763c5c956ef43ea2453c7e49e3ff6dd488043110
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
98     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
99     __m256i          ewitab;
100     __m128i          ewitab_lo,ewitab_hi;
101     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
103     real             *ewtab;
104     __m256           dummy_mask,cutoff_mask;
105     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
106     __m256           one     = _mm256_set1_ps(1.0);
107     __m256           two     = _mm256_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
126     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
127     beta2            = _mm256_mul_ps(beta,beta);
128     beta3            = _mm256_mul_ps(beta,beta2);
129
130     ewtab            = fr->ic->tabq_coul_FDV0;
131     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
132     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
133
134     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
135     rcutoff_scalar   = fr->rcoulomb;
136     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
137     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
138
139     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
140     rvdw             = _mm256_set1_ps(fr->rvdw);
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148     j_coord_offsetE = 0;
149     j_coord_offsetF = 0;
150     j_coord_offsetG = 0;
151     j_coord_offsetH = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     for(iidx=0;iidx<4*DIM;iidx++)
157     {
158         scratch[iidx] = 0.0;
159     }
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
177
178         fix0             = _mm256_setzero_ps();
179         fiy0             = _mm256_setzero_ps();
180         fiz0             = _mm256_setzero_ps();
181
182         /* Load parameters for i particles */
183         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
184         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
185
186         /* Reset potential sums */
187         velecsum         = _mm256_setzero_ps();
188         vvdwsum          = _mm256_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             jnrE             = jjnr[jidx+4];
200             jnrF             = jjnr[jidx+5];
201             jnrG             = jjnr[jidx+6];
202             jnrH             = jjnr[jidx+7];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207             j_coord_offsetE  = DIM*jnrE;
208             j_coord_offsetF  = DIM*jnrF;
209             j_coord_offsetG  = DIM*jnrG;
210             j_coord_offsetH  = DIM*jnrH;
211
212             /* load j atom coordinates */
213             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214                                                  x+j_coord_offsetC,x+j_coord_offsetD,
215                                                  x+j_coord_offsetE,x+j_coord_offsetF,
216                                                  x+j_coord_offsetG,x+j_coord_offsetH,
217                                                  &jx0,&jy0,&jz0);
218
219             /* Calculate displacement vector */
220             dx00             = _mm256_sub_ps(ix0,jx0);
221             dy00             = _mm256_sub_ps(iy0,jy0);
222             dz00             = _mm256_sub_ps(iz0,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
226
227             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
228
229             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
233                                                                  charge+jnrC+0,charge+jnrD+0,
234                                                                  charge+jnrE+0,charge+jnrF+0,
235                                                                  charge+jnrG+0,charge+jnrH+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238             vdwjidx0C        = 2*vdwtype[jnrC+0];
239             vdwjidx0D        = 2*vdwtype[jnrD+0];
240             vdwjidx0E        = 2*vdwtype[jnrE+0];
241             vdwjidx0F        = 2*vdwtype[jnrF+0];
242             vdwjidx0G        = 2*vdwtype[jnrG+0];
243             vdwjidx0H        = 2*vdwtype[jnrH+0];
244
245             /**************************
246              * CALCULATE INTERACTIONS *
247              **************************/
248
249             if (gmx_mm256_any_lt(rsq00,rcutoff2))
250             {
251
252             r00              = _mm256_mul_ps(rsq00,rinv00);
253
254             /* Compute parameters for interactions between i and j atoms */
255             qq00             = _mm256_mul_ps(iq0,jq0);
256             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
257                                             vdwioffsetptr0+vdwjidx0B,
258                                             vdwioffsetptr0+vdwjidx0C,
259                                             vdwioffsetptr0+vdwjidx0D,
260                                             vdwioffsetptr0+vdwjidx0E,
261                                             vdwioffsetptr0+vdwjidx0F,
262                                             vdwioffsetptr0+vdwjidx0G,
263                                             vdwioffsetptr0+vdwjidx0H,
264                                             &c6_00,&c12_00);
265
266             /* EWALD ELECTROSTATICS */
267             
268             /* Analytical PME correction */
269             zeta2            = _mm256_mul_ps(beta2,rsq00);
270             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
271             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
272             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
273             felec            = _mm256_mul_ps(qq00,felec);
274             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
275             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
276             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
277             velec            = _mm256_mul_ps(qq00,velec);
278             
279             /* LENNARD-JONES DISPERSION/REPULSION */
280
