Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_avx_256_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     real *           vdwgridioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     real *           vdwgridioffsetptr1;
90     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
91     real *           vdwioffsetptr2;
92     real *           vdwgridioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     real *           vdwioffsetptr3;
95     real *           vdwgridioffsetptr3;
96     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
97     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
98     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
99     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
100     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
101     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
102     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
103     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
104     real             *charge;
105     int              nvdwtype;
106     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
107     int              *vdwtype;
108     real             *vdwparam;
109     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
110     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
111     __m256           c6grid_00;
112     __m256           c6grid_10;
113     __m256           c6grid_20;
114     __m256           c6grid_30;
115     real             *vdwgridparam;
116     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
117     __m256           one_half  = _mm256_set1_ps(0.5);
118     __m256           minus_one = _mm256_set1_ps(-1.0);
119     __m256i          ewitab;
120     __m128i          ewitab_lo,ewitab_hi;
121     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
122     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
123     real             *ewtab;
124     __m256           dummy_mask,cutoff_mask;
125     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
126     __m256           one     = _mm256_set1_ps(1.0);
127     __m256           two     = _mm256_set1_ps(2.0);
128     x                = xx[0];
129     f                = ff[0];
130
131     nri              = nlist->nri;
132     iinr             = nlist->iinr;
133     jindex           = nlist->jindex;
134     jjnr             = nlist->jjnr;
135     shiftidx         = nlist->shift;
136     gid              = nlist->gid;
137     shiftvec         = fr->shift_vec[0];
138     fshift           = fr->fshift[0];
139     facel            = _mm256_set1_ps(fr->ic->epsfac);
140     charge           = mdatoms->chargeA;
141     nvdwtype         = fr->ntype;
142     vdwparam         = fr->nbfp;
143     vdwtype          = mdatoms->typeA;
144     vdwgridparam     = fr->ljpme_c6grid;
145     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
146     ewclj            = _mm256_set1_ps(fr->ic->ewaldcoeff_lj);
147     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
148
149     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
150     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
151     beta2            = _mm256_mul_ps(beta,beta);
152     beta3            = _mm256_mul_ps(beta,beta2);
153
154     ewtab            = fr->ic->tabq_coul_FDV0;
155     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
156     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
157
158     /* Setup water-specific parameters */
159     inr              = nlist->iinr[0];
160     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
161     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
162     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
163     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
164     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
165
166     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
167     rcutoff_scalar   = fr->ic->rcoulomb;
168     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
169     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
170
171     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
172     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
173
174     /* Avoid stupid compiler warnings */
175     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
176     j_coord_offsetA = 0;
177     j_coord_offsetB = 0;
178     j_coord_offsetC = 0;
179     j_coord_offsetD = 0;
180     j_coord_offsetE = 0;
181     j_coord_offsetF = 0;
182     j_coord_offsetG = 0;
183     j_coord_offsetH = 0;
184
185     outeriter        = 0;
186     inneriter        = 0;
187
188     for(iidx=0;iidx<4*DIM;iidx++)
189     {
190         scratch[iidx] = 0.0;
191     }
192
193     /* Start outer loop over neighborlists */
194     for(iidx=0; iidx<nri; iidx++)
195     {
196         /* Load shift vector for this list */
197         i_shift_offset   = DIM*shiftidx[iidx];
198
199         /* Load limits for loop over neighbors */
200         j_index_start    = jindex[iidx];
201         j_index_end      = jindex[iidx+1];
202
203         /* Get outer coordinate index */
204         inr              = iinr[iidx];
205         i_coord_offset   = DIM*inr;
206
207         /* Load i particle coords and add shift vector */
208         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
209                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
210
211         fix0             = _mm256_setzero_ps();
212         fiy0             = _mm256_setzero_ps();
213         fiz0             = _mm256_setzero_ps();
214         fix1             = _mm256_setzero_ps();
215         fiy1             = _mm256_setzero_ps();
216         fiz1             = _mm256_setzero_ps();
217         fix2             = _mm256_setzero_ps();
218         fiy2             = _mm256_setzero_ps();
219         fiz2             = _mm256_setzero_ps();
220         fix3             = _mm256_setzero_ps();
221         fiy3             = _mm256_setzero_ps();
222         fiz3             = _mm256_setzero_ps();
223
224         /* Reset potential sums */
225         velecsum         = _mm256_setzero_ps();
226         vvdwsum          = _mm256_setzero_ps();
227
228         /* Start inner kernel loop */
229         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
230         {
231
232             /* Get j neighbor index, and coordinate index */
233             jnrA             = jjnr[jidx];
234             jnrB             = jjnr[jidx+1];
235             jnrC             = jjnr[jidx+2];
236             jnrD             = jjnr[jidx+3];
237             jnrE             = jjnr[jidx+4];
238             jnrF             = jjnr[jidx+5];
239             jnrG             = jjnr[jidx+6];
240             jnrH             = jjnr[jidx+7];
241             j_coord_offsetA  = DIM*jnrA;
242             j_coord_offsetB  = DIM*jnrB;
243             j_coord_offsetC  = DIM*jnrC;
244             j_coord_offsetD  = DIM*jnrD;
245             j_coord_offsetE  = DIM*jnrE;
246             j_coord_offsetF  = DIM*jnrF;
247             j_coord_offsetG  = DIM*jnrG;
248             j_coord_offsetH  = DIM*jnrH;
249
250             /* load j atom coordinates */
251             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
252                                                  x+j_coord_offsetC,x+j_coord_offsetD,
253                                                  x+j_coord_offsetE,x+j_coord_offsetF,
254                                                  x+j_coord_offsetG,x+j_coord_offsetH,
255                                                  &jx0,&jy0,&jz0);
256
257             /* Calculate displacement vector */
258             dx00             = _mm256_sub_ps(ix0,jx0);
259             dy00             = _mm256_sub_ps(iy0,jy0);
260             dz00             = _mm256_sub_ps(iz0,jz0);
261             dx10             = _mm256_sub_ps(ix1,jx0);
262             dy10             = _mm256_sub_ps(iy1,jy0);
263             dz10             = _mm256_sub_ps(iz1,jz0);
264             dx20             = _mm256_sub_ps(ix2,jx0);
265             dy20             = _mm256_sub_ps(iy2,jy0);
266             dz20             = _mm256_sub_ps(iz2,jz0);
267             dx30             = _mm256_sub_ps(ix3,jx0);
268             dy30             = _mm256_sub_ps(iy3,jy0);
269             dz30             = _mm256_sub_ps(iz3,jz0);
270
271             /* Calculate squared distance and things based on it */
272             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
273             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
274             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
275             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
276
277             rinv00           = avx256_invsqrt_f(rsq00);
278             rinv10           = avx256_invsqrt_f(rsq10);
279             rinv20           = avx256_invsqrt_f(rsq20);
280             rinv30           = avx256_invsqrt_f(rsq30);
281
282             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
283             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
284             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
285             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
286
287             /* Load parameters for j particles */
288             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
289                                                                  charge+jnrC+0,charge+jnrD+0,
290                                                                  charge+jnrE+0,charge+jnrF+0,
291                                                                  charge+jnrG+0,charge+jnrH+0);
292             vdwjidx0A        = 2*vdwtype[jnrA+0];
293             vdwjidx0B        = 2*vdwtype[jnrB+0];
294             vdwjidx0C        = 2*vdwtype[jnrC+0];
295             vdwjidx0D        = 2*vdwtype[jnrD+0];
296             vdwjidx0E        = 2*vdwtype[jnrE+0];
297             vdwjidx0F        = 2*vdwtype[jnrF+0];
298             vdwjidx0G        = 2*vdwtype[jnrG+0];
299             vdwjidx0H        = 2*vdwtype[jnrH+0];
300
