Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
100     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
101     __m256i          ewitab;
102     __m128i          ewitab_lo,ewitab_hi;
103     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
105     real             *ewtab;
106     __m256           dummy_mask,cutoff_mask;
107     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
108     __m256           one     = _mm256_set1_ps(1.0);
109     __m256           two     = _mm256_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
128     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
129     beta2            = _mm256_mul_ps(beta,beta);
130     beta3            = _mm256_mul_ps(beta,beta2);
131
132     ewtab            = fr->ic->tabq_coul_FDV0;
133     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
134     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
135
136     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
137     rcutoff_scalar   = fr->rcoulomb;
138     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
139     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
140
141     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
142     rvdw             = _mm256_set1_ps(fr->rvdw);
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150     j_coord_offsetE = 0;
151     j_coord_offsetF = 0;
152     j_coord_offsetG = 0;
153     j_coord_offsetH = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
179
180         fix0             = _mm256_setzero_ps();
181         fiy0             = _mm256_setzero_ps();
182         fiz0             = _mm256_setzero_ps();
183
184         /* Load parameters for i particles */
185         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
186         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
187
188         /* Reset potential sums */
189         velecsum         = _mm256_setzero_ps();
190         vvdwsum          = _mm256_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             jnrE             = jjnr[jidx+4];
202             jnrF             = jjnr[jidx+5];
203             jnrG             = jjnr[jidx+6];
204             jnrH             = jjnr[jidx+7];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209             j_coord_offsetE  = DIM*jnrE;
210             j_coord_offsetF  = DIM*jnrF;
211             j_coord_offsetG  = DIM*jnrG;
212             j_coord_offsetH  = DIM*jnrH;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  x+j_coord_offsetE,x+j_coord_offsetF,
218                                                  x+j_coord_offsetG,x+j_coord_offsetH,
219                                                  &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm256_sub_ps(ix0,jx0);
223             dy00             = _mm256_sub_ps(iy0,jy0);
224             dz00             = _mm256_sub_ps(iz0,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
228
229             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
230
231             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
232
233             /* Load parameters for j particles */
234             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
235                                                                  charge+jnrC+0,charge+jnrD+0,
236                                                                  charge+jnrE+0,charge+jnrF+0,
237                                                                  charge+jnrG+0,charge+jnrH+0);
238             vdwjidx0A        = 2*vdwtype[jnrA+0];
239             vdwjidx0B        = 2*vdwtype[jnrB+0];
240             vdwjidx0C        = 2*vdwtype[jnrC+0];
241             vdwjidx0D        = 2*vdwtype[jnrD+0];
242             vdwjidx0E        = 2*vdwtype[jnrE+0];
243             vdwjidx0F        = 2*vdwtype[jnrF+0];
244             vdwjidx0G        = 2*vdwtype[jnrG+0];
245             vdwjidx0H        = 2*vdwtype[jnrH+0];
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             if (gmx_mm256_any_lt(rsq00,rcutoff2))
252             {
253
254             r00              = _mm256_mul_ps(rsq00,rinv00);
255
256             /* Compute parameters for interactions between i and j atoms */
257             qq00             = _mm256_mul_ps(iq0,jq0);
258             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
259                                             vdwioffsetptr0+vdwjidx0B,
260                                             vdwioffsetptr0+vdwjidx0C,
261                                             vdwioffsetptr0+vdwjidx0D,
262                                             vdwioffsetptr0+vdwjidx0E,
263                                             vdwioffsetptr0+vdwjidx0F,
264                                             vdwioffsetptr0+vdwjidx0G,
265                                             vdwioffsetptr0+vdwjidx0H,
266                                             &c6_00,&c12_00);
267
268             /* EWALD ELECTROSTATICS */
269             
270             /* Analytical PME correction */
271             zeta2            = _mm256_mul_ps(beta2,rsq00);
272             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
273             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
274             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
275             felec            = _mm256_mul_ps(qq00,felec);
276             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
277             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
278             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
279             velec            = _mm256_mul_ps(qq00,velec);
280             
281             /* LENNARD-JONES DISPERSION/REPULSION */
282
283             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
284             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
285             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
