Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_256_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     real *           vdwgridioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     real *           vdwgridioffsetptr1;
90     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
91     real *           vdwioffsetptr2;
92     real *           vdwgridioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256           c6grid_00;
108     __m256           c6grid_10;
109     __m256           c6grid_20;
110     real             *vdwgridparam;
111     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
112     __m256           one_half  = _mm256_set1_ps(0.5);
113     __m256           minus_one = _mm256_set1_ps(-1.0);
114     __m256i          ewitab;
115     __m128i          ewitab_lo,ewitab_hi;
116     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
117     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
118     real             *ewtab;
119     __m256           dummy_mask,cutoff_mask;
120     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
121     __m256           one     = _mm256_set1_ps(1.0);
122     __m256           two     = _mm256_set1_ps(2.0);
123     x                = xx[0];
124     f                = ff[0];
125
126     nri              = nlist->nri;
127     iinr             = nlist->iinr;
128     jindex           = nlist->jindex;
129     jjnr             = nlist->jjnr;
130     shiftidx         = nlist->shift;
131     gid              = nlist->gid;
132     shiftvec         = fr->shift_vec[0];
133     fshift           = fr->fshift[0];
134     facel            = _mm256_set1_ps(fr->ic->epsfac);
135     charge           = mdatoms->chargeA;
136     nvdwtype         = fr->ntype;
137     vdwparam         = fr->nbfp;
138     vdwtype          = mdatoms->typeA;
139     vdwgridparam     = fr->ljpme_c6grid;
140     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
141     ewclj            = _mm256_set1_ps(fr->ic->ewaldcoeff_lj);
142     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
143
144     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
145     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
146     beta2            = _mm256_mul_ps(beta,beta);
147     beta3            = _mm256_mul_ps(beta,beta2);
148
149     ewtab            = fr->ic->tabq_coul_FDV0;
150     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
151     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
152
153     /* Setup water-specific parameters */
154     inr              = nlist->iinr[0];
155     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
156     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
157     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
158     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
159     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
160
161     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
162     rcutoff_scalar   = fr->ic->rcoulomb;
163     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
164     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
165
166     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
167     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
168
169     /* Avoid stupid compiler warnings */
170     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
171     j_coord_offsetA = 0;
172     j_coord_offsetB = 0;
173     j_coord_offsetC = 0;
174     j_coord_offsetD = 0;
175     j_coord_offsetE = 0;
176     j_coord_offsetF = 0;
177     j_coord_offsetG = 0;
178     j_coord_offsetH = 0;
179
180     outeriter        = 0;
181     inneriter        = 0;
182
183     for(iidx=0;iidx<4*DIM;iidx++)
184     {
185         scratch[iidx] = 0.0;
186     }
187
188     /* Start outer loop over neighborlists */
189     for(iidx=0; iidx<nri; iidx++)
190     {
191         /* Load shift vector for this list */
192         i_shift_offset   = DIM*shiftidx[iidx];
193
194         /* Load limits for loop over neighbors */
195         j_index_start    = jindex[iidx];
196         j_index_end      = jindex[iidx+1];
197
198         /* Get outer coordinate index */
199         inr              = iinr[iidx];
200         i_coord_offset   = DIM*inr;
201
202         /* Load i particle coords and add shift vector */
203         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
204                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
205
206         fix0             = _mm256_setzero_ps();
207         fiy0             = _mm256_setzero_ps();
208         fiz0             = _mm256_setzero_ps();
209         fix1             = _mm256_setzero_ps();
210         fiy1             = _mm256_setzero_ps();
211         fiz1             = _mm256_setzero_ps();
212         fix2             = _mm256_setzero_ps();
213         fiy2             = _mm256_setzero_ps();
214         fiz2             = _mm256_setzero_ps();
215
216         /* Reset potential sums */
217         velecsum         = _mm256_setzero_ps();
218         vvdwsum          = _mm256_setzero_ps();
219
220         /* Start inner kernel loop */
221         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
222         {
223
224             /* Get j neighbor index, and coordinate index */
225             jnrA             = jjnr[jidx];
226             jnrB             = jjnr[jidx+1];
227             jnrC             = jjnr[jidx+2];
228             jnrD             = jjnr[jidx+3];
229             jnrE             = jjnr[jidx+4];
230             jnrF             = jjnr[jidx+5];
231             jnrG             = jjnr[jidx+6];
232             jnrH             = jjnr[jidx+7];
233             j_coord_offsetA  = DIM*jnrA;
234             j_coord_offsetB  = DIM*jnrB;
235             j_coord_offsetC  = DIM*jnrC;
236             j_coord_offsetD  = DIM*jnrD;
237             j_coord_offsetE  = DIM*jnrE;
238             j_coord_offsetF  = DIM*jnrF;
239             j_coord_offsetG  = DIM*jnrG;
240             j_coord_offsetH  = DIM*jnrH;
241
242             /* load j atom coordinates */
243             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
244                                                  x+j_coord_offsetC,x+j_coord_offsetD,
245                                                  x+j_coord_offsetE,x+j_coord_offsetF,
246                                                  x+j_coord_offsetG,x+j_coord_offsetH,
247                                                  &jx0,&jy0,&jz0);
248
249             /* Calculate displacement vector */
250             dx00             = _mm256_sub_ps(ix0,jx0);
251             dy00             = _mm256_sub_ps(iy0,jy0);
252             dz00             = _mm256_sub_ps(iz0,jz0);
253             dx10             = _mm256_sub_ps(ix1,jx0);
254             dy10             = _mm256_sub_ps(iy1,jy0);
255             dz10             = _mm256_sub_ps(iz1,jz0);
256             dx20             = _mm256_sub_ps(ix2,jx0);
257             dy20             = _mm256_sub_ps(iy2,jy0);
258             dz20             = _mm256_sub_ps(iz2,jz0);
259
260             /* Calculate squared distance and things based on it */
261             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
262             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
263             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
264
265             rinv00           = avx256_invsqrt_f(rsq00);
266             rinv10           = avx256_invsqrt_f(rsq10);
267             rinv20           = avx256_invsqrt_f(rsq20);
268
269             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
270             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
271             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
272
273             /* Load parameters for j particles */
274             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
275                                                                  charge+jnrC+0,charge+jnrD+0,
276                                                                  charge+jnrE+0,charge+jnrF+0,
277                                                                  charge+jnrG+0,charge+jnrH+0);
278             vdwjidx0A        = 2*vdwtype[jnrA+0];
279             vdwjidx0B        = 2*vdwtype[jnrB+0];
280             vdwjidx0C        = 2*vdwtype[jnrC+0];
281             vdwjidx0D        = 2*vdwtype[jnrD+0];
282             vdwjidx0E        = 2*vdwtype[jnrE+0];
283             vdwjidx0F        = 2*vdwtype[jnrF+0];
284             vdwjidx0G        = 2*vdwtype[jnrG+0];
285             vdwjidx0H        = 2*vdwtype[jnrH+0];
286
287             fjx0             = _mm256_setzero_ps();
288             fjy0             = _mm256_setzero_ps();
289             fjz0             = _mm256_setzero_ps();
290
291             /**************************
292              * CALCULATE INTERACTIONS *
293              **************************/
294