301             fjx0             = _mm256_setzero_ps();
302             fjy0             = _mm256_setzero_ps();
303             fjz0             = _mm256_setzero_ps();
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             if (gmx_mm256_any_lt(rsq00,rcutoff2))
310             {
311
312             r00              = _mm256_mul_ps(rsq00,rinv00);
313
314             /* Compute parameters for interactions between i and j atoms */
315             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
316                                             vdwioffsetptr0+vdwjidx0B,
317                                             vdwioffsetptr0+vdwjidx0C,
318                                             vdwioffsetptr0+vdwjidx0D,
319                                             vdwioffsetptr0+vdwjidx0E,
320                                             vdwioffsetptr0+vdwjidx0F,
321                                             vdwioffsetptr0+vdwjidx0G,
322                                             vdwioffsetptr0+vdwjidx0H,
323                                             &c6_00,&c12_00);
324
325             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
326                                                                   vdwgridioffsetptr0+vdwjidx0B,
327                                                                   vdwgridioffsetptr0+vdwjidx0C,
328                                                                   vdwgridioffsetptr0+vdwjidx0D,
329                                                                   vdwgridioffsetptr0+vdwjidx0E,
330                                                                   vdwgridioffsetptr0+vdwjidx0F,
331                                                                   vdwgridioffsetptr0+vdwjidx0G,
332                                                                   vdwgridioffsetptr0+vdwjidx0H);
333
334             /* Analytical LJ-PME */
335             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
336             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
337             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
338             exponent         = avx256_exp_f(ewcljrsq);
339             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
340             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
341             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
342             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
343             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
344             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
345                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_add_ps(_mm256_mul_ps(c6_00,sh_vdw_invrcut6),_mm256_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
346             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
347             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
348
349             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
353             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
354
355             fscal            = fvdw;
356
357             fscal            = _mm256_and_ps(fscal,cutoff_mask);
358
359             /* Calculate temporary vectorial force */
360             tx               = _mm256_mul_ps(fscal,dx00);
361             ty               = _mm256_mul_ps(fscal,dy00);
362             tz               = _mm256_mul_ps(fscal,dz00);
363
364             /* Update vectorial force */
365             fix0             = _mm256_add_ps(fix0,tx);
366             fiy0             = _mm256_add_ps(fiy0,ty);
367             fiz0             = _mm256_add_ps(fiz0,tz);
368
369             fjx0             = _mm256_add_ps(fjx0,tx);
370             fjy0             = _mm256_add_ps(fjy0,ty);
371             fjz0             = _mm256_add_ps(fjz0,tz);
372
373             }
374
375             /**************************
376              * CALCULATE INTERACTIONS *
377              **************************/
378
379             if (gmx_mm256_any_lt(rsq10,rcutoff2))
380             {
381
382             r10              = _mm256_mul_ps(rsq10,rinv10);
383
384             /* Compute parameters for interactions between i and j atoms */
385             qq10             = _mm256_mul_ps(iq1,jq0);
386
387             /* EWALD ELECTROSTATICS */
388             
389             /* Analytical PME correction */
390             zeta2            = _mm256_mul_ps(beta2,rsq10);
391             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
392             pmecorrF         = avx256_pmecorrF_f(zeta2);
393             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
394             felec            = _mm256_mul_ps(qq10,felec);
395             pmecorrV         = avx256_pmecorrV_f(zeta2);
396             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
397             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
398             velec            = _mm256_mul_ps(qq10,velec);
399             
400             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
401
402             /* Update potential sum for this i atom from the interaction with this j atom. */
403             velec            = _mm256_and_ps(velec,cutoff_mask);
404             velecsum         = _mm256_add_ps(velecsum,velec);
405
406             fscal            = felec;
407
408             fscal            = _mm256_and_ps(fscal,cutoff_mask);
409
410             /* Calculate temporary vectorial force */
411             tx               = _mm256_mul_ps(fscal,dx10);
412             ty               = _mm256_mul_ps(fscal,dy10);
413             tz               = _mm256_mul_ps(fscal,dz10);
414
415             /* Update vectorial force */
416             fix1             = _mm256_add_ps(fix1,tx);
417             fiy1             = _mm256_add_ps(fiy1,ty);
418             fiz1             = _mm256_add_ps(fiz1,tz);
419
420             fjx0             = _mm256_add_ps(fjx0,tx);
421             fjy0             = _mm256_add_ps(fjy0,ty);
422             fjz0             = _mm256_add_ps(fjz0,tz);
423
424             }
425
426             /**************************
427              * CALCULATE INTERACTIONS *
428              **************************/
429
430             if (gmx_mm256_any_lt(rsq20,rcutoff2))
431             {
432
433             r20              = _mm256_mul_ps(rsq20,rinv20);
434
435             /* Compute parameters for interactions between i and j atoms */
436             qq20             = _mm256_mul_ps(iq2,jq0);
437
438             /* EWALD ELECTROSTATICS */
439             
440             /* Analytical PME correction */
441             zeta2            = _mm256_mul_ps(beta2,rsq20);
442             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
443             pmecorrF         = avx256_pmecorrF_f(zeta2);
444             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
445             felec            = _mm256_mul_ps(qq20,felec);
446             pmecorrV         = avx256_pmecorrV_f(zeta2);
447             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
448             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
449             velec            = _mm256_mul_ps(qq20,velec);
450             
451             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
452
453             /* Update potential sum for this i atom from the interaction with this j atom. */
454             velec            = _mm256_and_ps(velec,cutoff_mask);
455             velecsum         = _mm256_add_ps(velecsum,velec);
456
457             fscal            = felec;
458
459             fscal            = _mm256_and_ps(fscal,cutoff_mask);
460
461             /* Calculate temporary vectorial force */
462             tx               = _mm256_mul_ps(fscal,dx20);
463             ty               = _mm256_mul_ps(fscal,dy20);
464             tz               = _mm256_mul_ps(fscal,dz20);
465
466             /* Update vectorial force */
467             fix2             = _mm256_add_ps(fix2,tx);
468             fiy2             = _mm256_add_ps(fiy2,ty);
469             fiz2             = _mm256_add_ps(fiz2,tz);
470
471             fjx0             = _mm256_add_ps(fjx0,tx);
472             fjy0             = _mm256_add_ps(fjy0,ty);
473             fjz0             = _mm256_add_ps(fjz0,tz);
474
475             }
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             if (gmx_mm256_any_lt(rsq30,rcutoff2))
482             {
483
484             r30              = _mm256_mul_ps(rsq30,rinv30);
485
486             /* Compute parameters for interactions between i and j atoms */
487             qq30             = _mm256_mul_ps(iq3,jq0);
488
489             /* EWALD ELECTROSTATICS */
490             
491             /* Analytical PME correction */
492             zeta2            = _mm256_mul_ps(beta2,rsq30);
493             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
494             pmecorrF         = avx256_pmecorrF_f(zeta2);
495             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
496             felec            = _mm256_mul_ps(qq30,felec);
497             pmecorrV         = avx256_pmecorrV_f(zeta2);
498             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
499             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv30,sh_ewald),pmecorrV);
500             velec            = _mm256_mul_ps(qq30,velec);
501             
502             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
503
504             /* Update potential sum for this i atom from the interaction with this j atom. */
505             velec            = _mm256_and_ps(velec,cutoff_mask);
506             velecsum         = _mm256_add_ps(velecsum,velec);
507
508             fscal            = felec;
509
510             fscal            = _mm256_and_ps(fscal,cutoff_mask);
511
512             /* Calculate temporary vectorial force */
513             tx               = _mm256_mul_ps(fscal,dx30);
514             ty               = _mm256_mul_ps(fscal,dy30);
515             tz               = _mm256_mul_ps(fscal,dz30);
