Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     real *           vdwgridioffsetptr0;
90     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
91     real *           vdwioffsetptr1;
92     real *           vdwgridioffsetptr1;
93     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
94     real *           vdwioffsetptr2;
95     real *           vdwgridioffsetptr2;
96     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
97     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
98     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
99     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
100     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
101     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
102     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
103     real             *charge;
104     int              nvdwtype;
105     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
106     int              *vdwtype;
107     real             *vdwparam;
108     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
109     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
110     __m256           c6grid_00;
111     __m256           c6grid_10;
112     __m256           c6grid_20;
113     real             *vdwgridparam;
114     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
115     __m256           one_half  = _mm256_set1_ps(0.5);
116     __m256           minus_one = _mm256_set1_ps(-1.0);
117     __m256i          ewitab;
118     __m128i          ewitab_lo,ewitab_hi;
119     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
120     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
121     real             *ewtab;
122     __m256           dummy_mask,cutoff_mask;
123     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
124     __m256           one     = _mm256_set1_ps(1.0);
125     __m256           two     = _mm256_set1_ps(2.0);
126     x                = xx[0];
127     f                = ff[0];
128
129     nri              = nlist->nri;
130     iinr             = nlist->iinr;
131     jindex           = nlist->jindex;
132     jjnr             = nlist->jjnr;
133     shiftidx         = nlist->shift;
134     gid              = nlist->gid;
135     shiftvec         = fr->shift_vec[0];
136     fshift           = fr->fshift[0];
137     facel            = _mm256_set1_ps(fr->epsfac);
138     charge           = mdatoms->chargeA;
139     nvdwtype         = fr->ntype;
140     vdwparam         = fr->nbfp;
141     vdwtype          = mdatoms->typeA;
142     vdwgridparam     = fr->ljpme_c6grid;
143     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
144     ewclj            = _mm256_set1_ps(fr->ewaldcoeff_lj);
145     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
146
147     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
148     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
149     beta2            = _mm256_mul_ps(beta,beta);
150     beta3            = _mm256_mul_ps(beta,beta2);
151
152     ewtab            = fr->ic->tabq_coul_FDV0;
153     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
154     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
155
156     /* Setup water-specific parameters */
157     inr              = nlist->iinr[0];
158     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
159     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
160     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
161     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
162     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
163
164     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
165     rcutoff_scalar   = fr->rcoulomb;
166     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
167     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
168
169     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
170     rvdw             = _mm256_set1_ps(fr->rvdw);
171
172     /* Avoid stupid compiler warnings */
173     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
174     j_coord_offsetA = 0;
175     j_coord_offsetB = 0;
176     j_coord_offsetC = 0;
177     j_coord_offsetD = 0;
178     j_coord_offsetE = 0;
179     j_coord_offsetF = 0;
180     j_coord_offsetG = 0;
181     j_coord_offsetH = 0;
182
183     outeriter        = 0;
184     inneriter        = 0;
185
186     for(iidx=0;iidx<4*DIM;iidx++)
187     {
188         scratch[iidx] = 0.0;
189     }
190
191     /* Start outer loop over neighborlists */
192     for(iidx=0; iidx<nri; iidx++)
193     {
194         /* Load shift vector for this list */
195         i_shift_offset   = DIM*shiftidx[iidx];
196
197         /* Load limits for loop over neighbors */
198         j_index_start    = jindex[iidx];
199         j_index_end      = jindex[iidx+1];
200
201         /* Get outer coordinate index */
202         inr              = iinr[iidx];
203         i_coord_offset   = DIM*inr;
204
205         /* Load i particle coords and add shift vector */
206         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
207                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
208
209         fix0             = _mm256_setzero_ps();
210         fiy0             = _mm256_setzero_ps();
211         fiz0             = _mm256_setzero_ps();
212         fix1             = _mm256_setzero_ps();
213         fiy1             = _mm256_setzero_ps();
214         fiz1             = _mm256_setzero_ps();
215         fix2             = _mm256_setzero_ps();
216         fiy2             = _mm256_setzero_ps();
217         fiz2             = _mm256_setzero_ps();
218
219         /* Reset potential sums */
220         velecsum         = _mm256_setzero_ps();
221         vvdwsum          = _mm256_setzero_ps();
222
223         /* Start inner kernel loop */
224         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
225         {
226
227             /* Get j neighbor index, and coordinate index */
228             jnrA             = jjnr[jidx];
229             jnrB             = jjnr[jidx+1];
230             jnrC             = jjnr[jidx+2];
231             jnrD             = jjnr[jidx+3];
232             jnrE             = jjnr[jidx+4];
233             jnrF             = jjnr[jidx+5];
234             jnrG             = jjnr[jidx+6];
235             jnrH             = jjnr[jidx+7];
236             j_coord_offsetA  = DIM*jnrA;
237             j_coord_offsetB  = DIM*jnrB;
238             j_coord_offsetC  = DIM*jnrC;
239             j_coord_offsetD  = DIM*jnrD;
240             j_coord_offsetE  = DIM*jnrE;