286             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
287                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
288             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
289
290             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             velec            = _mm256_and_ps(velec,cutoff_mask);
294             velecsum         = _mm256_add_ps(velecsum,velec);
295             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
296             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
297
298             fscal            = _mm256_add_ps(felec,fvdw);
299
300             fscal            = _mm256_and_ps(fscal,cutoff_mask);
301
302             /* Calculate temporary vectorial force */
303             tx               = _mm256_mul_ps(fscal,dx00);
304             ty               = _mm256_mul_ps(fscal,dy00);
305             tz               = _mm256_mul_ps(fscal,dz00);
306
307             /* Update vectorial force */
308             fix0             = _mm256_add_ps(fix0,tx);
309             fiy0             = _mm256_add_ps(fiy0,ty);
310             fiz0             = _mm256_add_ps(fiz0,tz);
311
312             fjptrA             = f+j_coord_offsetA;
313             fjptrB             = f+j_coord_offsetB;
314             fjptrC             = f+j_coord_offsetC;
315             fjptrD             = f+j_coord_offsetD;
316             fjptrE             = f+j_coord_offsetE;
317             fjptrF             = f+j_coord_offsetF;
318             fjptrG             = f+j_coord_offsetG;
319             fjptrH             = f+j_coord_offsetH;
320             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
321
322             }
323
324             /* Inner loop uses 127 flops */
325         }
326
327         if(jidx<j_index_end)
328         {
329
330             /* Get j neighbor index, and coordinate index */
331             jnrlistA         = jjnr[jidx];
332             jnrlistB         = jjnr[jidx+1];
333             jnrlistC         = jjnr[jidx+2];
334             jnrlistD         = jjnr[jidx+3];
335             jnrlistE         = jjnr[jidx+4];
336             jnrlistF         = jjnr[jidx+5];
337             jnrlistG         = jjnr[jidx+6];
338             jnrlistH         = jjnr[jidx+7];
339             /* Sign of each element will be negative for non-real atoms.
340              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
341              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
342              */
343             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
344                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
345                                             
346             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
347             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
348             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
349             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
350             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
351             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
352             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
353             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
354             j_coord_offsetA  = DIM*jnrA;
355             j_coord_offsetB  = DIM*jnrB;
356             j_coord_offsetC  = DIM*jnrC;
357             j_coord_offsetD  = DIM*jnrD;
358             j_coord_offsetE  = DIM*jnrE;
359             j_coord_offsetF  = DIM*jnrF;
360             j_coord_offsetG  = DIM*jnrG;
361             j_coord_offsetH  = DIM*jnrH;
362
363             /* load j atom coordinates */
364             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
365                                                  x+j_coord_offsetC,x+j_coord_offsetD,
366                                                  x+j_coord_offsetE,x+j_coord_offsetF,
367                                                  x+j_coord_offsetG,x+j_coord_offsetH,
368                                                  &jx0,&jy0,&jz0);
369
370             /* Calculate displacement vector */
371             dx00             = _mm256_sub_ps(ix0,jx0);
372             dy00             = _mm256_sub_ps(iy0,jy0);
373             dz00             = _mm256_sub_ps(iz0,jz0);
374
375             /* Calculate squared distance and things based on it */
376             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
377
378             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
379
380             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
381
382             /* Load parameters for j particles */
383             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
384                                                                  charge+jnrC+0,charge+jnrD+0,
385                                                                  charge+jnrE+0,charge+jnrF+0,
386                                                                  charge+jnrG+0,charge+jnrH+0);
387             vdwjidx0A        = 2*vdwtype[jnrA+0];
388             vdwjidx0B        = 2*vdwtype[jnrB+0];
389             vdwjidx0C        = 2*vdwtype[jnrC+0];
390             vdwjidx0D        = 2*vdwtype[jnrD+0];
391             vdwjidx0E        = 2*vdwtype[jnrE+0];
392             vdwjidx0F        = 2*vdwtype[jnrF+0];
393             vdwjidx0G        = 2*vdwtype[jnrG+0];
394             vdwjidx0H        = 2*vdwtype[jnrH+0];
395
396             /**************************
397              * CALCULATE INTERACTIONS *
398              **************************/
399
400             if (gmx_mm256_any_lt(rsq00,rcutoff2))
401             {
402
403             r00              = _mm256_mul_ps(rsq00,rinv00);
404             r00              = _mm256_andnot_ps(dummy_mask,r00);
405
406             /* Compute parameters for interactions between i and j atoms */