281             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
282             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
283             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
284             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
285                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
286             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
287
288             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
289
290             /* Update potential sum for this i atom from the interaction with this j atom. */
291             velec            = _mm256_and_ps(velec,cutoff_mask);
292             velecsum         = _mm256_add_ps(velecsum,velec);
293             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
294             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
295
296             fscal            = _mm256_add_ps(felec,fvdw);
297
298             fscal            = _mm256_and_ps(fscal,cutoff_mask);
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm256_mul_ps(fscal,dx00);
302             ty               = _mm256_mul_ps(fscal,dy00);
303             tz               = _mm256_mul_ps(fscal,dz00);
304
305             /* Update vectorial force */
306             fix0             = _mm256_add_ps(fix0,tx);
307             fiy0             = _mm256_add_ps(fiy0,ty);
308             fiz0             = _mm256_add_ps(fiz0,tz);
309
310             fjptrA             = f+j_coord_offsetA;
311             fjptrB             = f+j_coord_offsetB;
312             fjptrC             = f+j_coord_offsetC;
313             fjptrD             = f+j_coord_offsetD;
314             fjptrE             = f+j_coord_offsetE;
315             fjptrF             = f+j_coord_offsetF;
316             fjptrG             = f+j_coord_offsetG;
317             fjptrH             = f+j_coord_offsetH;
318             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
319
320             }
321
322             /* Inner loop uses 127 flops */
323         }
324
325         if(jidx<j_index_end)
326         {
327
328             /* Get j neighbor index, and coordinate index */
329             jnrlistA         = jjnr[jidx];
330             jnrlistB         = jjnr[jidx+1];
331             jnrlistC         = jjnr[jidx+2];
332             jnrlistD         = jjnr[jidx+3];
333             jnrlistE         = jjnr[jidx+4];
334             jnrlistF         = jjnr[jidx+5];
335             jnrlistG         = jjnr[jidx+6];
336             jnrlistH         = jjnr[jidx+7];
337             /* Sign of each element will be negative for non-real atoms.
338              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
339              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
340              */
341             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
342                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
343                                             
344             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
345             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
346             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
347             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
348             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
349             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
350             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
351             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
352             j_coord_offsetA  = DIM*jnrA;
353             j_coord_offsetB  = DIM*jnrB;
354             j_coord_offsetC  = DIM*jnrC;
355             j_coord_offsetD  = DIM*jnrD;
356             j_coord_offsetE  = DIM*jnrE;
357             j_coord_offsetF  = DIM*jnrF;
358             j_coord_offsetG  = DIM*jnrG;
359             j_coord_offsetH  = DIM*jnrH;
360
361             /* load j atom coordinates */
362             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
363                                                  x+j_coord_offsetC,x+j_coord_offsetD,
364                                                  x+j_coord_offsetE,x+j_coord_offsetF,
365                                                  x+j_coord_offsetG,x+j_coord_offsetH,
366                                                  &jx0,&jy0,&jz0);
367
368             /* Calculate displacement vector */
369             dx00             = _mm256_sub_ps(ix0,jx0);
370             dy00             = _mm256_sub_ps(iy0,jy0);
371             dz00             = _mm256_sub_ps(iz0,jz0);
372
373             /* Calculate squared distance and things based on it */
374             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
375
376             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
377
378             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
379
380             /* Load parameters for j particles */
381             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
382                                                                  charge+jnrC+0,charge+jnrD+0,
383                                                                  charge+jnrE+0,charge+jnrF+0,
384                                                                  charge+jnrG+0,charge+jnrH+0);
385             vdwjidx0A        = 2*vdwtype[jnrA+0];
386             vdwjidx0B        = 2*vdwtype[jnrB+0];
387             vdwjidx0C        = 2*vdwtype[jnrC+0];
388             vdwjidx0D        = 2*vdwtype[jnrD+0];
389             vdwjidx0E        = 2*vdwtype[jnrE+0];
390             vdwjidx0F        = 2*vdwtype[jnrF+0];
391             vdwjidx0G        = 2*vdwtype[jnrG+0];
392             vdwjidx0H        = 2*vdwtype[jnrH+0];
393
394             /**************************
395              * CALCULATE INTERACTIONS *
396              **************************/
397
398             if (gmx_mm256_any_lt(rsq00,rcutoff2))
399             {
400
401             r00              = _mm256_mul_ps(rsq00,rinv00);