241             j_coord_offsetF  = DIM*jnrF;
242             j_coord_offsetG  = DIM*jnrG;
243             j_coord_offsetH  = DIM*jnrH;
244
245             /* load j atom coordinates */
246             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
247                                                  x+j_coord_offsetC,x+j_coord_offsetD,
248                                                  x+j_coord_offsetE,x+j_coord_offsetF,
249                                                  x+j_coord_offsetG,x+j_coord_offsetH,
250                                                  &jx0,&jy0,&jz0);
251
252             /* Calculate displacement vector */
253             dx00             = _mm256_sub_ps(ix0,jx0);
254             dy00             = _mm256_sub_ps(iy0,jy0);
255             dz00             = _mm256_sub_ps(iz0,jz0);
256             dx10             = _mm256_sub_ps(ix1,jx0);
257             dy10             = _mm256_sub_ps(iy1,jy0);
258             dz10             = _mm256_sub_ps(iz1,jz0);
259             dx20             = _mm256_sub_ps(ix2,jx0);
260             dy20             = _mm256_sub_ps(iy2,jy0);
261             dz20             = _mm256_sub_ps(iz2,jz0);
262
263             /* Calculate squared distance and things based on it */
264             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
265             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
266             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
267
268             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
269             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
270             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
271
272             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
273             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
274             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
275
276             /* Load parameters for j particles */
277             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
278                                                                  charge+jnrC+0,charge+jnrD+0,
279                                                                  charge+jnrE+0,charge+jnrF+0,
280                                                                  charge+jnrG+0,charge+jnrH+0);
281             vdwjidx0A        = 2*vdwtype[jnrA+0];
282             vdwjidx0B        = 2*vdwtype[jnrB+0];
283             vdwjidx0C        = 2*vdwtype[jnrC+0];
284             vdwjidx0D        = 2*vdwtype[jnrD+0];
285             vdwjidx0E        = 2*vdwtype[jnrE+0];
286             vdwjidx0F        = 2*vdwtype[jnrF+0];
287             vdwjidx0G        = 2*vdwtype[jnrG+0];
288             vdwjidx0H        = 2*vdwtype[jnrH+0];
289
290             fjx0             = _mm256_setzero_ps();
291             fjy0             = _mm256_setzero_ps();
292             fjz0             = _mm256_setzero_ps();
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             if (gmx_mm256_any_lt(rsq00,rcutoff2))
299             {
300
301             r00              = _mm256_mul_ps(rsq00,rinv00);
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq00             = _mm256_mul_ps(iq0,jq0);
305             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
306                                             vdwioffsetptr0+vdwjidx0B,
307                                             vdwioffsetptr0+vdwjidx0C,
308                                             vdwioffsetptr0+vdwjidx0D,
309                                             vdwioffsetptr0+vdwjidx0E,
310                                             vdwioffsetptr0+vdwjidx0F,
311                                             vdwioffsetptr0+vdwjidx0G,
312                                             vdwioffsetptr0+vdwjidx0H,
313                                             &c6_00,&c12_00);
314
315             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
316                                                                   vdwgridioffsetptr0+vdwjidx0B,
317                                                                   vdwgridioffsetptr0+vdwjidx0C,
318                                                                   vdwgridioffsetptr0+vdwjidx0D,
319                                                                   vdwgridioffsetptr0+vdwjidx0E,
320                                                                   vdwgridioffsetptr0+vdwjidx0F,
321                                                                   vdwgridioffsetptr0+vdwjidx0G,
322                                                                   vdwgridioffsetptr0+vdwjidx0H);
323
324             /* EWALD ELECTROSTATICS */
325             
326             /* Analytical PME correction */
327             zeta2            = _mm256_mul_ps(beta2,rsq00);
328             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
329             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
330             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
331             felec            = _mm256_mul_ps(qq00,felec);
332             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
333             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
334             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
335             velec            = _mm256_mul_ps(qq00,velec);
336             
337             /* Analytical LJ-PME */
338             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
339             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
340             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
341             exponent         = gmx_simd_exp_r(ewcljrsq);
342             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
343             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
344             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
345             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
346             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
347             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
348                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_add_ps(_mm256_mul_ps(c6_00,sh_vdw_invrcut6),_mm256_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
349             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
350             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
351
352             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
353
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             velec            = _mm256_and_ps(velec,cutoff_mask);