516
517             /* Update vectorial force */
518             fix3             = _mm256_add_ps(fix3,tx);
519             fiy3             = _mm256_add_ps(fiy3,ty);
520             fiz3             = _mm256_add_ps(fiz3,tz);
521
522             fjx0             = _mm256_add_ps(fjx0,tx);
523             fjy0             = _mm256_add_ps(fjy0,ty);
524             fjz0             = _mm256_add_ps(fjz0,tz);
525
526             }
527
528             fjptrA             = f+j_coord_offsetA;
529             fjptrB             = f+j_coord_offsetB;
530             fjptrC             = f+j_coord_offsetC;
531             fjptrD             = f+j_coord_offsetD;
532             fjptrE             = f+j_coord_offsetE;
533             fjptrF             = f+j_coord_offsetF;
534             fjptrG             = f+j_coord_offsetG;
535             fjptrH             = f+j_coord_offsetH;
536
537             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
538
539             /* Inner loop uses 392 flops */
540         }
541
542         if(jidx<j_index_end)
543         {
544
545             /* Get j neighbor index, and coordinate index */
546             jnrlistA         = jjnr[jidx];
547             jnrlistB         = jjnr[jidx+1];
548             jnrlistC         = jjnr[jidx+2];
549             jnrlistD         = jjnr[jidx+3];
550             jnrlistE         = jjnr[jidx+4];
551             jnrlistF         = jjnr[jidx+5];
552             jnrlistG         = jjnr[jidx+6];
553             jnrlistH         = jjnr[jidx+7];
554             /* Sign of each element will be negative for non-real atoms.
555              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
556              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
557              */
558             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
559                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
560                                             
561             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
562             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
563             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
564             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
565             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
566             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
567             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
568             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
569             j_coord_offsetA  = DIM*jnrA;
570             j_coord_offsetB  = DIM*jnrB;
571             j_coord_offsetC  = DIM*jnrC;
572             j_coord_offsetD  = DIM*jnrD;
573             j_coord_offsetE  = DIM*jnrE;
574             j_coord_offsetF  = DIM*jnrF;
575             j_coord_offsetG  = DIM*jnrG;
576             j_coord_offsetH  = DIM*jnrH;
577
578             /* load j atom coordinates */
579             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
580                                                  x+j_coord_offsetC,x+j_coord_offsetD,
581                                                  x+j_coord_offsetE,x+j_coord_offsetF,
582                                                  x+j_coord_offsetG,x+j_coord_offsetH,
583                                                  &jx0,&jy0,&jz0);
584
585             /* Calculate displacement vector */
586             dx00             = _mm256_sub_ps(ix0,jx0);
587             dy00             = _mm256_sub_ps(iy0,jy0);
588             dz00             = _mm256_sub_ps(iz0,jz0);
589             dx10             = _mm256_sub_ps(ix1,jx0);
590             dy10             = _mm256_sub_ps(iy1,jy0);
591             dz10             = _mm256_sub_ps(iz1,jz0);
592             dx20             = _mm256_sub_ps(ix2,jx0);
593             dy20             = _mm256_sub_ps(iy2,jy0);
594             dz20             = _mm256_sub_ps(iz2,jz0);
595             dx30             = _mm256_sub_ps(ix3,jx0);
596             dy30             = _mm256_sub_ps(iy3,jy0);
597             dz30             = _mm256_sub_ps(iz3,jz0);
598
599             /* Calculate squared distance and things based on it */
600             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
601             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
602             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
603             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
604
605             rinv00           = avx256_invsqrt_f(rsq00);
606             rinv10           = avx256_invsqrt_f(rsq10);
607             rinv20           = avx256_invsqrt_f(rsq20);
608             rinv30           = avx256_invsqrt_f(rsq30);
609
610             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
611             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
612             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
613             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
614
615             /* Load parameters for j particles */
616             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
617                                                                  charge+jnrC+0,charge+jnrD+0,
618                                                                  charge+jnrE+0,charge+jnrF+0,
619                                                                  charge+jnrG+0,charge+jnrH+0);
620             vdwjidx0A        = 2*vdwtype[jnrA+0];
621             vdwjidx0B        = 2*vdwtype[jnrB+0];
622             vdwjidx0C        = 2*vdwtype[jnrC+0];
623             vdwjidx0D        = 2*vdwtype[jnrD+0];
624             vdwjidx0E        = 2*vdwtype[jnrE+0];
625             vdwjidx0F        = 2*vdwtype[jnrF+0];
626             vdwjidx0G        = 2*vdwtype[jnrG+0];
627             vdwjidx0H        = 2*vdwtype[jnrH+0];
628
629             fjx0             = _mm256_setzero_ps();
630             fjy0             = _mm256_setzero_ps();
631             fjz0             = _mm256_setzero_ps();
632
633             /**************************
634              * CALCULATE INTERACTIONS *
635              **************************/
636
637             if (gmx_mm256_any_lt(rsq00,rcutoff2))
638             {
639
640             r00              = _mm256_mul_ps(rsq00,rinv00);
641             r00              = _mm256_andnot_ps(dummy_mask,r00);
642
643             /* Compute parameters for interactions between i and j atoms */
644             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
645                                             vdwioffsetptr0+vdwjidx0B,
646                                             vdwioffsetptr0+vdwjidx0C,
647                                             vdwioffsetptr0+vdwjidx0D,
648                                             vdwioffsetptr0+vdwjidx0E,
649                                             vdwioffsetptr0+vdwjidx0F,
650                                             vdwioffsetptr0+vdwjidx0G,
651                                             vdwioffsetptr0+vdwjidx0H,
652                                             &c6_00,&c12_00);
653
654             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
655                                                                   vdwgridioffsetptr0+vdwjidx0B,
656                                                                   vdwgridioffsetptr0+vdwjidx0C,
657                                                                   vdwgridioffsetptr0+vdwjidx0D,
658                                                                   vdwgridioffsetptr0+vdwjidx0E,
659                                                                   vdwgridioffsetptr0+vdwjidx0F,
660                                                                   vdwgridioffsetptr0+vdwjidx0G,
661                                                                   vdwgridioffsetptr0+vdwjidx0H);
662
663             /* Analytical LJ-PME */
664             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
665             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
666             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
667             exponent         = avx256_exp_f(ewcljrsq);
668             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
669             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
670             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
671             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
672             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
673             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
674                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_add_ps(_mm256_mul_ps(c6_00,sh_vdw_invrcut6),_mm256_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
675             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
676             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
677
678             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
679
680             /* Update potential sum for this i atom from the interaction with this j atom. */
681             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
682             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
683             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
684
685             fscal            = fvdw;
686
687             fscal            = _mm256_and_ps(fscal,cutoff_mask);
688
689             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
690
691             /* Calculate temporary vectorial force */
692             tx               = _mm256_mul_ps(fscal,dx00);
693             ty               = _mm256_mul_ps(fscal,dy00);
694             tz               = _mm256_mul_ps(fscal,dz00);
695
696             /* Update vectorial force */
697             fix0             = _mm256_add_ps(fix0,tx);
698             fiy0             = _mm256_add_ps(fiy0,ty);
699             fiz0             = _mm256_add_ps(fiz0,tz);
700
701             fjx0             = _mm256_add_ps(fjx0,tx);