407             qq00             = _mm256_mul_ps(iq0,jq0);
408             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
409                                             vdwioffsetptr0+vdwjidx0B,
410                                             vdwioffsetptr0+vdwjidx0C,
411                                             vdwioffsetptr0+vdwjidx0D,
412                                             vdwioffsetptr0+vdwjidx0E,
413                                             vdwioffsetptr0+vdwjidx0F,
414                                             vdwioffsetptr0+vdwjidx0G,
415                                             vdwioffsetptr0+vdwjidx0H,
416                                             &c6_00,&c12_00);
417
418             /* EWALD ELECTROSTATICS */
419             
420             /* Analytical PME correction */
421             zeta2            = _mm256_mul_ps(beta2,rsq00);
422             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
423             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
424             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
425             felec            = _mm256_mul_ps(qq00,felec);
426             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
427             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
428             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
429             velec            = _mm256_mul_ps(qq00,velec);
430             
431             /* LENNARD-JONES DISPERSION/REPULSION */
432
433             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
434             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
435             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
436             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
437                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
438             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
439
440             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
441
442             /* Update potential sum for this i atom from the interaction with this j atom. */
443             velec            = _mm256_and_ps(velec,cutoff_mask);
444             velec            = _mm256_andnot_ps(dummy_mask,velec);
445             velecsum         = _mm256_add_ps(velecsum,velec);
446             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
447             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
448             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
449
450             fscal            = _mm256_add_ps(felec,fvdw);
451
452             fscal            = _mm256_and_ps(fscal,cutoff_mask);
453
454             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
455
456             /* Calculate temporary vectorial force */
457             tx               = _mm256_mul_ps(fscal,dx00);
458             ty               = _mm256_mul_ps(fscal,dy00);
459             tz               = _mm256_mul_ps(fscal,dz00);
460
461             /* Update vectorial force */
462             fix0             = _mm256_add_ps(fix0,tx);
463             fiy0             = _mm256_add_ps(fiy0,ty);
464             fiz0             = _mm256_add_ps(fiz0,tz);
465
466             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
467             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
468             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
469             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
470             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
471             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
472             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
473             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
474             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
475
476             }
477
478             /* Inner loop uses 128 flops */
479         }
480
481         /* End of innermost loop */
482
483         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
484                                                  f+i_coord_offset,fshift+i_shift_offset);
485
486         ggid                        = gid[iidx];
487         /* Update potential energies */
488         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
489         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
490
491         /* Increment number of inner iterations */
492         inneriter                  += j_index_end - j_index_start;
493
494         /* Outer loop uses 9 flops */
495     }
496
497     /* Increment number of outer iterations */
498     outeriter        += nri;
499
500     /* Update outer/inner flops */
501
502     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*128);
503 }
504 /*
505  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_256_single
506  * Electrostatics interaction: Ewald
507  * VdW interaction:            LennardJones
508  * Geometry:                   Particle-Particle
509  * Calculate force/pot:        Force
510  */
511 void
512 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_256_single
513                     (t_nblist                    * gmx_restrict       nlist,
514                      rvec                        * gmx_restrict          xx,
515                      rvec                        * gmx_restrict          ff,
516                      t_forcerec                  * gmx_restrict          fr,
517                      t_mdatoms                   * gmx_restrict     mdatoms,
518                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
519                      t_nrnb                      * gmx_restrict        nrnb)
520 {
521     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
522      * just 0 for non-waters.
523      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
524      * jnr indices corresponding to data put in the four positions in the SIMD register.