295             if (gmx_mm256_any_lt(rsq00,rcutoff2))
296             {
297
298             r00              = _mm256_mul_ps(rsq00,rinv00);
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq00             = _mm256_mul_ps(iq0,jq0);
302             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
303                                             vdwioffsetptr0+vdwjidx0B,
304                                             vdwioffsetptr0+vdwjidx0C,
305                                             vdwioffsetptr0+vdwjidx0D,
306                                             vdwioffsetptr0+vdwjidx0E,
307                                             vdwioffsetptr0+vdwjidx0F,
308                                             vdwioffsetptr0+vdwjidx0G,
309                                             vdwioffsetptr0+vdwjidx0H,
310                                             &c6_00,&c12_00);
311
312             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
313                                                                   vdwgridioffsetptr0+vdwjidx0B,
314                                                                   vdwgridioffsetptr0+vdwjidx0C,
315                                                                   vdwgridioffsetptr0+vdwjidx0D,
316                                                                   vdwgridioffsetptr0+vdwjidx0E,
317                                                                   vdwgridioffsetptr0+vdwjidx0F,
318                                                                   vdwgridioffsetptr0+vdwjidx0G,
319                                                                   vdwgridioffsetptr0+vdwjidx0H);
320
321             /* EWALD ELECTROSTATICS */
322             
323             /* Analytical PME correction */
324             zeta2            = _mm256_mul_ps(beta2,rsq00);
325             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
326             pmecorrF         = avx256_pmecorrF_f(zeta2);
327             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
328             felec            = _mm256_mul_ps(qq00,felec);
329             pmecorrV         = avx256_pmecorrV_f(zeta2);
330             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
331             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
332             velec            = _mm256_mul_ps(qq00,velec);
333             
334             /* Analytical LJ-PME */
335             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
336             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
337             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
338             exponent         = avx256_exp_f(ewcljrsq);
339             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
340             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
341             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
342             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
343             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
344             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
345                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_add_ps(_mm256_mul_ps(c6_00,sh_vdw_invrcut6),_mm256_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
346             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
347             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
348
349             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             velec            = _mm256_and_ps(velec,cutoff_mask);
353             velecsum         = _mm256_add_ps(velecsum,velec);
354             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
355             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
356
357             fscal            = _mm256_add_ps(felec,fvdw);
358
359             fscal            = _mm256_and_ps(fscal,cutoff_mask);
360
361             /* Calculate temporary vectorial force */
362             tx               = _mm256_mul_ps(fscal,dx00);
363             ty               = _mm256_mul_ps(fscal,dy00);
364             tz               = _mm256_mul_ps(fscal,dz00);
365
366             /* Update vectorial force */
367             fix0             = _mm256_add_ps(fix0,tx);
368             fiy0             = _mm256_add_ps(fiy0,ty);
369             fiz0             = _mm256_add_ps(fiz0,tz);
370
371             fjx0             = _mm256_add_ps(fjx0,tx);
372             fjy0             = _mm256_add_ps(fjy0,ty);
373             fjz0             = _mm256_add_ps(fjz0,tz);
374
375             }
376
377             /**************************
378              * CALCULATE INTERACTIONS *
379              **************************/
380
381             if (gmx_mm256_any_lt(rsq10,rcutoff2))
382             {
383
384             r10              = _mm256_mul_ps(rsq10,rinv10);
385
386             /* Compute parameters for interactions between i and j atoms */
387             qq10             = _mm256_mul_ps(iq1,jq0);
388
389             /* EWALD ELECTROSTATICS */
390             
391             /* Analytical PME correction */
392             zeta2            = _mm256_mul_ps(beta2,rsq10);
393             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
394             pmecorrF         = avx256_pmecorrF_f(zeta2);
395             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
396             felec            = _mm256_mul_ps(qq10,felec);
397             pmecorrV         = avx256_pmecorrV_f(zeta2);
398             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
399             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
400             velec            = _mm256_mul_ps(qq10,velec);
401             
402             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velec            = _mm256_and_ps(velec,cutoff_mask);
406             velecsum         = _mm256_add_ps(velecsum,velec);
407
408             fscal            = felec;
409
410             fscal            = _mm256_and_ps(fscal,cutoff_mask);
411
412             /* Calculate temporary vectorial force */
413             tx               = _mm256_mul_ps(fscal,dx10);
414             ty               = _mm256_mul_ps(fscal,dy10);
415             tz               = _mm256_mul_ps(fscal,dz10);
416
417             /* Update vectorial force */
418             fix1             = _mm256_add_ps(fix1,tx);
419             fiy1             = _mm256_add_ps(fiy1,ty);
420             fiz1             = _mm256_add_ps(fiz1,tz);
421
422             fjx0             = _mm256_add_ps(fjx0,tx);
423             fjy0             = _mm256_add_ps(fjy0,ty);
424             fjz0             = _mm256_add_ps(fjz0,tz);
425
426             }
427
428             /**************************
429              * CALCULATE INTERACTIONS *
430              **************************/
431
432             if (gmx_mm256_any_lt(rsq20,rcutoff2))
433             {
434
435             r20              = _mm256_mul_ps(rsq20,rinv20);
436
437             /* Compute parameters for interactions between i and j atoms */
438             qq20             = _mm256_mul_ps(iq2,jq0);
439
440             /* EWALD ELECTROSTATICS */
441             
442             /* Analytical PME correction */
443             zeta2            = _mm256_mul_ps(beta2,rsq20);
444             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
445             pmecorrF         = avx256_pmecorrF_f(zeta2);
446             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
447             felec            = _mm256_mul_ps(qq20,felec);
448             pmecorrV         = avx256_pmecorrV_f(zeta2);
449             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
450             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
451             velec            = _mm256_mul_ps(qq20,velec);
452             
453             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
454
455             /* Update potential sum for this i atom from the interaction with this j atom. */
456             velec            = _mm256_and_ps(velec,cutoff_mask);
457             velecsum         = _mm256_add_ps(velecsum,velec);
458
459             fscal            = felec;
460
461             fscal            = _mm256_and_ps(fscal,cutoff_mask);
462
463             /* Calculate temporary vectorial force */
464             tx               = _mm256_mul_ps(fscal,dx20);
465             ty               = _mm256_mul_ps(fscal,dy20);
466             tz               = _mm256_mul_ps(fscal,dz20);
467
468             /* Update vectorial force */
469             fix2             = _mm256_add_ps(fix2,tx);
470             fiy2             = _mm256_add_ps(fiy2,ty);
471             fiz2             = _mm256_add_ps(fiz2,tz);
472
473             fjx0             = _mm256_add_ps(fjx0,tx);
474             fjy0             = _mm256_add_ps(fjy0,ty);