702             fjy0             = _mm256_add_ps(fjy0,ty);
703             fjz0             = _mm256_add_ps(fjz0,tz);
704
705             }
706
707             /**************************
708              * CALCULATE INTERACTIONS *
709              **************************/
710
711             if (gmx_mm256_any_lt(rsq10,rcutoff2))
712             {
713
714             r10              = _mm256_mul_ps(rsq10,rinv10);
715             r10              = _mm256_andnot_ps(dummy_mask,r10);
716
717             /* Compute parameters for interactions between i and j atoms */
718             qq10             = _mm256_mul_ps(iq1,jq0);
719
720             /* EWALD ELECTROSTATICS */
721             
722             /* Analytical PME correction */
723             zeta2            = _mm256_mul_ps(beta2,rsq10);
724             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
725             pmecorrF         = avx256_pmecorrF_f(zeta2);
726             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
727             felec            = _mm256_mul_ps(qq10,felec);
728             pmecorrV         = avx256_pmecorrV_f(zeta2);
729             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
730             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
731             velec            = _mm256_mul_ps(qq10,velec);
732             
733             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
734
735             /* Update potential sum for this i atom from the interaction with this j atom. */
736             velec            = _mm256_and_ps(velec,cutoff_mask);
737             velec            = _mm256_andnot_ps(dummy_mask,velec);
738             velecsum         = _mm256_add_ps(velecsum,velec);
739
740             fscal            = felec;
741
742             fscal            = _mm256_and_ps(fscal,cutoff_mask);
743
744             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
745
746             /* Calculate temporary vectorial force */
747             tx               = _mm256_mul_ps(fscal,dx10);
748             ty               = _mm256_mul_ps(fscal,dy10);
749             tz               = _mm256_mul_ps(fscal,dz10);
750
751             /* Update vectorial force */
752             fix1             = _mm256_add_ps(fix1,tx);
753             fiy1             = _mm256_add_ps(fiy1,ty);
754             fiz1             = _mm256_add_ps(fiz1,tz);
755
756             fjx0             = _mm256_add_ps(fjx0,tx);
757             fjy0             = _mm256_add_ps(fjy0,ty);
758             fjz0             = _mm256_add_ps(fjz0,tz);
759
760             }
761
762             /**************************
763              * CALCULATE INTERACTIONS *
764              **************************/
765
766             if (gmx_mm256_any_lt(rsq20,rcutoff2))
767             {
768
769             r20              = _mm256_mul_ps(rsq20,rinv20);
770             r20              = _mm256_andnot_ps(dummy_mask,r20);
771
772             /* Compute parameters for interactions between i and j atoms */
773             qq20             = _mm256_mul_ps(iq2,jq0);
774
775             /* EWALD ELECTROSTATICS */
776             
777             /* Analytical PME correction */
778             zeta2            = _mm256_mul_ps(beta2,rsq20);
779             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
780             pmecorrF         = avx256_pmecorrF_f(zeta2);
781             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
782             felec            = _mm256_mul_ps(qq20,felec);
783             pmecorrV         = avx256_pmecorrV_f(zeta2);
784             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
785             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
786             velec            = _mm256_mul_ps(qq20,velec);
787             
788             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
789
790             /* Update potential sum for this i atom from the interaction with this j atom. */
791             velec            = _mm256_and_ps(velec,cutoff_mask);
792             velec            = _mm256_andnot_ps(dummy_mask,velec);
793             velecsum         = _mm256_add_ps(velecsum,velec);
794
795             fscal            = felec;
796
797             fscal            = _mm256_and_ps(fscal,cutoff_mask);
798
799             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
800
801             /* Calculate temporary vectorial force */
802             tx               = _mm256_mul_ps(fscal,dx20);
803             ty               = _mm256_mul_ps(fscal,dy20);
804             tz               = _mm256_mul_ps(fscal,dz20);
805
806             /* Update vectorial force */
807             fix2             = _mm256_add_ps(fix2,tx);
808             fiy2             = _mm256_add_ps(fiy2,ty);
809             fiz2             = _mm256_add_ps(fiz2,tz);
810
811             fjx0             = _mm256_add_ps(fjx0,tx);
812             fjy0             = _mm256_add_ps(fjy0,ty);
813             fjz0             = _mm256_add_ps(fjz0,tz);
814
815             }
816
817             /**************************
818              * CALCULATE INTERACTIONS *
819              **************************/
820
821             if (gmx_mm256_any_lt(rsq30,rcutoff2))
822             {
823
824             r30              = _mm256_mul_ps(rsq30,rinv30);
825             r30              = _mm256_andnot_ps(dummy_mask,r30);
826
827             /* Compute parameters for interactions between i and j atoms */
828             qq30             = _mm256_mul_ps(iq3,jq0);
829
830             /* EWALD ELECTROSTATICS */
831             
832             /* Analytical PME correction */
833             zeta2            = _mm256_mul_ps(beta2,rsq30);
834             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
835             pmecorrF         = avx256_pmecorrF_f(zeta2);
836             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
837             felec            = _mm256_mul_ps(qq30,felec);
838             pmecorrV         = avx256_pmecorrV_f(zeta2);
839             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
840             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv30,sh_ewald),pmecorrV);
841             velec            = _mm256_mul_ps(qq30,velec);
842             
843             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
844
845             /* Update potential sum for this i atom from the interaction with this j atom. */
846             velec            = _mm256_and_ps(velec,cutoff_mask);
847             velec            = _mm256_andnot_ps(dummy_mask,velec);
848             velecsum         = _mm256_add_ps(velecsum,velec);
849
850             fscal            = felec;
851
852             fscal            = _mm256_and_ps(fscal,cutoff_mask);
853
854             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
855
856             /* Calculate temporary vectorial force */
857             tx               = _mm256_mul_ps(fscal,dx30);
858             ty               = _mm256_mul_ps(fscal,dy30);
859             tz               = _mm256_mul_ps(fscal,dz30);
860
861             /* Update vectorial force */
862             fix3             = _mm256_add_ps(fix3,tx);
863             fiy3             = _mm256_add_ps(fiy3,ty);
864             fiz3             = _mm256_add_ps(fiz3,tz);
865
866             fjx0             = _mm256_add_ps(fjx0,tx);
867             fjy0             = _mm256_add_ps(fjy0,ty);
868             fjz0             = _mm256_add_ps(fjz0,tz);
869
870             }
871
872             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
873             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
874             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
875             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
876             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
877             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
878             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
879             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
880
881             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
882
883             /* Inner loop uses 396 flops */
884         }
885
886         /* End of innermost loop */
887
888         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
889                                                  f+i_coord_offset,fshift+i_shift_offset);
890
891         ggid                        = gid[iidx];
892         /* Update potential energies */
893         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
894         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
895
896         /* Increment number of inner iterations */
897         inneriter                  += j_index_end - j_index_start;
898
899         /* Outer loop uses 26 flops */
900     }
901
902     /* Increment number of outer iterations */
903     outeriter        += nri;
904
905     /* Update outer/inner flops */
906
907     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*396);
908 }
909 /*
910  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_avx_256_single
911  * Electrostatics interaction: Ewald
912  * VdW interaction:            LJEwald
913  * Geometry:                   Water4-Particle
914  * Calculate force/pot:        Force
915  */
916 void
917 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_avx_256_single
918                     (t_nblist                    * gmx_restrict       nlist,
919                      rvec                        * gmx_restrict          xx,
920                      rvec                        * gmx_restrict          ff,
921                      struct t_forcerec           * gmx_restrict          fr,
922                      t_mdatoms                   * gmx_restrict     mdatoms,
923                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
924                      t_nrnb                      * gmx_restrict        nrnb)
925 {
926     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
927      * just 0 for non-waters.