356             velecsum         = _mm256_add_ps(velecsum,velec);
357             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
358             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
359
360             fscal            = _mm256_add_ps(felec,fvdw);
361
362             fscal            = _mm256_and_ps(fscal,cutoff_mask);
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm256_mul_ps(fscal,dx00);
366             ty               = _mm256_mul_ps(fscal,dy00);
367             tz               = _mm256_mul_ps(fscal,dz00);
368
369             /* Update vectorial force */
370             fix0             = _mm256_add_ps(fix0,tx);
371             fiy0             = _mm256_add_ps(fiy0,ty);
372             fiz0             = _mm256_add_ps(fiz0,tz);
373
374             fjx0             = _mm256_add_ps(fjx0,tx);
375             fjy0             = _mm256_add_ps(fjy0,ty);
376             fjz0             = _mm256_add_ps(fjz0,tz);
377
378             }
379
380             /**************************
381              * CALCULATE INTERACTIONS *
382              **************************/
383
384             if (gmx_mm256_any_lt(rsq10,rcutoff2))
385             {
386
387             r10              = _mm256_mul_ps(rsq10,rinv10);
388
389             /* Compute parameters for interactions between i and j atoms */
390             qq10             = _mm256_mul_ps(iq1,jq0);
391
392             /* EWALD ELECTROSTATICS */
393             
394             /* Analytical PME correction */
395             zeta2            = _mm256_mul_ps(beta2,rsq10);
396             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
397             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
398             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
399             felec            = _mm256_mul_ps(qq10,felec);
400             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
401             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
402             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
403             velec            = _mm256_mul_ps(qq10,velec);
404             
405             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velec            = _mm256_and_ps(velec,cutoff_mask);
409             velecsum         = _mm256_add_ps(velecsum,velec);
410
411             fscal            = felec;
412
413             fscal            = _mm256_and_ps(fscal,cutoff_mask);
414
415             /* Calculate temporary vectorial force */
416             tx               = _mm256_mul_ps(fscal,dx10);
417             ty               = _mm256_mul_ps(fscal,dy10);
418             tz               = _mm256_mul_ps(fscal,dz10);
419
420             /* Update vectorial force */
421             fix1             = _mm256_add_ps(fix1,tx);
422             fiy1             = _mm256_add_ps(fiy1,ty);
423             fiz1             = _mm256_add_ps(fiz1,tz);
424
425             fjx0             = _mm256_add_ps(fjx0,tx);
426             fjy0             = _mm256_add_ps(fjy0,ty);
427             fjz0             = _mm256_add_ps(fjz0,tz);
428
429             }
430
431             /**************************
432              * CALCULATE INTERACTIONS *
433              **************************/
434
435             if (gmx_mm256_any_lt(rsq20,rcutoff2))
436             {
437
438             r20              = _mm256_mul_ps(rsq20,rinv20);
439
440             /* Compute parameters for interactions between i and j atoms */
441             qq20             = _mm256_mul_ps(iq2,jq0);
442
443             /* EWALD ELECTROSTATICS */
444             
445             /* Analytical PME correction */
446             zeta2            = _mm256_mul_ps(beta2,rsq20);
447             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
448             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
449             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
450             felec            = _mm256_mul_ps(qq20,felec);
451             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
452             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
453             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
454             velec            = _mm256_mul_ps(qq20,velec);
455             
456             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
457
458             /* Update potential sum for this i atom from the interaction with this j atom. */
459             velec            = _mm256_and_ps(velec,cutoff_mask);
460             velecsum         = _mm256_add_ps(velecsum,velec);
461
462             fscal            = felec;
463
464             fscal            = _mm256_and_ps(fscal,cutoff_mask);
465
466             /* Calculate temporary vectorial force */
467             tx               = _mm256_mul_ps(fscal,dx20);
468             ty               = _mm256_mul_ps(fscal,dy20);
469             tz               = _mm256_mul_ps(fscal,dz20);
470
471             /* Update vectorial force */
472             fix2             = _mm256_add_ps(fix2,tx);
473             fiy2             = _mm256_add_ps(fiy2,ty);
474             fiz2             = _mm256_add_ps(fiz2,tz);
475
476             fjx0             = _mm256_add_ps(fjx0,tx);
477             fjy0             = _mm256_add_ps(fjy0,ty);
478             fjz0             = _mm256_add_ps(fjz0,tz);
479
480             }
481
482             fjptrA             = f+j_coord_offsetA;
483             fjptrB             = f+j_coord_offsetB;
484             fjptrC             = f+j_coord_offsetC;
485             fjptrD             = f+j_coord_offsetD;
486             fjptrE             = f+j_coord_offsetE;
487             fjptrF             = f+j_coord_offsetF;
488             fjptrG             = f+j_coord_offsetG;
489             fjptrH             = f+j_coord_offsetH;
490
491             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
492
493             /* Inner loop uses 366 flops */
494         }
495
496         if(jidx<j_index_end)
497         {
498
499             /* Get j neighbor index, and coordinate index */
500             jnrlistA         = jjnr[jidx];
501             jnrlistB         = jjnr[jidx+1];
502             jnrlistC         = jjnr[jidx+2];
503             jnrlistD         = jjnr[jidx+3];
504             jnrlistE         = jjnr[jidx+4];
505             jnrlistF         = jjnr[jidx+5];
506             jnrlistG         = jjnr[jidx+6];
507             jnrlistH         = jjnr[jidx+7];
508             /* Sign of each element will be negative for non-real atoms.