475             fjz0             = _mm256_add_ps(fjz0,tz);
476
477             }
478
479             fjptrA             = f+j_coord_offsetA;
480             fjptrB             = f+j_coord_offsetB;
481             fjptrC             = f+j_coord_offsetC;
482             fjptrD             = f+j_coord_offsetD;
483             fjptrE             = f+j_coord_offsetE;
484             fjptrF             = f+j_coord_offsetF;
485             fjptrG             = f+j_coord_offsetG;
486             fjptrH             = f+j_coord_offsetH;
487
488             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
489
490             /* Inner loop uses 366 flops */
491         }
492
493         if(jidx<j_index_end)
494         {
495
496             /* Get j neighbor index, and coordinate index */
497             jnrlistA         = jjnr[jidx];
498             jnrlistB         = jjnr[jidx+1];
499             jnrlistC         = jjnr[jidx+2];
500             jnrlistD         = jjnr[jidx+3];
501             jnrlistE         = jjnr[jidx+4];
502             jnrlistF         = jjnr[jidx+5];
503             jnrlistG         = jjnr[jidx+6];
504             jnrlistH         = jjnr[jidx+7];
505             /* Sign of each element will be negative for non-real atoms.
506              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
507              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
508              */
509             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
510                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
511                                             
512             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
513             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
514             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
515             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
516             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
517             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
518             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
519             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
520             j_coord_offsetA  = DIM*jnrA;
521             j_coord_offsetB  = DIM*jnrB;
522             j_coord_offsetC  = DIM*jnrC;
523             j_coord_offsetD  = DIM*jnrD;
524             j_coord_offsetE  = DIM*jnrE;
525             j_coord_offsetF  = DIM*jnrF;
526             j_coord_offsetG  = DIM*jnrG;
527             j_coord_offsetH  = DIM*jnrH;
528
529             /* load j atom coordinates */
530             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
531                                                  x+j_coord_offsetC,x+j_coord_offsetD,
532                                                  x+j_coord_offsetE,x+j_coord_offsetF,
533                                                  x+j_coord_offsetG,x+j_coord_offsetH,
534                                                  &jx0,&jy0,&jz0);
535
536             /* Calculate displacement vector */
537             dx00             = _mm256_sub_ps(ix0,jx0);
538             dy00             = _mm256_sub_ps(iy0,jy0);
539             dz00             = _mm256_sub_ps(iz0,jz0);
540             dx10             = _mm256_sub_ps(ix1,jx0);
541             dy10             = _mm256_sub_ps(iy1,jy0);
542             dz10             = _mm256_sub_ps(iz1,jz0);
543             dx20             = _mm256_sub_ps(ix2,jx0);
544             dy20             = _mm256_sub_ps(iy2,jy0);
545             dz20             = _mm256_sub_ps(iz2,jz0);
546
547             /* Calculate squared distance and things based on it */
548             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
549             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
550             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
551
552             rinv00           = avx256_invsqrt_f(rsq00);
553             rinv10           = avx256_invsqrt_f(rsq10);
554             rinv20           = avx256_invsqrt_f(rsq20);
555
556             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
557             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
558             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
559
560             /* Load parameters for j particles */
561             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
562                                                                  charge+jnrC+0,charge+jnrD+0,
563                                                                  charge+jnrE+0,charge+jnrF+0,
564                                                                  charge+jnrG+0,charge+jnrH+0);
565             vdwjidx0A        = 2*vdwtype[jnrA+0];
566             vdwjidx0B        = 2*vdwtype[jnrB+0];
567             vdwjidx0C        = 2*vdwtype[jnrC+0];
568             vdwjidx0D        = 2*vdwtype[jnrD+0];
569             vdwjidx0E        = 2*vdwtype[jnrE+0];
570             vdwjidx0F        = 2*vdwtype[jnrF+0];
571             vdwjidx0G        = 2*vdwtype[jnrG+0];
572             vdwjidx0H        = 2*vdwtype[jnrH+0];
573
574             fjx0             = _mm256_setzero_ps();
575             fjy0             = _mm256_setzero_ps();
576             fjz0             = _mm256_setzero_ps();
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             if (gmx_mm256_any_lt(rsq00,rcutoff2))
583             {
584
585             r00              = _mm256_mul_ps(rsq00,rinv00);
586             r00              = _mm256_andnot_ps(dummy_mask,r00);
587
588             /* Compute parameters for interactions between i and j atoms */
589             qq00             = _mm256_mul_ps(iq0,jq0);
590             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
591                                             vdwioffsetptr0+vdwjidx0B,
592                                             vdwioffsetptr0+vdwjidx0C,
593                                             vdwioffsetptr0+vdwjidx0D,
594                                             vdwioffsetptr0+vdwjidx0E,
595                                             vdwioffsetptr0+vdwjidx0F,
596                                             vdwioffsetptr0+vdwjidx0G,
597                                             vdwioffsetptr0+vdwjidx0H,
598                                             &c6_00,&c12_00);
599
600             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
601                                                                   vdwgridioffsetptr0+vdwjidx0B,
602                                                                   vdwgridioffsetptr0+vdwjidx0C,
603                                                                   vdwgridioffsetptr0+vdwjidx0D,
604                                                                   vdwgridioffsetptr0+vdwjidx0E,
605                                                                   vdwgridioffsetptr0+vdwjidx0F,
606                                                                   vdwgridioffsetptr0+vdwjidx0G,
607                                                                   vdwgridioffsetptr0+vdwjidx0H);
608
609             /* EWALD ELECTROSTATICS */
610             
611             /* Analytical PME correction */
612             zeta2            = _mm256_mul_ps(beta2,rsq00);
613             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
614             pmecorrF         = avx256_pmecorrF_f(zeta2);
615             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
616             felec            = _mm256_mul_ps(qq00,felec);
617             pmecorrV         = avx256_pmecorrV_f(zeta2);
618             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
619             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
620             velec            = _mm256_mul_ps(qq00,velec);
621             
622             /* Analytical LJ-PME */
623             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
624             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
625             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
626             exponent         = avx256_exp_f(ewcljrsq);
627             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
628             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
629             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
630             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
631             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
632             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
633                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_add_ps(_mm256_mul_ps(c6_00,sh_vdw_invrcut6),_mm256_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
634             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
635             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
636
637             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