928      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
929      * jnr indices corresponding to data put in the four positions in the SIMD register.
930      */
931     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
932     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
933     int              jnrA,jnrB,jnrC,jnrD;
934     int              jnrE,jnrF,jnrG,jnrH;
935     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
936     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
937     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
938     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
939     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
940     real             rcutoff_scalar;
941     real             *shiftvec,*fshift,*x,*f;
942     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
943     real             scratch[4*DIM];
944     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
945     real *           vdwioffsetptr0;
946     real *           vdwgridioffsetptr0;
947     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
948     real *           vdwioffsetptr1;
949     real *           vdwgridioffsetptr1;
950     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
951     real *           vdwioffsetptr2;
952     real *           vdwgridioffsetptr2;
953     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
954     real *           vdwioffsetptr3;
955     real *           vdwgridioffsetptr3;
956     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
957     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
958     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
959     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
960     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
961     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
962     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
963     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
964     real             *charge;
965     int              nvdwtype;
966     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
967     int              *vdwtype;
968     real             *vdwparam;
969     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
970     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
971     __m256           c6grid_00;
972     __m256           c6grid_10;
973     __m256           c6grid_20;
974     __m256           c6grid_30;
975     real             *vdwgridparam;
976     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
977     __m256           one_half  = _mm256_set1_ps(0.5);
978     __m256           minus_one = _mm256_set1_ps(-1.0);
979     __m256i          ewitab;
980     __m128i          ewitab_lo,ewitab_hi;
981     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
982     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
983     real             *ewtab;
984     __m256           dummy_mask,cutoff_mask;
985     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
986     __m256           one     = _mm256_set1_ps(1.0);
987     __m256           two     = _mm256_set1_ps(2.0);
988     x                = xx[0];
989     f                = ff[0];
990
991     nri              = nlist->nri;
992     iinr             = nlist->iinr;
993     jindex           = nlist->jindex;
994     jjnr             = nlist->jjnr;
995     shiftidx         = nlist->shift;
996     gid              = nlist->gid;
997     shiftvec         = fr->shift_vec[0];
998     fshift           = fr->fshift[0];
999     facel            = _mm256_set1_ps(fr->ic->epsfac);
1000     charge           = mdatoms->chargeA;
1001     nvdwtype         = fr->ntype;
1002     vdwparam         = fr->nbfp;
1003     vdwtype          = mdatoms->typeA;
1004     vdwgridparam     = fr->ljpme_c6grid;
1005     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
1006     ewclj            = _mm256_set1_ps(fr->ic->ewaldcoeff_lj);
1007     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
1008
1009     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
1010     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
1011     beta2            = _mm256_mul_ps(beta,beta);
1012     beta3            = _mm256_mul_ps(beta,beta2);
1013
1014     ewtab            = fr->ic->tabq_coul_F;
1015     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
1016     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
1017
1018     /* Setup water-specific parameters */
1019     inr              = nlist->iinr[0];
1020     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
1021     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
1022     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
1023     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
1024     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
1025
1026     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1027     rcutoff_scalar   = fr->ic->rcoulomb;
1028     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
1029     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
1030
1031     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
1032     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
1033
1034     /* Avoid stupid compiler warnings */
1035     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
1036     j_coord_offsetA = 0;
1037     j_coord_offsetB = 0;
1038     j_coord_offsetC = 0;
1039     j_coord_offsetD = 0;
1040     j_coord_offsetE = 0;
1041     j_coord_offsetF = 0;
1042     j_coord_offsetG = 0;
1043     j_coord_offsetH = 0;
1044
1045     outeriter        = 0;
1046     inneriter        = 0;
1047
1048     for(iidx=0;iidx<4*DIM;iidx++)
1049     {
1050         scratch[iidx] = 0.0;
1051     }
1052
1053     /* Start outer loop over neighborlists */
1054     for(iidx=0; iidx<nri; iidx++)
1055     {
1056         /* Load shift vector for this list */
1057         i_shift_offset   = DIM*shiftidx[iidx];
1058
1059         /* Load limits for loop over neighbors */
1060         j_index_start    = jindex[iidx];
1061         j_index_end      = jindex[iidx+1];
1062
1063         /* Get outer coordinate index */
1064         inr              = iinr[iidx];
1065         i_coord_offset   = DIM*inr;
1066
1067         /* Load i particle coords and add shift vector */
1068         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1069                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1070
1071         fix0             = _mm256_setzero_ps();
1072         fiy0             = _mm256_setzero_ps();
1073         fiz0             = _mm256_setzero_ps();
1074         fix1             = _mm256_setzero_ps();
1075         fiy1             = _mm256_setzero_ps();
1076         fiz1             = _mm256_setzero_ps();
1077         fix2             = _mm256_setzero_ps();
1078         fiy2             = _mm256_setzero_ps();
1079         fiz2             = _mm256_setzero_ps();
1080         fix3             = _mm256_setzero_ps();
1081         fiy3             = _mm256_setzero_ps();
1082         fiz3             = _mm256_setzero_ps();
1083
1084         /* Start inner kernel loop */
1085         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
1086         {
1087
1088             /* Get j neighbor index, and coordinate index */
1089             jnrA             = jjnr[jidx];
1090             jnrB             = jjnr[jidx+1];
1091             jnrC             = jjnr[jidx+2];
1092             jnrD             = jjnr[jidx+3];
1093             jnrE             = jjnr[jidx+4];
1094             jnrF             = jjnr[jidx+5];
1095             jnrG             = jjnr[jidx+6];
1096             jnrH             = jjnr[jidx+7];
1097             j_coord_offsetA  = DIM*jnrA;
1098             j_coord_offsetB  = DIM*jnrB;
1099             j_coord_offsetC  = DIM*jnrC;
1100             j_coord_offsetD  = DIM*jnrD;
1101             j_coord_offsetE  = DIM*jnrE;
1102             j_coord_offsetF  = DIM*jnrF;
1103             j_coord_offsetG  = DIM*jnrG;
1104             j_coord_offsetH  = DIM*jnrH;
1105
1106             /* load j atom coordinates */
1107             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1108                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1109                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1110                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1111                                                  &jx0,&jy0,&jz0);
1112
1113             /* Calculate displacement vector */
1114             dx00             = _mm256_sub_ps(ix0,jx0);
1115             dy00             = _mm256_sub_ps(iy0,jy0);
1116             dz00             = _mm256_sub_ps(iz0,jz0);
1117             dx10             = _mm256_sub_ps(ix1,jx0);
1118             dy10             = _mm256_sub_ps(iy1,jy0);
1119             dz10             = _mm256_sub_ps(iz1,jz0);
1120             dx20             = _mm256_sub_ps(ix2,jx0);
1121             dy20             = _mm256_sub_ps(iy2,jy0);
1122             dz20             = _mm256_sub_ps(iz2,jz0);
1123             dx30             = _mm256_sub_ps(ix3,jx0);
1124             dy30             = _mm256_sub_ps(iy3,jy0);