525      */
526     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
527     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
528     int              jnrA,jnrB,jnrC,jnrD;
529     int              jnrE,jnrF,jnrG,jnrH;
530     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
531     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
532     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
533     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
534     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
535     real             rcutoff_scalar;
536     real             *shiftvec,*fshift,*x,*f;
537     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
538     real             scratch[4*DIM];
539     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
540     real *           vdwioffsetptr0;
541     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
542     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
543     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
544     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
545     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
546     real             *charge;
547     int              nvdwtype;
548     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
549     int              *vdwtype;
550     real             *vdwparam;
551     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
552     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
553     __m256i          ewitab;
554     __m128i          ewitab_lo,ewitab_hi;
555     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
556     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
557     real             *ewtab;
558     __m256           dummy_mask,cutoff_mask;
559     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
560     __m256           one     = _mm256_set1_ps(1.0);
561     __m256           two     = _mm256_set1_ps(2.0);
562     x                = xx[0];
563     f                = ff[0];
564
565     nri              = nlist->nri;
566     iinr             = nlist->iinr;
567     jindex           = nlist->jindex;
568     jjnr             = nlist->jjnr;
569     shiftidx         = nlist->shift;
570     gid              = nlist->gid;
571     shiftvec         = fr->shift_vec[0];
572     fshift           = fr->fshift[0];
573     facel            = _mm256_set1_ps(fr->epsfac);
574     charge           = mdatoms->chargeA;
575     nvdwtype         = fr->ntype;
576     vdwparam         = fr->nbfp;
577     vdwtype          = mdatoms->typeA;
578
579     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
580     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
581     beta2            = _mm256_mul_ps(beta,beta);
582     beta3            = _mm256_mul_ps(beta,beta2);
583
584     ewtab            = fr->ic->tabq_coul_F;
585     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
586     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
587
588     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
589     rcutoff_scalar   = fr->rcoulomb;
590     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
591     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
592
593     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
594     rvdw             = _mm256_set1_ps(fr->rvdw);
595
596     /* Avoid stupid compiler warnings */
597     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
598     j_coord_offsetA = 0;
599     j_coord_offsetB = 0;
600     j_coord_offsetC = 0;
601     j_coord_offsetD = 0;
602     j_coord_offsetE = 0;
603     j_coord_offsetF = 0;
604     j_coord_offsetG = 0;
605     j_coord_offsetH = 0;
606
607     outeriter        = 0;
608     inneriter        = 0;
609
610     for(iidx=0;iidx<4*DIM;iidx++)
611     {
612         scratch[iidx] = 0.0;
613     }
614
615     /* Start outer loop over neighborlists */
616     for(iidx=0; iidx<nri; iidx++)
617     {
618         /* Load shift vector for this list */
619         i_shift_offset   = DIM*shiftidx[iidx];
620
621         /* Load limits for loop over neighbors */
622         j_index_start    = jindex[iidx];
623         j_index_end      = jindex[iidx+1];
624
625         /* Get outer coordinate index */
626         inr              = iinr[iidx];
627         i_coord_offset   = DIM*inr;
628
629         /* Load i particle coords and add shift vector */
630         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
631
632         fix0             = _mm256_setzero_ps();
633         fiy0             = _mm256_setzero_ps();
634         fiz0             = _mm256_setzero_ps();
635
636         /* Load parameters for i particles */
637         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
638         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
639
640         /* Start inner kernel loop */
641         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
642         {
643
644             /* Get j neighbor index, and coordinate index */
645             jnrA             = jjnr[jidx];
646             jnrB             = jjnr[jidx+1];
647             jnrC             = jjnr[jidx+2];
648             jnrD             = jjnr[jidx+3];
649             jnrE             = jjnr[jidx+4];
650             jnrF             = jjnr[jidx+5];
651             jnrG             = jjnr[jidx+6];
652             jnrH             = jjnr[jidx+7];
653             j_coord_offsetA  = DIM*jnrA;
654             j_coord_offsetB  = DIM*jnrB;
655             j_coord_offsetC  = DIM*jnrC;
656             j_coord_offsetD  = DIM*jnrD;
657             j_coord_offsetE  = DIM*jnrE;