638
639             /* Update potential sum for this i atom from the interaction with this j atom. */
640             velec            = _mm256_and_ps(velec,cutoff_mask);
641             velec            = _mm256_andnot_ps(dummy_mask,velec);
642             velecsum         = _mm256_add_ps(velecsum,velec);
643             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
644             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
645             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
646
647             fscal            = _mm256_add_ps(felec,fvdw);
648
649             fscal            = _mm256_and_ps(fscal,cutoff_mask);
650
651             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
652
653             /* Calculate temporary vectorial force */
654             tx               = _mm256_mul_ps(fscal,dx00);
655             ty               = _mm256_mul_ps(fscal,dy00);
656             tz               = _mm256_mul_ps(fscal,dz00);
657
658             /* Update vectorial force */
659             fix0             = _mm256_add_ps(fix0,tx);
660             fiy0             = _mm256_add_ps(fiy0,ty);
661             fiz0             = _mm256_add_ps(fiz0,tz);
662
663             fjx0             = _mm256_add_ps(fjx0,tx);
664             fjy0             = _mm256_add_ps(fjy0,ty);
665             fjz0             = _mm256_add_ps(fjz0,tz);
666
667             }
668
669             /**************************
670              * CALCULATE INTERACTIONS *
671              **************************/
672
673             if (gmx_mm256_any_lt(rsq10,rcutoff2))
674             {
675
676             r10              = _mm256_mul_ps(rsq10,rinv10);
677             r10              = _mm256_andnot_ps(dummy_mask,r10);
678
679             /* Compute parameters for interactions between i and j atoms */
680             qq10             = _mm256_mul_ps(iq1,jq0);
681
682             /* EWALD ELECTROSTATICS */
683             
684             /* Analytical PME correction */
685             zeta2            = _mm256_mul_ps(beta2,rsq10);
686             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
687             pmecorrF         = avx256_pmecorrF_f(zeta2);
688             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
689             felec            = _mm256_mul_ps(qq10,felec);
690             pmecorrV         = avx256_pmecorrV_f(zeta2);
691             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
692             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
693             velec            = _mm256_mul_ps(qq10,velec);
694             
695             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
696
697             /* Update potential sum for this i atom from the interaction with this j atom. */
698             velec            = _mm256_and_ps(velec,cutoff_mask);
699             velec            = _mm256_andnot_ps(dummy_mask,velec);
700             velecsum         = _mm256_add_ps(velecsum,velec);
701
702             fscal            = felec;
703
704             fscal            = _mm256_and_ps(fscal,cutoff_mask);
705
706             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
707
708             /* Calculate temporary vectorial force */
709             tx               = _mm256_mul_ps(fscal,dx10);
710             ty               = _mm256_mul_ps(fscal,dy10);
711             tz               = _mm256_mul_ps(fscal,dz10);
712
713             /* Update vectorial force */
714             fix1             = _mm256_add_ps(fix1,tx);
715             fiy1             = _mm256_add_ps(fiy1,ty);
716             fiz1             = _mm256_add_ps(fiz1,tz);
717
718             fjx0             = _mm256_add_ps(fjx0,tx);
719             fjy0             = _mm256_add_ps(fjy0,ty);
720             fjz0             = _mm256_add_ps(fjz0,tz);
721
722             }
723
724             /**************************
725              * CALCULATE INTERACTIONS *
726              **************************/
727
728             if (gmx_mm256_any_lt(rsq20,rcutoff2))
729             {
730
731             r20              = _mm256_mul_ps(rsq20,rinv20);
732             r20              = _mm256_andnot_ps(dummy_mask,r20);
733
734             /* Compute parameters for interactions between i and j atoms */
735             qq20             = _mm256_mul_ps(iq2,jq0);
736
737             /* EWALD ELECTROSTATICS */
738             
739             /* Analytical PME correction */
740             zeta2            = _mm256_mul_ps(beta2,rsq20);
741             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
742             pmecorrF         = avx256_pmecorrF_f(zeta2);
743             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
744             felec            = _mm256_mul_ps(qq20,felec);
745             pmecorrV         = avx256_pmecorrV_f(zeta2);
746             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
747             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
748             velec            = _mm256_mul_ps(qq20,velec);
749             
750             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
751
752             /* Update potential sum for this i atom from the interaction with this j atom. */
753             velec            = _mm256_and_ps(velec,cutoff_mask);
754             velec            = _mm256_andnot_ps(dummy_mask,velec);
755             velecsum         = _mm256_add_ps(velecsum,velec);
756
757             fscal            = felec;
758
759             fscal            = _mm256_and_ps(fscal,cutoff_mask);
760
761             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
762
763             /* Calculate temporary vectorial force */
764             tx               = _mm256_mul_ps(fscal,dx20);
765             ty               = _mm256_mul_ps(fscal,dy20);
766             tz               = _mm256_mul_ps(fscal,dz20);
767
768             /* Update vectorial force */
769             fix2             = _mm256_add_ps(fix2,tx);
770             fiy2             = _mm256_add_ps(fiy2,ty);
771             fiz2             = _mm256_add_ps(fiz2,tz);
772
773             fjx0             = _mm256_add_ps(fjx0,tx);
774             fjy0             = _mm256_add_ps(fjy0,ty);
775             fjz0             = _mm256_add_ps(fjz0,tz);
776
777             }
778
779             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
780             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
781             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
782             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
783             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
784             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
785             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
786             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
787
788             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
789
790             /* Inner loop uses 369 flops */
791         }
792
793         /* End of innermost loop */
794
795         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
796                                                  f+i_coord_offset,fshift+i_shift_offset);
797
798         ggid                        = gid[iidx];
799         /* Update potential energies */
800         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
801         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
802
803         /* Increment number of inner iterations */
804         inneriter                  += j_index_end - j_index_start;
805
806         /* Outer loop uses 20 flops */
807     }
808
809     /* Increment number of outer iterations */
810     outeriter        += nri;
811
812     /* Update outer/inner flops */
813
814     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*369);
815 }
816 /*
817  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_256_single
818  * Electrostatics interaction: Ewald
819  * VdW interaction:            LJEwald
820  * Geometry:                   Water3-Particle
821  * Calculate force/pot:        Force
822  */
823 void
824 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_256_single
825                     (t_nblist                    * gmx_restrict       nlist,
826                      rvec                        * gmx_restrict          xx,
827                      rvec                        * gmx_restrict          ff,
828                      struct t_forcerec           * gmx_restrict          fr,
829                      t_mdatoms                   * gmx_restrict     mdatoms,
830                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
831                      t_nrnb                      * gmx_restrict        nrnb)
832 {
833     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
834      * just 0 for non-waters.