1125             dz30             = _mm256_sub_ps(iz3,jz0);
1126
1127             /* Calculate squared distance and things based on it */
1128             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1129             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1130             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1131             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1132
1133             rinv00           = avx256_invsqrt_f(rsq00);
1134             rinv10           = avx256_invsqrt_f(rsq10);
1135             rinv20           = avx256_invsqrt_f(rsq20);
1136             rinv30           = avx256_invsqrt_f(rsq30);
1137
1138             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1139             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1140             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1141             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1142
1143             /* Load parameters for j particles */
1144             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1145                                                                  charge+jnrC+0,charge+jnrD+0,
1146                                                                  charge+jnrE+0,charge+jnrF+0,
1147                                                                  charge+jnrG+0,charge+jnrH+0);
1148             vdwjidx0A        = 2*vdwtype[jnrA+0];
1149             vdwjidx0B        = 2*vdwtype[jnrB+0];
1150             vdwjidx0C        = 2*vdwtype[jnrC+0];
1151             vdwjidx0D        = 2*vdwtype[jnrD+0];
1152             vdwjidx0E        = 2*vdwtype[jnrE+0];
1153             vdwjidx0F        = 2*vdwtype[jnrF+0];
1154             vdwjidx0G        = 2*vdwtype[jnrG+0];
1155             vdwjidx0H        = 2*vdwtype[jnrH+0];
1156
1157             fjx0             = _mm256_setzero_ps();
1158             fjy0             = _mm256_setzero_ps();
1159             fjz0             = _mm256_setzero_ps();
1160
1161             /**************************
1162              * CALCULATE INTERACTIONS *
1163              **************************/
1164
1165             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1166             {
1167
1168             r00              = _mm256_mul_ps(rsq00,rinv00);
1169
1170             /* Compute parameters for interactions between i and j atoms */
1171             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1172                                             vdwioffsetptr0+vdwjidx0B,
1173                                             vdwioffsetptr0+vdwjidx0C,
1174                                             vdwioffsetptr0+vdwjidx0D,
1175                                             vdwioffsetptr0+vdwjidx0E,
1176                                             vdwioffsetptr0+vdwjidx0F,
1177                                             vdwioffsetptr0+vdwjidx0G,
1178                                             vdwioffsetptr0+vdwjidx0H,
1179                                             &c6_00,&c12_00);
1180
1181             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
1182                                                                   vdwgridioffsetptr0+vdwjidx0B,
1183                                                                   vdwgridioffsetptr0+vdwjidx0C,
1184                                                                   vdwgridioffsetptr0+vdwjidx0D,
1185                                                                   vdwgridioffsetptr0+vdwjidx0E,
1186                                                                   vdwgridioffsetptr0+vdwjidx0F,
1187                                                                   vdwgridioffsetptr0+vdwjidx0G,
1188                                                                   vdwgridioffsetptr0+vdwjidx0H);
1189
1190             /* Analytical LJ-PME */
1191             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1192             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
1193             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
1194             exponent         = avx256_exp_f(ewcljrsq);
1195             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1196             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1197             /* f6A = 6 * C6grid * (1 - poly) */
1198             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
1199             /* f6B = C6grid * exponent * beta^6 */
1200             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
1201             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1202             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1203
1204             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1205
1206             fscal            = fvdw;
1207
1208             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1209
1210             /* Calculate temporary vectorial force */
1211             tx               = _mm256_mul_ps(fscal,dx00);
1212             ty               = _mm256_mul_ps(fscal,dy00);
1213             tz               = _mm256_mul_ps(fscal,dz00);
1214
1215             /* Update vectorial force */
1216             fix0             = _mm256_add_ps(fix0,tx);
1217             fiy0             = _mm256_add_ps(fiy0,ty);
1218             fiz0             = _mm256_add_ps(fiz0,tz);
1219
1220             fjx0             = _mm256_add_ps(fjx0,tx);
1221             fjy0             = _mm256_add_ps(fjy0,ty);
1222             fjz0             = _mm256_add_ps(fjz0,tz);
1223
1224             }
1225
1226             /**************************
1227              * CALCULATE INTERACTIONS *
1228              **************************/
1229
1230             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1231             {
1232
1233             r10              = _mm256_mul_ps(rsq10,rinv10);
1234
1235             /* Compute parameters for interactions between i and j atoms */
1236             qq10             = _mm256_mul_ps(iq1,jq0);
1237
1238             /* EWALD ELECTROSTATICS */
1239             
1240             /* Analytical PME correction */
1241             zeta2            = _mm256_mul_ps(beta2,rsq10);
1242             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1243             pmecorrF         = avx256_pmecorrF_f(zeta2);
1244             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1245             felec            = _mm256_mul_ps(qq10,felec);
1246             
1247             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1248
1249             fscal            = felec;
1250
1251             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1252
1253             /* Calculate temporary vectorial force */
1254             tx               = _mm256_mul_ps(fscal,dx10);
1255             ty               = _mm256_mul_ps(fscal,dy10);
1256             tz               = _mm256_mul_ps(fscal,dz10);
1257
1258             /* Update vectorial force */
1259             fix1             = _mm256_add_ps(fix1,tx);
1260             fiy1             = _mm256_add_ps(fiy1,ty);
1261             fiz1             = _mm256_add_ps(fiz1,tz);
1262
1263             fjx0             = _mm256_add_ps(fjx0,tx);
1264             fjy0             = _mm256_add_ps(fjy0,ty);
1265             fjz0             = _mm256_add_ps(fjz0,tz);
1266
1267             }
1268
1269             /**************************
1270              * CALCULATE INTERACTIONS *
1271              **************************/
1272
1273             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1274             {
1275
1276             r20              = _mm256_mul_ps(rsq20,rinv20);
1277
1278             /* Compute parameters for interactions between i and j atoms */
1279             qq20             = _mm256_mul_ps(iq2,jq0);
1280
1281             /* EWALD ELECTROSTATICS */
1282             
1283             /* Analytical PME correction */
1284             zeta2            = _mm256_mul_ps(beta2,rsq20);
1285             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1286             pmecorrF         = avx256_pmecorrF_f(zeta2);
1287             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1288             felec            = _mm256_mul_ps(qq20,felec);
1289             
1290             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1291
1292             fscal            = felec;
1293
1294             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1295
1296             /* Calculate temporary vectorial force */
1297             tx               = _mm256_mul_ps(fscal,dx20);
1298             ty               = _mm256_mul_ps(fscal,dy20);
1299             tz               = _mm256_mul_ps(fscal,dz20);
1300
1301             /* Update vectorial force */
1302             fix2             = _mm256_add_ps(fix2,tx);
1303             fiy2             = _mm256_add_ps(fiy2,ty);
1304             fiz2             = _mm256_add_ps(fiz2,tz);
1305
1306             fjx0             = _mm256_add_ps(fjx0,tx);
1307             fjy0             = _mm256_add_ps(fjy0,ty);
1308             fjz0             = _mm256_add_ps(fjz0,tz);
1309