402             r00              = _mm256_andnot_ps(dummy_mask,r00);
403
404             /* Compute parameters for interactions between i and j atoms */
405             qq00             = _mm256_mul_ps(iq0,jq0);
406             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
407                                             vdwioffsetptr0+vdwjidx0B,
408                                             vdwioffsetptr0+vdwjidx0C,
409                                             vdwioffsetptr0+vdwjidx0D,
410                                             vdwioffsetptr0+vdwjidx0E,
411                                             vdwioffsetptr0+vdwjidx0F,
412                                             vdwioffsetptr0+vdwjidx0G,
413                                             vdwioffsetptr0+vdwjidx0H,
414                                             &c6_00,&c12_00);
415
416             /* EWALD ELECTROSTATICS */
417             
418             /* Analytical PME correction */
419             zeta2            = _mm256_mul_ps(beta2,rsq00);
420             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
421             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
422             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
423             felec            = _mm256_mul_ps(qq00,felec);
424             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
425             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
426             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
427             velec            = _mm256_mul_ps(qq00,velec);
428             
429             /* LENNARD-JONES DISPERSION/REPULSION */
430
431             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
432             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
433             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
434             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
435                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
436             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
437
438             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
439
440             /* Update potential sum for this i atom from the interaction with this j atom. */
441             velec            = _mm256_and_ps(velec,cutoff_mask);
442             velec            = _mm256_andnot_ps(dummy_mask,velec);
443             velecsum         = _mm256_add_ps(velecsum,velec);
444             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
445             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
446             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
447
448             fscal            = _mm256_add_ps(felec,fvdw);
449
450             fscal            = _mm256_and_ps(fscal,cutoff_mask);
451
452             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
453
454             /* Calculate temporary vectorial force */
455             tx               = _mm256_mul_ps(fscal,dx00);
456             ty               = _mm256_mul_ps(fscal,dy00);
457             tz               = _mm256_mul_ps(fscal,dz00);
458
459             /* Update vectorial force */
460             fix0             = _mm256_add_ps(fix0,tx);
461             fiy0             = _mm256_add_ps(fiy0,ty);
462             fiz0             = _mm256_add_ps(fiz0,tz);
463
464             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
465             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
466             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
467             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
468             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
469             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
470             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
471             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
472             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
473
474             }
475
476             /* Inner loop uses 128 flops */
477         }
478
479         /* End of innermost loop */
480
481         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
482                                                  f+i_coord_offset,fshift+i_shift_offset);
483
484         ggid                        = gid[iidx];
485         /* Update potential energies */
486         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
487         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
488
489         /* Increment number of inner iterations */
490         inneriter                  += j_index_end - j_index_start;
491
492         /* Outer loop uses 9 flops */
493     }
494
495     /* Increment number of outer iterations */
496     outeriter        += nri;
497
498     /* Update outer/inner flops */
499
500     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*128);
501 }
502 /*
503  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_256_single
504  * Electrostatics interaction: Ewald
505  * VdW interaction:            LennardJones
506  * Geometry:                   Particle-Particle
507  * Calculate force/pot:        Force
508  */
509 void
510 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_256_single
511                     (t_nblist                    * gmx_restrict       nlist,
512                      rvec                        * gmx_restrict          xx,
513                      rvec                        * gmx_restrict          ff,
514                      t_forcerec                  * gmx_restrict          fr,
515                      t_mdatoms                   * gmx_restrict     mdatoms,
516                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
517                      t_nrnb                      * gmx_restrict        nrnb)
518 {
519     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
520      * just 0 for non-waters.
521      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
522      * jnr indices corresponding to data put in the four positions in the SIMD register.