509              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
510              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
511              */
512             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
513                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
514                                             
515             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
516             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
517             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
518             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
519             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
520             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
521             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
522             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
523             j_coord_offsetA  = DIM*jnrA;
524             j_coord_offsetB  = DIM*jnrB;
525             j_coord_offsetC  = DIM*jnrC;
526             j_coord_offsetD  = DIM*jnrD;
527             j_coord_offsetE  = DIM*jnrE;
528             j_coord_offsetF  = DIM*jnrF;
529             j_coord_offsetG  = DIM*jnrG;
530             j_coord_offsetH  = DIM*jnrH;
531
532             /* load j atom coordinates */
533             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
534                                                  x+j_coord_offsetC,x+j_coord_offsetD,
535                                                  x+j_coord_offsetE,x+j_coord_offsetF,
536                                                  x+j_coord_offsetG,x+j_coord_offsetH,
537                                                  &jx0,&jy0,&jz0);
538
539             /* Calculate displacement vector */
540             dx00             = _mm256_sub_ps(ix0,jx0);
541             dy00             = _mm256_sub_ps(iy0,jy0);
542             dz00             = _mm256_sub_ps(iz0,jz0);
543             dx10             = _mm256_sub_ps(ix1,jx0);
544             dy10             = _mm256_sub_ps(iy1,jy0);
545             dz10             = _mm256_sub_ps(iz1,jz0);
546             dx20             = _mm256_sub_ps(ix2,jx0);
547             dy20             = _mm256_sub_ps(iy2,jy0);
548             dz20             = _mm256_sub_ps(iz2,jz0);
549
550             /* Calculate squared distance and things based on it */
551             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
552             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
553             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
554
555             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
556             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
557             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
558
559             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
560             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
561             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
562
563             /* Load parameters for j particles */
564             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
565                                                                  charge+jnrC+0,charge+jnrD+0,
566                                                                  charge+jnrE+0,charge+jnrF+0,
567                                                                  charge+jnrG+0,charge+jnrH+0);
568             vdwjidx0A        = 2*vdwtype[jnrA+0];
569             vdwjidx0B        = 2*vdwtype[jnrB+0];
570             vdwjidx0C        = 2*vdwtype[jnrC+0];
571             vdwjidx0D        = 2*vdwtype[jnrD+0];
572             vdwjidx0E        = 2*vdwtype[jnrE+0];
573             vdwjidx0F        = 2*vdwtype[jnrF+0];
574             vdwjidx0G        = 2*vdwtype[jnrG+0];
575             vdwjidx0H        = 2*vdwtype[jnrH+0];
576
577             fjx0             = _mm256_setzero_ps();
578             fjy0             = _mm256_setzero_ps();
579             fjz0             = _mm256_setzero_ps();
580
581             /**************************
582              * CALCULATE INTERACTIONS *
583              **************************/
584
585             if (gmx_mm256_any_lt(rsq00,rcutoff2))
586             {
587
588             r00              = _mm256_mul_ps(rsq00,rinv00);
589             r00              = _mm256_andnot_ps(dummy_mask,r00);
590
591             /* Compute parameters for interactions between i and j atoms */
592             qq00             = _mm256_mul_ps(iq0,jq0);
593             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
594                                             vdwioffsetptr0+vdwjidx0B,
595                                             vdwioffsetptr0+vdwjidx0C,
596                                             vdwioffsetptr0+vdwjidx0D,
597                                             vdwioffsetptr0+vdwjidx0E,
598                                             vdwioffsetptr0+vdwjidx0F,
599                                             vdwioffsetptr0+vdwjidx0G,
600                                             vdwioffsetptr0+vdwjidx0H,
601                                             &c6_00,&c12_00);
602
603             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
604                                                                   vdwgridioffsetptr0+vdwjidx0B,
605                                                                   vdwgridioffsetptr0+vdwjidx0C,
606                                                                   vdwgridioffsetptr0+vdwjidx0D,
607                                                                   vdwgridioffsetptr0+vdwjidx0E,
608                                                                   vdwgridioffsetptr0+vdwjidx0F,
609                                                                   vdwgridioffsetptr0+vdwjidx0G,
610                                                                   vdwgridioffsetptr0+vdwjidx0H);
611
612             /* EWALD ELECTROSTATICS */
613             
614             /* Analytical PME correction */
615             zeta2            = _mm256_mul_ps(beta2,rsq00);
616             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
617             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
618             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
619             felec            = _mm256_mul_ps(qq00,felec);
620             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
621             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
622             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
623             velec            = _mm256_mul_ps(qq00,velec);
624             
625             /* Analytical LJ-PME */
626             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
627             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
628             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
629             exponent         = gmx_simd_exp_r(ewcljrsq);
630             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
631             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
632             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
633             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
634             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
635             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
636                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_add_ps(_mm256_mul_ps(c6_00,sh_vdw_invrcut6),_mm256_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
637             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
638             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
639
640             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
641
642             /* Update potential sum for this i atom from the interaction with this j atom. */
643             velec            = _mm256_and_ps(velec,cutoff_mask);
644             velec            = _mm256_andnot_ps(dummy_mask,velec);
645             velecsum         = _mm256_add_ps(velecsum,velec);
646             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
647             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
648             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
649