835      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
836      * jnr indices corresponding to data put in the four positions in the SIMD register.
837      */
838     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
839     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
840     int              jnrA,jnrB,jnrC,jnrD;
841     int              jnrE,jnrF,jnrG,jnrH;
842     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
843     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
844     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
845     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
846     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
847     real             rcutoff_scalar;
848     real             *shiftvec,*fshift,*x,*f;
849     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
850     real             scratch[4*DIM];
851     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
852     real *           vdwioffsetptr0;
853     real *           vdwgridioffsetptr0;
854     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
855     real *           vdwioffsetptr1;
856     real *           vdwgridioffsetptr1;
857     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
858     real *           vdwioffsetptr2;
859     real *           vdwgridioffsetptr2;
860     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
861     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
862     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
863     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
864     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
865     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
866     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
867     real             *charge;
868     int              nvdwtype;
869     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
870     int              *vdwtype;
871     real             *vdwparam;
872     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
873     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
874     __m256           c6grid_00;
875     __m256           c6grid_10;
876     __m256           c6grid_20;
877     real             *vdwgridparam;
878     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
879     __m256           one_half  = _mm256_set1_ps(0.5);
880     __m256           minus_one = _mm256_set1_ps(-1.0);
881     __m256i          ewitab;
882     __m128i          ewitab_lo,ewitab_hi;
883     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
884     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
885     real             *ewtab;
886     __m256           dummy_mask,cutoff_mask;
887     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
888     __m256           one     = _mm256_set1_ps(1.0);
889     __m256           two     = _mm256_set1_ps(2.0);
890     x                = xx[0];
891     f                = ff[0];
892
893     nri              = nlist->nri;
894     iinr             = nlist->iinr;
895     jindex           = nlist->jindex;
896     jjnr             = nlist->jjnr;
897     shiftidx         = nlist->shift;
898     gid              = nlist->gid;
899     shiftvec         = fr->shift_vec[0];
900     fshift           = fr->fshift[0];
901     facel            = _mm256_set1_ps(fr->ic->epsfac);
902     charge           = mdatoms->chargeA;
903     nvdwtype         = fr->ntype;
904     vdwparam         = fr->nbfp;
905     vdwtype          = mdatoms->typeA;
906     vdwgridparam     = fr->ljpme_c6grid;
907     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
908     ewclj            = _mm256_set1_ps(fr->ic->ewaldcoeff_lj);
909     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
910
911     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
912     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
913     beta2            = _mm256_mul_ps(beta,beta);
914     beta3            = _mm256_mul_ps(beta,beta2);
915
916     ewtab            = fr->ic->tabq_coul_F;
917     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
918     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
919
920     /* Setup water-specific parameters */
921     inr              = nlist->iinr[0];
922     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
923     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
924     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
925     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
926     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
927
928     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
929     rcutoff_scalar   = fr->ic->rcoulomb;
930     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
931     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
932
933     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
934     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
935
936     /* Avoid stupid compiler warnings */
937     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
938     j_coord_offsetA = 0;
939     j_coord_offsetB = 0;
940     j_coord_offsetC = 0;
941     j_coord_offsetD = 0;
942     j_coord_offsetE = 0;
943     j_coord_offsetF = 0;
944     j_coord_offsetG = 0;
945     j_coord_offsetH = 0;
946
947     outeriter        = 0;
948     inneriter        = 0;
949
950     for(iidx=0;iidx<4*DIM;iidx++)
951     {
952         scratch[iidx] = 0.0;
953     }
954
955     /* Start outer loop over neighborlists */
956     for(iidx=0; iidx<nri; iidx++)
957     {
958         /* Load shift vector for this list */
959         i_shift_offset   = DIM*shiftidx[iidx];
960
961         /* Load limits for loop over neighbors */
962         j_index_start    = jindex[iidx];
963         j_index_end      = jindex[iidx+1];
964
965         /* Get outer coordinate index */
966         inr              = iinr[iidx];
967         i_coord_offset   = DIM*inr;
968
969         /* Load i particle coords and add shift vector */
970         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
971                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
972
973         fix0             = _mm256_setzero_ps();
974         fiy0             = _mm256_setzero_ps();
975         fiz0             = _mm256_setzero_ps();
976         fix1             = _mm256_setzero_ps();
977         fiy1             = _mm256_setzero_ps();
978         fiz1             = _mm256_setzero_ps();
979         fix2             = _mm256_setzero_ps();
980         fiy2             = _mm256_setzero_ps();
981         fiz2             = _mm256_setzero_ps();
982
983         /* Start inner kernel loop */
984         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
985         {
986
987             /* Get j neighbor index, and coordinate index */
988             jnrA             = jjnr[jidx];
989             jnrB             = jjnr[jidx+1];
990             jnrC             = jjnr[jidx+2];
991             jnrD             = jjnr[jidx+3];
992             jnrE             = jjnr[jidx+4];
993             jnrF             = jjnr[jidx+5];
994             jnrG             = jjnr[jidx+6];
995             jnrH             = jjnr[jidx+7];
996             j_coord_offsetA  = DIM*jnrA;
997             j_coord_offsetB  = DIM*jnrB;
998             j_coord_offsetC  = DIM*jnrC;
999             j_coord_offsetD  = DIM*jnrD;
1000             j_coord_offsetE  = DIM*jnrE;
1001             j_coord_offsetF  = DIM*jnrF;
1002             j_coord_offsetG  = DIM*jnrG;
1003             j_coord_offsetH  = DIM*jnrH;
1004
1005             /* load j atom coordinates */
1006             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1007                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1008                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1009                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1010                                                  &jx0,&jy0,&jz0);
1011
1012             /* Calculate displacement vector */
1013             dx00             = _mm256_sub_ps(ix0,jx0);
1014             dy00             = _mm256_sub_ps(iy0,jy0);