1310             }
1311
1312             /**************************
1313              * CALCULATE INTERACTIONS *
1314              **************************/
1315
1316             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1317             {
1318
1319             r30              = _mm256_mul_ps(rsq30,rinv30);
1320
1321             /* Compute parameters for interactions between i and j atoms */
1322             qq30             = _mm256_mul_ps(iq3,jq0);
1323
1324             /* EWALD ELECTROSTATICS */
1325             
1326             /* Analytical PME correction */
1327             zeta2            = _mm256_mul_ps(beta2,rsq30);
1328             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1329             pmecorrF         = avx256_pmecorrF_f(zeta2);
1330             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1331             felec            = _mm256_mul_ps(qq30,felec);
1332             
1333             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1334
1335             fscal            = felec;
1336
1337             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1338
1339             /* Calculate temporary vectorial force */
1340             tx               = _mm256_mul_ps(fscal,dx30);
1341             ty               = _mm256_mul_ps(fscal,dy30);
1342             tz               = _mm256_mul_ps(fscal,dz30);
1343
1344             /* Update vectorial force */
1345             fix3             = _mm256_add_ps(fix3,tx);
1346             fiy3             = _mm256_add_ps(fiy3,ty);
1347             fiz3             = _mm256_add_ps(fiz3,tz);
1348
1349             fjx0             = _mm256_add_ps(fjx0,tx);
1350             fjy0             = _mm256_add_ps(fjy0,ty);
1351             fjz0             = _mm256_add_ps(fjz0,tz);
1352
1353             }
1354
1355             fjptrA             = f+j_coord_offsetA;
1356             fjptrB             = f+j_coord_offsetB;
1357             fjptrC             = f+j_coord_offsetC;
1358             fjptrD             = f+j_coord_offsetD;
1359             fjptrE             = f+j_coord_offsetE;
1360             fjptrF             = f+j_coord_offsetF;
1361             fjptrG             = f+j_coord_offsetG;
1362             fjptrH             = f+j_coord_offsetH;
1363
1364             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1365
1366             /* Inner loop uses 229 flops */
1367         }
1368
1369         if(jidx<j_index_end)
1370         {
1371
1372             /* Get j neighbor index, and coordinate index */
1373             jnrlistA         = jjnr[jidx];
1374             jnrlistB         = jjnr[jidx+1];
1375             jnrlistC         = jjnr[jidx+2];
1376             jnrlistD         = jjnr[jidx+3];
1377             jnrlistE         = jjnr[jidx+4];
1378             jnrlistF         = jjnr[jidx+5];
1379             jnrlistG         = jjnr[jidx+6];
1380             jnrlistH         = jjnr[jidx+7];
1381             /* Sign of each element will be negative for non-real atoms.
1382              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1383              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1384              */
1385             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1386                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1387                                             
1388             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1389             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1390             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1391             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1392             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1393             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1394             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1395             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1396             j_coord_offsetA  = DIM*jnrA;
1397             j_coord_offsetB  = DIM*jnrB;
1398             j_coord_offsetC  = DIM*jnrC;
1399             j_coord_offsetD  = DIM*jnrD;
1400             j_coord_offsetE  = DIM*jnrE;
1401             j_coord_offsetF  = DIM*jnrF;
1402             j_coord_offsetG  = DIM*jnrG;
1403             j_coord_offsetH  = DIM*jnrH;
1404
1405             /* load j atom coordinates */
1406             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1407                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1408                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1409                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1410                                                  &jx0,&jy0,&jz0);
1411
1412             /* Calculate displacement vector */
1413             dx00             = _mm256_sub_ps(ix0,jx0);
1414             dy00             = _mm256_sub_ps(iy0,jy0);
1415             dz00             = _mm256_sub_ps(iz0,jz0);
1416             dx10             = _mm256_sub_ps(ix1,jx0);
1417             dy10             = _mm256_sub_ps(iy1,jy0);
1418             dz10             = _mm256_sub_ps(iz1,jz0);
1419             dx20             = _mm256_sub_ps(ix2,jx0);
1420             dy20             = _mm256_sub_ps(iy2,jy0);
1421             dz20             = _mm256_sub_ps(iz2,jz0);
1422             dx30             = _mm256_sub_ps(ix3,jx0);
1423             dy30             = _mm256_sub_ps(iy3,jy0);
1424             dz30             = _mm256_sub_ps(iz3,jz0);
1425
1426             /* Calculate squared distance and things based on it */
1427             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1428             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1429             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1430             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1431
1432             rinv00           = avx256_invsqrt_f(rsq00);
1433             rinv10           = avx256_invsqrt_f(rsq10);
1434             rinv20           = avx256_invsqrt_f(rsq20);
1435             rinv30           = avx256_invsqrt_f(rsq30);
1436
1437             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1438             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1439             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1440             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1441
1442             /* Load parameters for j particles */
1443             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1444                                                                  charge+jnrC+0,charge+jnrD+0,
1445                                                                  charge+jnrE+0,charge+jnrF+0,
1446                                                                  charge+jnrG+0,charge+jnrH+0);
1447             vdwjidx0A        = 2*vdwtype[jnrA+0];
1448             vdwjidx0B        = 2*vdwtype[jnrB+0];
1449             vdwjidx0C        = 2*vdwtype[jnrC+0];
1450             vdwjidx0D        = 2*vdwtype[jnrD+0];
1451             vdwjidx0E        = 2*vdwtype[jnrE+0];
1452             vdwjidx0F        = 2*vdwtype[jnrF+0];
1453             vdwjidx0G        = 2*vdwtype[jnrG+0];
1454             vdwjidx0H        = 2*vdwtype[jnrH+0];
1455
1456             fjx0             = _mm256_setzero_ps();
1457             fjy0             = _mm256_setzero_ps();
1458             fjz0             = _mm256_setzero_ps();
1459
1460             /**************************
1461              * CALCULATE INTERACTIONS *
1462              **************************/
1463
1464             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1465             {
1466
1467             r00              = _mm256_mul_ps(rsq00,rinv00);
1468             r00              = _mm256_andnot_ps(dummy_mask,r00);
1469
1470             /* Compute parameters for interactions between i and j atoms */
1471             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1472                                             vdwioffsetptr0+vdwjidx0B,
1473                                             vdwioffsetptr0+vdwjidx0C,
1474                                             vdwioffsetptr0+vdwjidx0D,
1475                                             vdwioffsetptr0+vdwjidx0E,
1476                                             vdwioffsetptr0+vdwjidx0F,
1477                                             vdwioffsetptr0+vdwjidx0G,
1478                                             vdwioffsetptr0+vdwjidx0H,
1479                                             &c6_00,&c12_00);
1480
1481             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
1482                                                                   vdwgridioffsetptr0+vdwjidx0B,
1483                                                                   vdwgridioffsetptr0+vdwjidx0C,
1484                                                                   vdwgridioffsetptr0+vdwjidx0D,
1485                                                                   vdwgridioffsetptr0+vdwjidx0E,
1486                                                                   vdwgridioffsetptr0+vdwjidx0F,