650             fscal            = _mm256_add_ps(felec,fvdw);
651
652             fscal            = _mm256_and_ps(fscal,cutoff_mask);
653
654             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
655
656             /* Calculate temporary vectorial force */
657             tx               = _mm256_mul_ps(fscal,dx00);
658             ty               = _mm256_mul_ps(fscal,dy00);
659             tz               = _mm256_mul_ps(fscal,dz00);
660
661             /* Update vectorial force */
662             fix0             = _mm256_add_ps(fix0,tx);
663             fiy0             = _mm256_add_ps(fiy0,ty);
664             fiz0             = _mm256_add_ps(fiz0,tz);
665
666             fjx0             = _mm256_add_ps(fjx0,tx);
667             fjy0             = _mm256_add_ps(fjy0,ty);
668             fjz0             = _mm256_add_ps(fjz0,tz);
669
670             }
671
672             /**************************
673              * CALCULATE INTERACTIONS *
674              **************************/
675
676             if (gmx_mm256_any_lt(rsq10,rcutoff2))
677             {
678
679             r10              = _mm256_mul_ps(rsq10,rinv10);
680             r10              = _mm256_andnot_ps(dummy_mask,r10);
681
682             /* Compute parameters for interactions between i and j atoms */
683             qq10             = _mm256_mul_ps(iq1,jq0);
684
685             /* EWALD ELECTROSTATICS */
686             
687             /* Analytical PME correction */
688             zeta2            = _mm256_mul_ps(beta2,rsq10);
689             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
690             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
691             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
692             felec            = _mm256_mul_ps(qq10,felec);
693             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
694             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
695             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
696             velec            = _mm256_mul_ps(qq10,velec);
697             
698             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
699
700             /* Update potential sum for this i atom from the interaction with this j atom. */
701             velec            = _mm256_and_ps(velec,cutoff_mask);
702             velec            = _mm256_andnot_ps(dummy_mask,velec);
703             velecsum         = _mm256_add_ps(velecsum,velec);
704
705             fscal            = felec;
706
707             fscal            = _mm256_and_ps(fscal,cutoff_mask);
708
709             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
710
711             /* Calculate temporary vectorial force */
712             tx               = _mm256_mul_ps(fscal,dx10);
713             ty               = _mm256_mul_ps(fscal,dy10);
714             tz               = _mm256_mul_ps(fscal,dz10);
715
716             /* Update vectorial force */
717             fix1             = _mm256_add_ps(fix1,tx);
718             fiy1             = _mm256_add_ps(fiy1,ty);
719             fiz1             = _mm256_add_ps(fiz1,tz);
720
721             fjx0             = _mm256_add_ps(fjx0,tx);
722             fjy0             = _mm256_add_ps(fjy0,ty);
723             fjz0             = _mm256_add_ps(fjz0,tz);
724
725             }
726
727             /**************************
728              * CALCULATE INTERACTIONS *
729              **************************/
730
731             if (gmx_mm256_any_lt(rsq20,rcutoff2))
732             {
733
734             r20              = _mm256_mul_ps(rsq20,rinv20);
735             r20              = _mm256_andnot_ps(dummy_mask,r20);
736
737             /* Compute parameters for interactions between i and j atoms */
738             qq20             = _mm256_mul_ps(iq2,jq0);
739
740             /* EWALD ELECTROSTATICS */
741             
742             /* Analytical PME correction */
743             zeta2            = _mm256_mul_ps(beta2,rsq20);
744             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
745             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
746             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
747             felec            = _mm256_mul_ps(qq20,felec);
748             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
749             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
750             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
751             velec            = _mm256_mul_ps(qq20,velec);
752             
753             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
754
755             /* Update potential sum for this i atom from the interaction with this j atom. */
756             velec            = _mm256_and_ps(velec,cutoff_mask);
757             velec            = _mm256_andnot_ps(dummy_mask,velec);
758             velecsum         = _mm256_add_ps(velecsum,velec);
759
760             fscal            = felec;
761
762             fscal            = _mm256_and_ps(fscal,cutoff_mask);
763
764             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
765
766             /* Calculate temporary vectorial force */
767             tx               = _mm256_mul_ps(fscal,dx20);
768             ty               = _mm256_mul_ps(fscal,dy20);
769             tz               = _mm256_mul_ps(fscal,dz20);
770
771             /* Update vectorial force */
772             fix2             = _mm256_add_ps(fix2,tx);
773             fiy2             = _mm256_add_ps(fiy2,ty);
774             fiz2             = _mm256_add_ps(fiz2,tz);
775
776             fjx0             = _mm256_add_ps(fjx0,tx);
777             fjy0             = _mm256_add_ps(fjy0,ty);
778             fjz0             = _mm256_add_ps(fjz0,tz);
779
780             }
781
782             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
783             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
784             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
785             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
786             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
787             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
788             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
789             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
790
791             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
792
793             /* Inner loop uses 369 flops */
794         }
795
796         /* End of innermost loop */
797
798         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
799                                                  f+i_coord_offset,fshift+i_shift_offset);
800
801         ggid                        = gid[iidx];
802         /* Update potential energies */
803         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
804         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
805
806         /* Increment number of inner iterations */
807         inneriter                  += j_index_end - j_index_start;
808
809         /* Outer loop uses 20 flops */
810     }
811
812     /* Increment number of outer iterations */
813     outeriter        += nri;
814
815     /* Update outer/inner flops */
816
817     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*369);
818 }
819 /*
820  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_256_single
821  * Electrostatics interaction: Ewald
822  * VdW interaction:            LJEwald
823  * Geometry:                   Water3-Particle
824  * Calculate force/pot:        Force
825  */
826 void
827 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_256_single
828                     (t_nblist                    * gmx_restrict       nlist,
829                      rvec                        * gmx_restrict          xx,
830                      rvec                        * gmx_restrict          ff,
831                      t_forcerec                  * gmx_restrict          fr,
832                      t_mdatoms                   * gmx_restrict     mdatoms,
833                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
834                      t_nrnb                      * gmx_restrict        nrnb)
835 {
836     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
837      * just 0 for non-waters.