1015             dz00             = _mm256_sub_ps(iz0,jz0);
1016             dx10             = _mm256_sub_ps(ix1,jx0);
1017             dy10             = _mm256_sub_ps(iy1,jy0);
1018             dz10             = _mm256_sub_ps(iz1,jz0);
1019             dx20             = _mm256_sub_ps(ix2,jx0);
1020             dy20             = _mm256_sub_ps(iy2,jy0);
1021             dz20             = _mm256_sub_ps(iz2,jz0);
1022
1023             /* Calculate squared distance and things based on it */
1024             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1025             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1026             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1027
1028             rinv00           = avx256_invsqrt_f(rsq00);
1029             rinv10           = avx256_invsqrt_f(rsq10);
1030             rinv20           = avx256_invsqrt_f(rsq20);
1031
1032             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1033             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1034             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1035
1036             /* Load parameters for j particles */
1037             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1038                                                                  charge+jnrC+0,charge+jnrD+0,
1039                                                                  charge+jnrE+0,charge+jnrF+0,
1040                                                                  charge+jnrG+0,charge+jnrH+0);
1041             vdwjidx0A        = 2*vdwtype[jnrA+0];
1042             vdwjidx0B        = 2*vdwtype[jnrB+0];
1043             vdwjidx0C        = 2*vdwtype[jnrC+0];
1044             vdwjidx0D        = 2*vdwtype[jnrD+0];
1045             vdwjidx0E        = 2*vdwtype[jnrE+0];
1046             vdwjidx0F        = 2*vdwtype[jnrF+0];
1047             vdwjidx0G        = 2*vdwtype[jnrG+0];
1048             vdwjidx0H        = 2*vdwtype[jnrH+0];
1049
1050             fjx0             = _mm256_setzero_ps();
1051             fjy0             = _mm256_setzero_ps();
1052             fjz0             = _mm256_setzero_ps();
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1059             {
1060
1061             r00              = _mm256_mul_ps(rsq00,rinv00);
1062
1063             /* Compute parameters for interactions between i and j atoms */
1064             qq00             = _mm256_mul_ps(iq0,jq0);
1065             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1066                                             vdwioffsetptr0+vdwjidx0B,
1067                                             vdwioffsetptr0+vdwjidx0C,
1068                                             vdwioffsetptr0+vdwjidx0D,
1069                                             vdwioffsetptr0+vdwjidx0E,
1070                                             vdwioffsetptr0+vdwjidx0F,
1071                                             vdwioffsetptr0+vdwjidx0G,
1072                                             vdwioffsetptr0+vdwjidx0H,
1073                                             &c6_00,&c12_00);
1074
1075             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
1076                                                                   vdwgridioffsetptr0+vdwjidx0B,
1077                                                                   vdwgridioffsetptr0+vdwjidx0C,
1078                                                                   vdwgridioffsetptr0+vdwjidx0D,
1079                                                                   vdwgridioffsetptr0+vdwjidx0E,
1080                                                                   vdwgridioffsetptr0+vdwjidx0F,
1081                                                                   vdwgridioffsetptr0+vdwjidx0G,
1082                                                                   vdwgridioffsetptr0+vdwjidx0H);
1083
1084             /* EWALD ELECTROSTATICS */
1085             
1086             /* Analytical PME correction */
1087             zeta2            = _mm256_mul_ps(beta2,rsq00);
1088             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1089             pmecorrF         = avx256_pmecorrF_f(zeta2);
1090             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1091             felec            = _mm256_mul_ps(qq00,felec);
1092             
1093             /* Analytical LJ-PME */
1094             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1095             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
1096             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
1097             exponent         = avx256_exp_f(ewcljrsq);
1098             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1099             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1100             /* f6A = 6 * C6grid * (1 - poly) */
1101             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
1102             /* f6B = C6grid * exponent * beta^6 */
1103             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
1104             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1105             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1106
1107             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1108
1109             fscal            = _mm256_add_ps(felec,fvdw);
1110
1111             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1112
1113             /* Calculate temporary vectorial force */
1114             tx               = _mm256_mul_ps(fscal,dx00);
1115             ty               = _mm256_mul_ps(fscal,dy00);
1116             tz               = _mm256_mul_ps(fscal,dz00);
1117
1118             /* Update vectorial force */
1119             fix0             = _mm256_add_ps(fix0,tx);
1120             fiy0             = _mm256_add_ps(fiy0,ty);
1121             fiz0             = _mm256_add_ps(fiz0,tz);
1122
1123             fjx0             = _mm256_add_ps(fjx0,tx);
1124             fjy0             = _mm256_add_ps(fjy0,ty);
1125             fjz0             = _mm256_add_ps(fjz0,tz);
1126
1127             }
1128
1129             /**************************
1130              * CALCULATE INTERACTIONS *
1131              **************************/
1132
1133             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1134             {
1135
1136             r10              = _mm256_mul_ps(rsq10,rinv10);
1137
1138             /* Compute parameters for interactions between i and j atoms */
1139             qq10             = _mm256_mul_ps(iq1,jq0);
1140
1141             /* EWALD ELECTROSTATICS */
1142             
1143             /* Analytical PME correction */
1144             zeta2            = _mm256_mul_ps(beta2,rsq10);
1145             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1146             pmecorrF         = avx256_pmecorrF_f(zeta2);
1147             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1148             felec            = _mm256_mul_ps(qq10,felec);
1149             
1150             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1151
1152             fscal            = felec;
1153
1154             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1155
1156             /* Calculate temporary vectorial force */
1157             tx               = _mm256_mul_ps(fscal,dx10);
1158             ty               = _mm256_mul_ps(fscal,dy10);
1159             tz               = _mm256_mul_ps(fscal,dz10);
1160
1161             /* Update vectorial force */
1162             fix1             = _mm256_add_ps(fix1,tx);
1163             fiy1             = _mm256_add_ps(fiy1,ty);
1164             fiz1             = _mm256_add_ps(fiz1,tz);
1165
1166             fjx0             = _mm256_add_ps(fjx0,tx);
1167             fjy0             = _mm256_add_ps(fjy0,ty);
1168             fjz0             = _mm256_add_ps(fjz0,tz);
1169
1170             }
1171
1172             /**************************
1173              * CALCULATE INTERACTIONS *
1174              **************************/
1175
1176             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1177             {
1178