1487                                                                   vdwgridioffsetptr0+vdwjidx0G,
1488                                                                   vdwgridioffsetptr0+vdwjidx0H);
1489
1490             /* Analytical LJ-PME */
1491             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1492             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
1493             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
1494             exponent         = avx256_exp_f(ewcljrsq);
1495             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1496             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1497             /* f6A = 6 * C6grid * (1 - poly) */
1498             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
1499             /* f6B = C6grid * exponent * beta^6 */
1500             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
1501             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1502             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1503
1504             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1505
1506             fscal            = fvdw;
1507
1508             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1509
1510             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1511
1512             /* Calculate temporary vectorial force */
1513             tx               = _mm256_mul_ps(fscal,dx00);
1514             ty               = _mm256_mul_ps(fscal,dy00);
1515             tz               = _mm256_mul_ps(fscal,dz00);
1516
1517             /* Update vectorial force */
1518             fix0             = _mm256_add_ps(fix0,tx);
1519             fiy0             = _mm256_add_ps(fiy0,ty);
1520             fiz0             = _mm256_add_ps(fiz0,tz);
1521
1522             fjx0             = _mm256_add_ps(fjx0,tx);
1523             fjy0             = _mm256_add_ps(fjy0,ty);
1524             fjz0             = _mm256_add_ps(fjz0,tz);
1525
1526             }
1527
1528             /**************************
1529              * CALCULATE INTERACTIONS *
1530              **************************/
1531
1532             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1533             {
1534
1535             r10              = _mm256_mul_ps(rsq10,rinv10);
1536             r10              = _mm256_andnot_ps(dummy_mask,r10);
1537
1538             /* Compute parameters for interactions between i and j atoms */
1539             qq10             = _mm256_mul_ps(iq1,jq0);
1540
1541             /* EWALD ELECTROSTATICS */
1542             
1543             /* Analytical PME correction */
1544             zeta2            = _mm256_mul_ps(beta2,rsq10);
1545             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1546             pmecorrF         = avx256_pmecorrF_f(zeta2);
1547             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1548             felec            = _mm256_mul_ps(qq10,felec);
1549             
1550             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1551
1552             fscal            = felec;
1553
1554             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1555
1556             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1557
1558             /* Calculate temporary vectorial force */
1559             tx               = _mm256_mul_ps(fscal,dx10);
1560             ty               = _mm256_mul_ps(fscal,dy10);
1561             tz               = _mm256_mul_ps(fscal,dz10);
1562
1563             /* Update vectorial force */
1564             fix1             = _mm256_add_ps(fix1,tx);
1565             fiy1             = _mm256_add_ps(fiy1,ty);
1566             fiz1             = _mm256_add_ps(fiz1,tz);
1567
1568             fjx0             = _mm256_add_ps(fjx0,tx);
1569             fjy0             = _mm256_add_ps(fjy0,ty);
1570             fjz0             = _mm256_add_ps(fjz0,tz);
1571
1572             }
1573
1574             /**************************
1575              * CALCULATE INTERACTIONS *
1576              **************************/
1577
1578             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1579             {
1580
1581             r20              = _mm256_mul_ps(rsq20,rinv20);
1582             r20              = _mm256_andnot_ps(dummy_mask,r20);
1583
1584             /* Compute parameters for interactions between i and j atoms */
1585             qq20             = _mm256_mul_ps(iq2,jq0);
1586
1587             /* EWALD ELECTROSTATICS */
1588             
1589             /* Analytical PME correction */
1590             zeta2            = _mm256_mul_ps(beta2,rsq20);
1591             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1592             pmecorrF         = avx256_pmecorrF_f(zeta2);
1593             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1594             felec            = _mm256_mul_ps(qq20,felec);
1595             
1596             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1597
1598             fscal            = felec;
1599
1600             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1601
1602             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1603
1604             /* Calculate temporary vectorial force */
1605             tx               = _mm256_mul_ps(fscal,dx20);
1606             ty               = _mm256_mul_ps(fscal,dy20);
1607             tz               = _mm256_mul_ps(fscal,dz20);
1608
1609             /* Update vectorial force */
1610             fix2             = _mm256_add_ps(fix2,tx);
1611             fiy2             = _mm256_add_ps(fiy2,ty);
1612             fiz2             = _mm256_add_ps(fiz2,tz);
1613
1614             fjx0             = _mm256_add_ps(fjx0,tx);
1615             fjy0             = _mm256_add_ps(fjy0,ty);
1616             fjz0             = _mm256_add_ps(fjz0,tz);
1617
1618             }
1619
1620             /**************************
1621              * CALCULATE INTERACTIONS *
1622              **************************/
1623
1624             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1625             {
1626
1627             r30              = _mm256_mul_ps(rsq30,rinv30);
1628             r30              = _mm256_andnot_ps(dummy_mask,r30);
1629
1630             /* Compute parameters for interactions between i and j atoms */
1631             qq30             = _mm256_mul_ps(iq3,jq0);
1632
1633             /* EWALD ELECTROSTATICS */
1634             
1635             /* Analytical PME correction */
1636             zeta2            = _mm256_mul_ps(beta2,rsq30);
1637             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1638             pmecorrF         = avx256_pmecorrF_f(zeta2);
1639             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1640             felec            = _mm256_mul_ps(qq30,felec);
1641             
1642             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1643
1644             fscal            = felec;
1645
1646             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1647
1648             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1649
1650             /* Calculate temporary vectorial force */
1651             tx               = _mm256_mul_ps(fscal,dx30);
1652             ty               = _mm256_mul_ps(fscal,dy30);
1653             tz               = _mm256_mul_ps(fscal,dz30);
1654
1655             /* Update vectorial force */
1656             fix3             = _mm256_add_ps(fix3,tx);
1657             fiy3             = _mm256_add_ps(fiy3,ty);
1658             fiz3             = _mm256_add_ps(fiz3,tz);
1659
1660             fjx0             = _mm256_add_ps(fjx0,tx);
1661             fjy0             = _mm256_add_ps(fjy0,ty);
1662             fjz0             = _mm256_add_ps(fjz0,tz);
1663
1664             }
1665
1666             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1667             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1668             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1669             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1670             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1671             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1672             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1673             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1674
1675             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1676
1677             /* Inner loop uses 233 flops */
1678         }
1679
1680         /* End of innermost loop */
1681
1682         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1683                                                  f+i_coord_offset,fshift+i_shift_offset);
1684
1685         /* Increment number of inner iterations */
1686         inneriter                  += j_index_end - j_index_start;
1687
1688         /* Outer loop uses 24 flops */
1689     }
1690
1691     /* Increment number of outer iterations */
1692     outeriter        += nri;
1693
1694     /* Update outer/inner flops */
1695
1696     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*233);
1697 }