658             j_coord_offsetF  = DIM*jnrF;
659             j_coord_offsetG  = DIM*jnrG;
660             j_coord_offsetH  = DIM*jnrH;
661
662             /* load j atom coordinates */
663             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
664                                                  x+j_coord_offsetC,x+j_coord_offsetD,
665                                                  x+j_coord_offsetE,x+j_coord_offsetF,
666                                                  x+j_coord_offsetG,x+j_coord_offsetH,
667                                                  &jx0,&jy0,&jz0);
668
669             /* Calculate displacement vector */
670             dx00             = _mm256_sub_ps(ix0,jx0);
671             dy00             = _mm256_sub_ps(iy0,jy0);
672             dz00             = _mm256_sub_ps(iz0,jz0);
673
674             /* Calculate squared distance and things based on it */
675             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
676
677             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
678
679             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
680
681             /* Load parameters for j particles */
682             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
683                                                                  charge+jnrC+0,charge+jnrD+0,
684                                                                  charge+jnrE+0,charge+jnrF+0,
685                                                                  charge+jnrG+0,charge+jnrH+0);
686             vdwjidx0A        = 2*vdwtype[jnrA+0];
687             vdwjidx0B        = 2*vdwtype[jnrB+0];
688             vdwjidx0C        = 2*vdwtype[jnrC+0];
689             vdwjidx0D        = 2*vdwtype[jnrD+0];
690             vdwjidx0E        = 2*vdwtype[jnrE+0];
691             vdwjidx0F        = 2*vdwtype[jnrF+0];
692             vdwjidx0G        = 2*vdwtype[jnrG+0];
693             vdwjidx0H        = 2*vdwtype[jnrH+0];
694
695             /**************************
696              * CALCULATE INTERACTIONS *
697              **************************/
698
699             if (gmx_mm256_any_lt(rsq00,rcutoff2))
700             {
701
702             r00              = _mm256_mul_ps(rsq00,rinv00);
703
704             /* Compute parameters for interactions between i and j atoms */
705             qq00             = _mm256_mul_ps(iq0,jq0);
706             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
707                                             vdwioffsetptr0+vdwjidx0B,
708                                             vdwioffsetptr0+vdwjidx0C,
709                                             vdwioffsetptr0+vdwjidx0D,
710                                             vdwioffsetptr0+vdwjidx0E,
711                                             vdwioffsetptr0+vdwjidx0F,
712                                             vdwioffsetptr0+vdwjidx0G,
713                                             vdwioffsetptr0+vdwjidx0H,
714                                             &c6_00,&c12_00);
715
716             /* EWALD ELECTROSTATICS */
717             
718             /* Analytical PME correction */
719             zeta2            = _mm256_mul_ps(beta2,rsq00);
720             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
721             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
722             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
723             felec            = _mm256_mul_ps(qq00,felec);
724             
725             /* LENNARD-JONES DISPERSION/REPULSION */
726
727             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
728             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
729
730             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
731
732             fscal            = _mm256_add_ps(felec,fvdw);
733
734             fscal            = _mm256_and_ps(fscal,cutoff_mask);
735
736             /* Calculate temporary vectorial force */
737             tx               = _mm256_mul_ps(fscal,dx00);
738             ty               = _mm256_mul_ps(fscal,dy00);
739             tz               = _mm256_mul_ps(fscal,dz00);
740
741             /* Update vectorial force */
742             fix0             = _mm256_add_ps(fix0,tx);
743             fiy0             = _mm256_add_ps(fiy0,ty);
744             fiz0             = _mm256_add_ps(fiz0,tz);
745
746             fjptrA             = f+j_coord_offsetA;
747             fjptrB             = f+j_coord_offsetB;
748             fjptrC             = f+j_coord_offsetC;
749             fjptrD             = f+j_coord_offsetD;
750             fjptrE             = f+j_coord_offsetE;
751             fjptrF             = f+j_coord_offsetF;
752             fjptrG             = f+j_coord_offsetG;
753             fjptrH             = f+j_coord_offsetH;
754             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
755
756             }
757
758             /* Inner loop uses 66 flops */
759         }
760
761         if(jidx<j_index_end)
762         {
763
764             /* Get j neighbor index, and coordinate index */
765             jnrlistA         = jjnr[jidx];
766             jnrlistB         = jjnr[jidx+1];
767             jnrlistC         = jjnr[jidx+2];
768             jnrlistD         = jjnr[jidx+3];
769             jnrlistE         = jjnr[jidx+4];
770             jnrlistF         = jjnr[jidx+5];
771             jnrlistG         = jjnr[jidx+6];
772             jnrlistH         = jjnr[jidx+7];
773             /* Sign of each element will be negative for non-real atoms.