838      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
839      * jnr indices corresponding to data put in the four positions in the SIMD register.
840      */
841     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
842     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
843     int              jnrA,jnrB,jnrC,jnrD;
844     int              jnrE,jnrF,jnrG,jnrH;
845     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
846     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
847     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
848     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
849     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
850     real             rcutoff_scalar;
851     real             *shiftvec,*fshift,*x,*f;
852     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
853     real             scratch[4*DIM];
854     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
855     real *           vdwioffsetptr0;
856     real *           vdwgridioffsetptr0;
857     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
858     real *           vdwioffsetptr1;
859     real *           vdwgridioffsetptr1;
860     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
861     real *           vdwioffsetptr2;
862     real *           vdwgridioffsetptr2;
863     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
864     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
865     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
866     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
867     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
868     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
869     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
870     real             *charge;
871     int              nvdwtype;
872     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
873     int              *vdwtype;
874     real             *vdwparam;
875     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
876     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
877     __m256           c6grid_00;
878     __m256           c6grid_10;
879     __m256           c6grid_20;
880     real             *vdwgridparam;
881     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
882     __m256           one_half  = _mm256_set1_ps(0.5);
883     __m256           minus_one = _mm256_set1_ps(-1.0);
884     __m256i          ewitab;
885     __m128i          ewitab_lo,ewitab_hi;
886     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
887     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
888     real             *ewtab;
889     __m256           dummy_mask,cutoff_mask;
890     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
891     __m256           one     = _mm256_set1_ps(1.0);
892     __m256           two     = _mm256_set1_ps(2.0);
893     x                = xx[0];
894     f                = ff[0];
895
896     nri              = nlist->nri;
897     iinr             = nlist->iinr;
898     jindex           = nlist->jindex;
899     jjnr             = nlist->jjnr;
900     shiftidx         = nlist->shift;
901     gid              = nlist->gid;
902     shiftvec         = fr->shift_vec[0];
903     fshift           = fr->fshift[0];
904     facel            = _mm256_set1_ps(fr->epsfac);
905     charge           = mdatoms->chargeA;
906     nvdwtype         = fr->ntype;
907     vdwparam         = fr->nbfp;
908     vdwtype          = mdatoms->typeA;
909     vdwgridparam     = fr->ljpme_c6grid;
910     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
911     ewclj            = _mm256_set1_ps(fr->ewaldcoeff_lj);
912     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
913
914     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
915     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
916     beta2            = _mm256_mul_ps(beta,beta);
917     beta3            = _mm256_mul_ps(beta,beta2);
918
919     ewtab            = fr->ic->tabq_coul_F;
920     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
921     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
922
923     /* Setup water-specific parameters */
924     inr              = nlist->iinr[0];
925     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
926     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
927     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
928     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
929     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
930
931     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
932     rcutoff_scalar   = fr->rcoulomb;
933     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
934     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
935
936     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
937     rvdw             = _mm256_set1_ps(fr->rvdw);
938
939     /* Avoid stupid compiler warnings */
940     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
941     j_coord_offsetA = 0;
942     j_coord_offsetB = 0;
943     j_coord_offsetC = 0;
944     j_coord_offsetD = 0;
945     j_coord_offsetE = 0;
946     j_coord_offsetF = 0;
947     j_coord_offsetG = 0;
948     j_coord_offsetH = 0;
949
950     outeriter        = 0;
951     inneriter        = 0;
952
953     for(iidx=0;iidx<4*DIM;iidx++)
954     {
955         scratch[iidx] = 0.0;
956     }
957
958     /* Start outer loop over neighborlists */
959     for(iidx=0; iidx<nri; iidx++)
960     {
961         /* Load shift vector for this list */
962         i_shift_offset   = DIM*shiftidx[iidx];
963
964         /* Load limits for loop over neighbors */
965         j_index_start    = jindex[iidx];
966         j_index_end      = jindex[iidx+1];
967
968         /* Get outer coordinate index */
969         inr              = iinr[iidx];
970         i_coord_offset   = DIM*inr;
971
972         /* Load i particle coords and add shift vector */
973         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
974                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