523      */
524     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
525     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
526     int              jnrA,jnrB,jnrC,jnrD;
527     int              jnrE,jnrF,jnrG,jnrH;
528     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
529     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
530     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
531     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
532     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
533     real             rcutoff_scalar;
534     real             *shiftvec,*fshift,*x,*f;
535     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
536     real             scratch[4*DIM];
537     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
538     real *           vdwioffsetptr0;
539     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
540     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
541     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
542     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
543     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
544     real             *charge;
545     int              nvdwtype;
546     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
547     int              *vdwtype;
548     real             *vdwparam;
549     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
550     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
551     __m256i          ewitab;
552     __m128i          ewitab_lo,ewitab_hi;
553     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
554     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
555     real             *ewtab;
556     __m256           dummy_mask,cutoff_mask;
557     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
558     __m256           one     = _mm256_set1_ps(1.0);
559     __m256           two     = _mm256_set1_ps(2.0);
560     x                = xx[0];
561     f                = ff[0];
562
563     nri              = nlist->nri;
564     iinr             = nlist->iinr;
565     jindex           = nlist->jindex;
566     jjnr             = nlist->jjnr;
567     shiftidx         = nlist->shift;
568     gid              = nlist->gid;
569     shiftvec         = fr->shift_vec[0];
570     fshift           = fr->fshift[0];
571     facel            = _mm256_set1_ps(fr->epsfac);
572     charge           = mdatoms->chargeA;
573     nvdwtype         = fr->ntype;
574     vdwparam         = fr->nbfp;
575     vdwtype          = mdatoms->typeA;
576
577     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
578     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
579     beta2            = _mm256_mul_ps(beta,beta);
580     beta3            = _mm256_mul_ps(beta,beta2);
581
582     ewtab            = fr->ic->tabq_coul_F;
583     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
584     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
585
586     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
587     rcutoff_scalar   = fr->rcoulomb;
588     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
589     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
590
591     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
592     rvdw             = _mm256_set1_ps(fr->rvdw);
593
594     /* Avoid stupid compiler warnings */
595     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
596     j_coord_offsetA = 0;
597     j_coord_offsetB = 0;
598     j_coord_offsetC = 0;
599     j_coord_offsetD = 0;
600     j_coord_offsetE = 0;
601     j_coord_offsetF = 0;
602     j_coord_offsetG = 0;
603     j_coord_offsetH = 0;
604
605     outeriter        = 0;
606     inneriter        = 0;
607
608     for(iidx=0;iidx<4*DIM;iidx++)
609     {
610         scratch[iidx] = 0.0;
611     }
612
613     /* Start outer loop over neighborlists */
614     for(iidx=0; iidx<nri; iidx++)
615     {
616         /* Load shift vector for this list */
617         i_shift_offset   = DIM*shiftidx[iidx];
618
619         /* Load limits for loop over neighbors */
620         j_index_start    = jindex[iidx];
621         j_index_end      = jindex[iidx+1];
622
623         /* Get outer coordinate index */
624         inr              = iinr[iidx];
625         i_coord_offset   = DIM*inr;
626
627         /* Load i particle coords and add shift vector */
628         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
629
630         fix0             = _mm256_setzero_ps();
631         fiy0             = _mm256_setzero_ps();
632         fiz0             = _mm256_setzero_ps();
633
634         /* Load parameters for i particles */
635         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
636         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
637
638         /* Start inner kernel loop */
639         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
640         {
641
642             /* Get j neighbor index, and coordinate index */
643             jnrA             = jjnr[jidx];
644             jnrB             = jjnr[jidx+1];
645             jnrC             = jjnr[jidx+2];
646             jnrD             = jjnr[jidx+3];
647             jnrE             = jjnr[jidx+4];
648             jnrF             = jjnr[jidx+5];
649             jnrG             = jjnr[jidx+6];
650             jnrH             = jjnr[jidx+7];
651             j_coord_offsetA  = DIM*jnrA;
652             j_coord_offsetB  = DIM*jnrB;
653             j_coord_offsetC  = DIM*jnrC;
654             j_coord_offsetD  = DIM*jnrD;
655             j_coord_offsetE  = DIM*jnrE;