774              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
775              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
776              */
777             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
778                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
779                                             
780             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
781             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
782             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
783             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
784             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
785             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
786             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
787             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
788             j_coord_offsetA  = DIM*jnrA;
789             j_coord_offsetB  = DIM*jnrB;
790             j_coord_offsetC  = DIM*jnrC;
791             j_coord_offsetD  = DIM*jnrD;
792             j_coord_offsetE  = DIM*jnrE;
793             j_coord_offsetF  = DIM*jnrF;
794             j_coord_offsetG  = DIM*jnrG;
795             j_coord_offsetH  = DIM*jnrH;
796
797             /* load j atom coordinates */
798             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
799                                                  x+j_coord_offsetC,x+j_coord_offsetD,
800                                                  x+j_coord_offsetE,x+j_coord_offsetF,
801                                                  x+j_coord_offsetG,x+j_coord_offsetH,
802                                                  &jx0,&jy0,&jz0);
803
804             /* Calculate displacement vector */
805             dx00             = _mm256_sub_ps(ix0,jx0);
806             dy00             = _mm256_sub_ps(iy0,jy0);
807             dz00             = _mm256_sub_ps(iz0,jz0);
808
809             /* Calculate squared distance and things based on it */
810             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
811
812             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
813
814             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
815
816             /* Load parameters for j particles */
817             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
818                                                                  charge+jnrC+0,charge+jnrD+0,
819                                                                  charge+jnrE+0,charge+jnrF+0,
820                                                                  charge+jnrG+0,charge+jnrH+0);
821             vdwjidx0A        = 2*vdwtype[jnrA+0];
822             vdwjidx0B        = 2*vdwtype[jnrB+0];
823             vdwjidx0C        = 2*vdwtype[jnrC+0];
824             vdwjidx0D        = 2*vdwtype[jnrD+0];
825             vdwjidx0E        = 2*vdwtype[jnrE+0];
826             vdwjidx0F        = 2*vdwtype[jnrF+0];
827             vdwjidx0G        = 2*vdwtype[jnrG+0];
828             vdwjidx0H        = 2*vdwtype[jnrH+0];
829
830             /**************************
831              * CALCULATE INTERACTIONS *
832              **************************/
833
834             if (gmx_mm256_any_lt(rsq00,rcutoff2))
835             {
836
837             r00              = _mm256_mul_ps(rsq00,rinv00);
838             r00              = _mm256_andnot_ps(dummy_mask,r00);
839
840             /* Compute parameters for interactions between i and j atoms */
841             qq00             = _mm256_mul_ps(iq0,jq0);
842             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
843                                             vdwioffsetptr0+vdwjidx0B,
844                                             vdwioffsetptr0+vdwjidx0C,
845                                             vdwioffsetptr0+vdwjidx0D,
846                                             vdwioffsetptr0+vdwjidx0E,
847                                             vdwioffsetptr0+vdwjidx0F,
848                                             vdwioffsetptr0+vdwjidx0G,
849                                             vdwioffsetptr0+vdwjidx0H,
850                                             &c6_00,&c12_00);
851
852             /* EWALD ELECTROSTATICS */
853             
854             /* Analytical PME correction */
855             zeta2            = _mm256_mul_ps(beta2,rsq00);
856             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
857             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
858             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
859             felec            = _mm256_mul_ps(qq00,felec);
860             
861             /* LENNARD-JONES DISPERSION/REPULSION */
862
863             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
864             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
865
866             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
867
868             fscal            = _mm256_add_ps(felec,fvdw);
869
870             fscal            = _mm256_and_ps(fscal,cutoff_mask);
871
872             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
873
874             /* Calculate temporary vectorial force */
875             tx               = _mm256_mul_ps(fscal,dx00);
876             ty               = _mm256_mul_ps(fscal,dy00);
877             tz               = _mm256_mul_ps(fscal,dz00);
878
879             /* Update vectorial force */
880             fix0             = _mm256_add_ps(fix0,tx);
881             fiy0             = _mm256_add_ps(fiy0,ty);
882             fiz0             = _mm256_add_ps(fiz0,tz);
883
884             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
885             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
886             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
887             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
888             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
889             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
890             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
891             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
892             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
893
894             }
895
896             /* Inner loop uses 67 flops */
897         }
898
899         /* End of innermost loop */
900
901         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
902                                                  f+i_coord_offset,fshift+i_shift_offset);
903
904         /* Increment number of inner iterations */
905         inneriter                  += j_index_end - j_index_start;
906
907         /* Outer loop uses 7 flops */
908     }
909
910     /* Increment number of outer iterations */
911     outeriter        += nri;
912
913     /* Update outer/inner flops */
914
915     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*67);
916 }