms */
838             qq00             = _mm256_mul_ps(iq0,jq0);
839             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
840                                             vdwioffsetptr0+vdwjidx0B,
841                                             vdwioffsetptr0+vdwjidx0C,
842                                             vdwioffsetptr0+vdwjidx0D,
843                                             vdwioffsetptr0+vdwjidx0E,
844                                             vdwioffsetptr0+vdwjidx0F,
845                                             vdwioffsetptr0+vdwjidx0G,
846                                             vdwioffsetptr0+vdwjidx0H,
847                                             &c6_00,&c12_00);
848
849             /* EWALD ELECTROSTATICS */
850             
851             /* Analytical PME correction */
852             zeta2            = _mm256_mul_ps(beta2,rsq00);
853             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
854             pmecorrF         = avx256_pmecorrF_f(zeta2);
855             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
856             felec            = _mm256_mul_ps(qq00,felec);
857             
858             /* LENNARD-JONES DISPERSION/REPULSION */
859
860             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
861             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
862
863             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
864
865             fscal            = _mm256_add_ps(felec,fvdw);
866
867             fscal            = _mm256_and_ps(fscal,cutoff_mask);
868
869             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
870
871             /* Calculate temporary vectorial force */
872             tx               = _mm256_mul_ps(fscal,dx00);
873             ty               = _mm256_mul_ps(fscal,dy00);
874             tz               = _mm256_mul_ps(fscal,dz00);
875
876             /* Update vectorial force */
877             fix0             = _mm256_add_ps(fix0,tx);
878             fiy0             = _mm256_add_ps(fiy0,ty);
879             fiz0             = _mm256_add_ps(fiz0,tz);
880
881             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
882             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
883             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
884             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
885             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
886             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
887             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
888             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
889             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
890
891             }
892
893             /* Inner loop uses 67 flops */
894         }
895
896         /* End of innermost loop */
897
898         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
899                                                  f+i_coord_offset,fshift+i_shift_offset);
900
901         /* Increment number of inner iterations */
902         inneriter                  += j_index_end - j_index_start;
903
904         /* Outer loop uses 7 flops */
905     }
906
907     /* Increment number of outer iterations */
908     outeriter        += nri;
909
910     /* Update outer/inner flops */
911
912     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*67);
913 }