975
976         fix0             = _mm256_setzero_ps();
977         fiy0             = _mm256_setzero_ps();
978         fiz0             = _mm256_setzero_ps();
979         fix1             = _mm256_setzero_ps();
980         fiy1             = _mm256_setzero_ps();
981         fiz1             = _mm256_setzero_ps();
982         fix2             = _mm256_setzero_ps();
983         fiy2             = _mm256_setzero_ps();
984         fiz2             = _mm256_setzero_ps();
985
986         /* Start inner kernel loop */
987         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
988         {
989
990             /* Get j neighbor index, and coordinate index */
991             jnrA             = jjnr[jidx];
992             jnrB             = jjnr[jidx+1];
993             jnrC             = jjnr[jidx+2];
994             jnrD             = jjnr[jidx+3];
995             jnrE             = jjnr[jidx+4];
996             jnrF             = jjnr[jidx+5];
997             jnrG             = jjnr[jidx+6];
998             jnrH             = jjnr[jidx+7];
999             j_coord_offsetA  = DIM*jnrA;
1000             j_coord_offsetB  = DIM*jnrB;
1001             j_coord_offsetC  = DIM*jnrC;
1002             j_coord_offsetD  = DIM*jnrD;
1003             j_coord_offsetE  = DIM*jnrE;
1004             j_coord_offsetF  = DIM*jnrF;
1005             j_coord_offsetG  = DIM*jnrG;
1006             j_coord_offsetH  = DIM*jnrH;
1007
1008             /* load j atom coordinates */
1009             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1010                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1011                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1012                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1013                                                  &jx0,&jy0,&jz0);
1014
1015             /* Calculate displacement vector */
1016             dx00             = _mm256_sub_ps(ix0,jx0);
1017             dy00             = _mm256_sub_ps(iy0,jy0);
1018             dz00             = _mm256_sub_ps(iz0,jz0);
1019             dx10             = _mm256_sub_ps(ix1,jx0);
1020             dy10             = _mm256_sub_ps(iy1,jy0);
1021             dz10             = _mm256_sub_ps(iz1,jz0);
1022             dx20             = _mm256_sub_ps(ix2,jx0);
1023             dy20             = _mm256_sub_ps(iy2,jy0);
1024             dz20             = _mm256_sub_ps(iz2,jz0);
1025
1026             /* Calculate squared distance and things based on it */
1027             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1028             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1029             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1030
1031             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1032             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1033             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1034
1035             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1036             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1037             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1038
1039             /* Load parameters for j particles */
1040             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1041                                                                  charge+jnrC+0,charge+jnrD+0,
1042                                                                  charge+jnrE+0,charge+jnrF+0,
1043                                                                  charge+jnrG+0,charge+jnrH+0);
1044             vdwjidx0A        = 2*vdwtype[jnrA+0];
1045             vdwjidx0B        = 2*vdwtype[jnrB+0];
1046             vdwjidx0C        = 2*vdwtype[jnrC+0];
1047             vdwjidx0D        = 2*vdwtype[jnrD+0];
1048             vdwjidx0E        = 2*vdwtype[jnrE+0];
1049             vdwjidx0F        = 2*vdwtype[jnrF+0];
1050             vdwjidx0G        = 2*vdwtype[jnrG+0];
1051             vdwjidx0H        = 2*vdwtype[jnrH+0];
1052
1053             fjx0             = _mm256_setzero_ps();
1054             fjy0             = _mm256_setzero_ps();
1055             fjz0             = _mm256_setzero_ps();
1056
1057             /**************************
1058              * CALCULATE INTERACTIONS *
1059              **************************/
1060
1061             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1062             {
1063
1064             r00              = _mm256_mul_ps(rsq00,rinv00);
1065
1066             /* Compute parameters for interactions between i and j atoms */
1067             qq00             = _mm256_mul_ps(iq0,jq0);
1068             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1069                                             vdwioffsetptr0+vdwjidx0B,
1070                                             vdwioffsetptr0+vdwjidx0C,
1071                                             vdwioffsetptr0+vdwjidx0D,
1072                                             vdwioffsetptr0+vdwjidx0E,
1073                                             vdwioffsetptr0+vdwjidx0F,
1074                                             vdwioffsetptr0+vdwjidx0G,
1075                                             vdwioffsetptr0+vdwjidx0H,
1076                                             &c6_00,&c12_00);
1077
1078             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
1079                                                                   vdwgridioffsetptr0+vdwjidx0B,
1080                                                                   vdwgridioffsetptr0+vdwjidx0C,
1081                                                                   vdwgridioffsetptr0+vdwjidx0D,
1082                                                                   vdwgridioffsetptr0+vdwjidx0E,
1083                                                                   vdwgridioffsetptr0+vdwjidx0F,
1084                                                                   vdwgridioffsetptr0+vdwjidx0G,