1179             r20              = _mm256_mul_ps(rsq20,rinv20);
1180
1181             /* Compute parameters for interactions between i and j atoms */
1182             qq20             = _mm256_mul_ps(iq2,jq0);
1183
1184             /* EWALD ELECTROSTATICS */
1185             
1186             /* Analytical PME correction */
1187             zeta2            = _mm256_mul_ps(beta2,rsq20);
1188             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1189             pmecorrF         = avx256_pmecorrF_f(zeta2);
1190             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1191             felec            = _mm256_mul_ps(qq20,felec);
1192             
1193             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1194
1195             fscal            = felec;
1196
1197             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1198
1199             /* Calculate temporary vectorial force */
1200             tx               = _mm256_mul_ps(fscal,dx20);
1201             ty               = _mm256_mul_ps(fscal,dy20);
1202             tz               = _mm256_mul_ps(fscal,dz20);
1203
1204             /* Update vectorial force */
1205             fix2             = _mm256_add_ps(fix2,tx);
1206             fiy2             = _mm256_add_ps(fiy2,ty);
1207             fiz2             = _mm256_add_ps(fiz2,tz);
1208
1209             fjx0             = _mm256_add_ps(fjx0,tx);
1210             fjy0             = _mm256_add_ps(fjy0,ty);
1211             fjz0             = _mm256_add_ps(fjz0,tz);
1212
1213             }
1214
1215             fjptrA             = f+j_coord_offsetA;
1216             fjptrB             = f+j_coord_offsetB;
1217             fjptrC             = f+j_coord_offsetC;
1218             fjptrD             = f+j_coord_offsetD;
1219             fjptrE             = f+j_coord_offsetE;
1220             fjptrF             = f+j_coord_offsetF;
1221             fjptrG             = f+j_coord_offsetG;
1222             fjptrH             = f+j_coord_offsetH;
1223
1224             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1225
1226             /* Inner loop uses 203 flops */
1227         }
1228
1229         if(jidx<j_index_end)
1230         {
1231
1232             /* Get j neighbor index, and coordinate index */
1233             jnrlistA         = jjnr[jidx];
1234             jnrlistB         = jjnr[jidx+1];
1235             jnrlistC         = jjnr[jidx+2];
1236             jnrlistD         = jjnr[jidx+3];
1237             jnrlistE         = jjnr[jidx+4];
1238             jnrlistF         = jjnr[jidx+5];
1239             jnrlistG         = jjnr[jidx+6];
1240             jnrlistH         = jjnr[jidx+7];
1241             /* Sign of each element will be negative for non-real atoms.
1242              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1243              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1244              */
1245             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1246                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1247                                             
1248             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1249             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1250             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1251             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1252             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1253             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1254             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1255             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1256             j_coord_offsetA  = DIM*jnrA;
1257             j_coord_offsetB  = DIM*jnrB;
1258             j_coord_offsetC  = DIM*jnrC;
1259             j_coord_offsetD  = DIM*jnrD;
1260             j_coord_offsetE  = DIM*jnrE;
1261             j_coord_offsetF  = DIM*jnrF;
1262             j_coord_offsetG  = DIM*jnrG;
1263             j_coord_offsetH  = DIM*jnrH;
1264
1265             /* load j atom coordinates */
1266             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1267                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1268                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1269                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1270                                                  &jx0,&jy0,&jz0);
1271
1272             /* Calculate displacement vector */
1273             dx00             = _mm256_sub_ps(ix0,jx0);
1274             dy00             = _mm256_sub_ps(iy0,jy0);
1275             dz00             = _mm256_sub_ps(iz0,jz0);
1276             dx10             = _mm256_sub_ps(ix1,jx0);
1277             dy10             = _mm256_sub_ps(iy1,jy0);
1278             dz10             = _mm256_sub_ps(iz1,jz0);
1279             dx20             = _mm256_sub_ps(ix2,jx0);
1280             dy20             = _mm256_sub_ps(iy2,jy0);
1281             dz20             = _mm256_sub_ps(iz2,jz0);
1282
1283             /* Calculate squared distance and things based on it */
1284             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1285             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1286             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1287
1288             rinv00           = avx256_invsqrt_f(rsq00);
1289             rinv10           = avx256_invsqrt_f(rsq10);
1290             rinv20           = avx256_invsqrt_f(rsq20);
1291
1292             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1293             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1294             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1295
1296             /* Load parameters for j particles */
1297             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1298                                                                  charge+jnrC+0,charge+jnrD+0,
1299                                                                  charge+jnrE+0,charge+jnrF+0,
1300                                                                  charge+jnrG+0,charge+jnrH+0);
1301             vdwjidx0A        = 2*vdwtype[jnrA+0];
1302             vdwjidx0B        = 2*vdwtype[jnrB+0];
1303             vdwjidx0C        = 2*vdwtype[jnrC+0];
1304             vdwjidx0D        = 2*vdwtype[jnrD+0];
1305             vdwjidx0E        = 2*vdwtype[jnrE+0];
1306             vdwjidx0F        = 2*vdwtype[jnrF+0];
1307             vdwjidx0G        = 2*vdwtype[jnrG+0];
1308             vdwjidx0H        = 2*vdwtype[jnrH+0];
1309
1310             fjx0             = _mm256_setzero_ps();
1311             fjy0             = _mm256_setzero_ps();
1312             fjz0             = _mm256_setzero_ps();
1313
1314             /**************************
1315              * CALCULATE INTERACTIONS *
1316              **************************/
1317
1318             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1319             {
1320
1321             r00              = _mm256_mul_ps(rsq00,rinv00);
1322             r00              = _mm256_andnot_ps(dummy_mask,r00);
1323
1324             /* Compute parameters for interactions between i and j atoms */
1325             qq00             = _mm256_mul_ps(iq0,jq0);
1326             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1327                                             vdwioffsetptr0+vdwjidx0B,
1328                                             vdwioffsetptr0+vdwjidx0C,
1329                                             vdwioffsetptr0+vdwjidx0D,
1330                                             vdwioffsetptr0+vdwjidx0E,
1331                                             vdwioffsetptr0+vdwjidx0F,
1332                                             vdwioffsetptr0+vdwjidx0G,
1333                                             vdwioffsetptr0+vdwjidx0H,
1334                                             &c6_00,&c12_00);
1335
1336             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
1337                                                                   vdwgridioffsetptr0+vdwjidx0B,