656             j_coord_offsetF  = DIM*jnrF;
657             j_coord_offsetG  = DIM*jnrG;
658             j_coord_offsetH  = DIM*jnrH;
659
660             /* load j atom coordinates */
661             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
662                                                  x+j_coord_offsetC,x+j_coord_offsetD,
663                                                  x+j_coord_offsetE,x+j_coord_offsetF,
664                                                  x+j_coord_offsetG,x+j_coord_offsetH,
665                                                  &jx0,&jy0,&jz0);
666
667             /* Calculate displacement vector */
668             dx00             = _mm256_sub_ps(ix0,jx0);
669             dy00             = _mm256_sub_ps(iy0,jy0);
670             dz00             = _mm256_sub_ps(iz0,jz0);
671
672             /* Calculate squared distance and things based on it */
673             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
674
675             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
676
677             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
678
679             /* Load parameters for j particles */
680             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
681                                                                  charge+jnrC+0,charge+jnrD+0,
682                                                                  charge+jnrE+0,charge+jnrF+0,
683                                                                  charge+jnrG+0,charge+jnrH+0);
684             vdwjidx0A        = 2*vdwtype[jnrA+0];
685             vdwjidx0B        = 2*vdwtype[jnrB+0];
686             vdwjidx0C        = 2*vdwtype[jnrC+0];
687             vdwjidx0D        = 2*vdwtype[jnrD+0];
688             vdwjidx0E        = 2*vdwtype[jnrE+0];
689             vdwjidx0F        = 2*vdwtype[jnrF+0];
690             vdwjidx0G        = 2*vdwtype[jnrG+0];
691             vdwjidx0H        = 2*vdwtype[jnrH+0];
692
693             /**************************
694              * CALCULATE INTERACTIONS *
695              **************************/
696
697             if (gmx_mm256_any_lt(rsq00,rcutoff2))
698             {
699
700             r00              = _mm256_mul_ps(rsq00,rinv00);
701
702             /* Compute parameters for interactions between i and j atoms */
703             qq00             = _mm256_mul_ps(iq0,jq0);
704             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
705                                             vdwioffsetptr0+vdwjidx0B,
706                                             vdwioffsetptr0+vdwjidx0C,
707                                             vdwioffsetptr0+vdwjidx0D,
708                                             vdwioffsetptr0+vdwjidx0E,
709                                             vdwioffsetptr0+vdwjidx0F,
710                                             vdwioffsetptr0+vdwjidx0G,
711                                             vdwioffsetptr0+vdwjidx0H,
712                                             &c6_00,&c12_00);
713
714             /* EWALD ELECTROSTATICS */
715             
716             /* Analytical PME correction */
717             zeta2            = _mm256_mul_ps(beta2,rsq00);
718             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
719             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
720             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
721             felec            = _mm256_mul_ps(qq00,felec);
722             
723             /* LENNARD-JONES DISPERSION/REPULSION */
724
725             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
726             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
727
728             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
729
730             fscal            = _mm256_add_ps(felec,fvdw);
731
732             fscal            = _mm256_and_ps(fscal,cutoff_mask);
733
734             /* Calculate temporary vectorial force */
735             tx               = _mm256_mul_ps(fscal,dx00);
736             ty               = _mm256_mul_ps(fscal,dy00);
737             tz               = _mm256_mul_ps(fscal,dz00);
738
739             /* Update vectorial force */
740             fix0             = _mm256_add_ps(fix0,tx);
741             fiy0             = _mm256_add_ps(fiy0,ty);
742             fiz0             = _mm256_add_ps(fiz0,tz);
743
744             fjptrA             = f+j_coord_offsetA;
745             fjptrB             = f+j_coord_offsetB;
746             fjptrC             = f+j_coord_offsetC;
747             fjptrD             = f+j_coord_offsetD;
748             fjptrE             = f+j_coord_offsetE;
749             fjptrF             = f+j_coord_offsetF;
750             fjptrG             = f+j_coord_offsetG;
751             fjptrH             = f+j_coord_offsetH;
752             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
753
754             }
755
756             /* Inner loop uses 66 flops */
757         }
758
759         if(jidx<j_index_end)
760         {
761
762             /* Get j neighbor index, and coordinate index */
763             jnrlistA         = jjnr[jidx];
764             jnrlistB         = jjnr[jidx+1];
765             jnrlistC         = jjnr[jidx+2];
766             jnrlistD         = jjnr[jidx+3];
767             jnrlistE         = jjnr[jidx+4];
768             jnrlistF         = jjnr[jidx+5];
769             jnrlistG         = jjnr[jidx+6];
770             jnrlistH         = jjnr[jidx+7];
771             /* Sign of each element will be negative for non-real atoms.