1338                                                                   vdwgridioffsetptr0+vdwjidx0C,
1339                                                                   vdwgridioffsetptr0+vdwjidx0D,
1340                                                                   vdwgridioffsetptr0+vdwjidx0E,
1341                                                                   vdwgridioffsetptr0+vdwjidx0F,
1342                                                                   vdwgridioffsetptr0+vdwjidx0G,
1343                                                                   vdwgridioffsetptr0+vdwjidx0H);
1344
1345             /* EWALD ELECTROSTATICS */
1346             
1347             /* Analytical PME correction */
1348             zeta2            = _mm256_mul_ps(beta2,rsq00);
1349             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1350             pmecorrF         = avx256_pmecorrF_f(zeta2);
1351             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1352             felec            = _mm256_mul_ps(qq00,felec);
1353             
1354             /* Analytical LJ-PME */
1355             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1356             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
1357             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
1358             exponent         = avx256_exp_f(ewcljrsq);
1359             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1360             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1361             /* f6A = 6 * C6grid * (1 - poly) */
1362             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
1363             /* f6B = C6grid * exponent * beta^6 */
1364             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
1365             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1366             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1367
1368             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1369
1370             fscal            = _mm256_add_ps(felec,fvdw);
1371
1372             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1373
1374             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1375
1376             /* Calculate temporary vectorial force */
1377             tx               = _mm256_mul_ps(fscal,dx00);
1378             ty               = _mm256_mul_ps(fscal,dy00);
1379             tz               = _mm256_mul_ps(fscal,dz00);
1380
1381             /* Update vectorial force */
1382             fix0             = _mm256_add_ps(fix0,tx);
1383             fiy0             = _mm256_add_ps(fiy0,ty);
1384             fiz0             = _mm256_add_ps(fiz0,tz);
1385
1386             fjx0             = _mm256_add_ps(fjx0,tx);
1387             fjy0             = _mm256_add_ps(fjy0,ty);
1388             fjz0             = _mm256_add_ps(fjz0,tz);
1389
1390             }
1391
1392             /**************************
1393              * CALCULATE INTERACTIONS *
1394              **************************/
1395
1396             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1397             {
1398
1399             r10              = _mm256_mul_ps(rsq10,rinv10);
1400             r10              = _mm256_andnot_ps(dummy_mask,r10);
1401
1402             /* Compute parameters for interactions between i and j atoms */
1403             qq10             = _mm256_mul_ps(iq1,jq0);
1404
1405             /* EWALD ELECTROSTATICS */
1406             
1407             /* Analytical PME correction */
1408             zeta2            = _mm256_mul_ps(beta2,rsq10);
1409             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1410             pmecorrF         = avx256_pmecorrF_f(zeta2);
1411             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1412             felec            = _mm256_mul_ps(qq10,felec);
1413             
1414             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1415
1416             fscal            = felec;
1417
1418             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1419
1420             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1421
1422             /* Calculate temporary vectorial force */
1423             tx               = _mm256_mul_ps(fscal,dx10);
1424             ty               = _mm256_mul_ps(fscal,dy10);
1425             tz               = _mm256_mul_ps(fscal,dz10);
1426
1427             /* Update vectorial force */
1428             fix1             = _mm256_add_ps(fix1,tx);
1429             fiy1             = _mm256_add_ps(fiy1,ty);
1430             fiz1             = _mm256_add_ps(fiz1,tz);
1431
1432             fjx0             = _mm256_add_ps(fjx0,tx);
1433             fjy0             = _mm256_add_ps(fjy0,ty);
1434             fjz0             = _mm256_add_ps(fjz0,tz);
1435
1436             }
1437
1438             /**************************
1439              * CALCULATE INTERACTIONS *
1440              **************************/
1441
1442             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1443             {
1444
1445             r20              = _mm256_mul_ps(rsq20,rinv20);
1446             r20              = _mm256_andnot_ps(dummy_mask,r20);
1447
1448             /* Compute parameters for interactions between i and j atoms */
1449             qq20             = _mm256_mul_ps(iq2,jq0);
1450
1451             /* EWALD ELECTROSTATICS */
1452             
1453             /* Analytical PME correction */
1454             zeta2            = _mm256_mul_ps(beta2,rsq20);
1455             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1456             pmecorrF         = avx256_pmecorrF_f(zeta2);
1457             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1458             felec            = _mm256_mul_ps(qq20,felec);
1459             
1460             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1461
1462             fscal            = felec;
1463
1464             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1465
1466             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1467
1468             /* Calculate temporary vectorial force */
1469             tx               = _mm256_mul_ps(fscal,dx20);
1470             ty               = _mm256_mul_ps(fscal,dy20);
1471             tz               = _mm256_mul_ps(fscal,dz20);
1472
1473             /* Update vectorial force */
1474             fix2             = _mm256_add_ps(fix2,tx);
1475             fiy2             = _mm256_add_ps(fiy2,ty);
1476             fiz2             = _mm256_add_ps(fiz2,tz);
1477
1478             fjx0             = _mm256_add_ps(fjx0,tx);
1479             fjy0             = _mm256_add_ps(fjy0,ty);
1480             fjz0             = _mm256_add_ps(fjz0,tz);
1481
1482             }
1483
1484             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1485             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1486             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1487             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1488             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1489             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1490             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1491             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1492
1493             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1494
1495             /* Inner loop uses 206 flops */
1496         }
1497
1498         /* End of innermost loop */
1499
1500         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1501                                                  f+i_coord_offset,fshift+i_shift_offset);
1502
1503         /* Increment number of inner iterations */
1504         inneriter                  += j_index_end - j_index_start;
1505
1506         /* Outer loop uses 18 flops */
1507     }
1508
1509     /* Increment number of outer iterations */
1510     outeriter        += nri;
1511
1512     /* Update outer/inner flops */
1513
1514     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*206);
1515 }