772              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
773              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
774              */
775             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
776                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
777                                             
778             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
779             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
780             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
781             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
782             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
783             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
784             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
785             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
786             j_coord_offsetA  = DIM*jnrA;
787             j_coord_offsetB  = DIM*jnrB;
788             j_coord_offsetC  = DIM*jnrC;
789             j_coord_offsetD  = DIM*jnrD;
790             j_coord_offsetE  = DIM*jnrE;
791             j_coord_offsetF  = DIM*jnrF;
792             j_coord_offsetG  = DIM*jnrG;
793             j_coord_offsetH  = DIM*jnrH;
794
795             /* load j atom coordinates */
796             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
797                                                  x+j_coord_offsetC,x+j_coord_offsetD,
798                                                  x+j_coord_offsetE,x+j_coord_offsetF,
799                                                  x+j_coord_offsetG,x+j_coord_offsetH,
800                                                  &jx0,&jy0,&jz0);
801
802             /* Calculate displacement vector */
803             dx00             = _mm256_sub_ps(ix0,jx0);
804             dy00             = _mm256_sub_ps(iy0,jy0);
805             dz00             = _mm256_sub_ps(iz0,jz0);
806
807             /* Calculate squared distance and things based on it */
808             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
809
810             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
811
812             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
813
814             /* Load parameters for j particles */
815             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
816                                                                  charge+jnrC+0,charge+jnrD+0,
817                                                                  charge+jnrE+0,charge+jnrF+0,
818                                                                  charge+jnrG+0,charge+jnrH+0);
819             vdwjidx0A        = 2*vdwtype[jnrA+0];
820             vdwjidx0B        = 2*vdwtype[jnrB+0];
821             vdwjidx0C        = 2*vdwtype[jnrC+0];
822             vdwjidx0D        = 2*vdwtype[jnrD+0];
823             vdwjidx0E        = 2*vdwtype[jnrE+0];
824             vdwjidx0F        = 2*vdwtype[jnrF+0];
825             vdwjidx0G        = 2*vdwtype[jnrG+0];
826             vdwjidx0H        = 2*vdwtype[jnrH+0];
827
828             /**************************
829              * CALCULATE INTERACTIONS *
830              **************************/
831
832             if (gmx_mm256_any_lt(rsq00,rcutoff2))
833             {
834
835             r00              = _mm256_mul_ps(rsq00,rinv00);
836             r00              = _mm256_andnot_ps(dummy_mask,r00);
837
838             /* Compute parameters for interactions between i and j atoms */
839             qq00             = _mm256_mul_ps(iq0,jq0);
840             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
841                                             vdwioffsetptr0+vdwjidx0B,
842                                             vdwioffsetptr0+vdwjidx0C,
843                                             vdwioffsetptr0+vdwjidx0D,
844                                             vdwioffsetptr0+vdwjidx0E,
845                                             vdwioffsetptr0+vdwjidx0F,
846                                             vdwioffsetptr0+vdwjidx0G,
847                                             vdwioffsetptr0+vdwjidx0H,
848                                             &c6_00,&c12_00);
849
850             /* EWALD ELECTROSTATICS */
851             
852             /* Analytical PME correction */
853             zeta2            = _mm256_mul_ps(beta2,rsq00);
854             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
855             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
856             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
857             felec            = _mm256_mul_ps(qq00,felec);
858             
859             /* LENNARD-JONES DISPERSION/REPULSION */
860
861             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
862             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
863
864             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
865
866             fscal            = _mm256_add_ps(felec,fvdw);
867
868             fscal            = _mm256_and_ps(fscal,cutoff_mask);
869
870             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
871
872             /* Calculate temporary vectorial force */
873             tx               = _mm256_mul_ps(fscal,dx00);
874             ty               = _mm256_mul_ps(fscal,dy00);
875             tz               = _mm256_mul_ps(fscal,dz00);
876
877             /* Update vectorial force */
878             fix0             = _mm256_add_ps(fix0,tx);
879             fiy0             = _mm256_add_ps(fiy0,ty);
880             fiz0             = _mm256_add_ps(fiz0,tz);
881
882             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
883             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
884             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
885             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
886             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
887             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
888             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
889             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
890             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
891
892             }
893
894             /* Inner loop uses 67 flops */
895         }
896
897         /* End of innermost loop */
898
899         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
900                                                  f+i_coord_offset,fshift+i_shift_offset);
901
902         /* Increment number of inner iterations */
903         inneriter                  += j_index_end - j_index_start;
904
905         /* Outer loop uses 7 flops */
906     }
907
908     /* Increment number of outer iterations */
909     outeriter        += nri;
910
911     /* Update outer/inner flops */
912
913     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*67);
914 }