1085                                                                   vdwgridioffsetptr0+vdwjidx0H);
1086
1087             /* EWALD ELECTROSTATICS */
1088             
1089             /* Analytical PME correction */
1090             zeta2            = _mm256_mul_ps(beta2,rsq00);
1091             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1092             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1093             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1094             felec            = _mm256_mul_ps(qq00,felec);
1095             
1096             /* Analytical LJ-PME */
1097             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1098             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
1099             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
1100             exponent         = gmx_simd_exp_r(ewcljrsq);
1101             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1102             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1103             /* f6A = 6 * C6grid * (1 - poly) */
1104             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
1105             /* f6B = C6grid * exponent * beta^6 */
1106             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
1107             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1108             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1109
1110             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1111
1112             fscal            = _mm256_add_ps(felec,fvdw);
1113
1114             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1115
1116             /* Calculate temporary vectorial force */
1117             tx               = _mm256_mul_ps(fscal,dx00);
1118             ty               = _mm256_mul_ps(fscal,dy00);
1119             tz               = _mm256_mul_ps(fscal,dz00);
1120
1121             /* Update vectorial force */
1122             fix0             = _mm256_add_ps(fix0,tx);
1123             fiy0             = _mm256_add_ps(fiy0,ty);
1124             fiz0             = _mm256_add_ps(fiz0,tz);
1125
1126             fjx0             = _mm256_add_ps(fjx0,tx);
1127             fjy0             = _mm256_add_ps(fjy0,ty);
1128             fjz0             = _mm256_add_ps(fjz0,tz);
1129
1130             }
1131
1132             /**************************
1133              * CALCULATE INTERACTIONS *
1134              **************************/
1135
1136             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1137             {
1138
1139             r10              = _mm256_mul_ps(rsq10,rinv10);
1140
1141             /* Compute parameters for interactions between i and j atoms */
1142             qq10             = _mm256_mul_ps(iq1,jq0);
1143
1144             /* EWALD ELECTROSTATICS */
1145             
1146             /* Analytical PME correction */
1147             zeta2            = _mm256_mul_ps(beta2,rsq10);
1148             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1149             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1150             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1151             felec            = _mm256_mul_ps(qq10,felec);
1152             
1153             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1154
1155             fscal            = felec;
1156
1157             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1158
1159             /* Calculate temporary vectorial force */
1160             tx               = _mm256_mul_ps(fscal,dx10);
1161             ty               = _mm256_mul_ps(fscal,dy10);
1162             tz               = _mm256_mul_ps(fscal,dz10);
1163
1164             /* Update vectorial force */
1165             fix1             = _mm256_add_ps(fix1,tx);
1166             fiy1             = _mm256_add_ps(fiy1,ty);
1167             fiz1             = _mm256_add_ps(fiz1,tz);
1168
1169             fjx0             = _mm256_add_ps(fjx0,tx);
1170             fjy0             = _mm256_add_ps(fjy0,ty);
1171             fjz0             = _mm256_add_ps(fjz0,tz);
1172
1173             }
1174
1175             /**************************
1176              * CALCULATE INTERACTIONS *
1177              **************************/
1178
1179             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1180             {
1181
1182             r20              = _mm256_mul_ps(rsq20,rinv20);
1183
1184             /* Compute parameters for interactions between i and j atoms */
1185             qq20             = _mm256_mul_ps(iq2,jq0);
1186
1187             /* EWALD ELECTROSTATICS */
1188             
1189             /* Analytical PME correction */
1190             zeta2            = _mm256_mul_ps(beta2,rsq20);
1191             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1192             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1193             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1194             felec            = _mm256_mul_ps(qq20,felec);
1195             
1196             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1197
1198             fscal            = felec;
1199
1200             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1201
1202             /* Calculate temporary vectorial force */
1203             tx               = _mm256_mul_ps(fscal,dx20);
1204             ty               = _mm256_mul_ps(fscal,dy20);
1205             tz               = _mm256_mul_ps(fscal,dz20);
1206
1207             /* Update vectorial force */
1208             fix2             = _mm256_add_ps(fix2,tx);
1209             fiy2             = _mm256_add_ps(fiy2,ty);
1210             fiz2             = _mm256_add_ps(fiz2,tz);
1211
1212             fjx0             = _mm256_add_ps(fjx0,tx);
1213             fjy0             = _mm256_add_ps(fjy0,ty);
1214             fjz0             = _mm256_add_ps(fjz0,tz);
1215
1216             }
1217
1218             fjptrA             = f+j_coord_offsetA;
1219             fjptrB             = f+j_coord_offsetB;
1220             fjptrC             = f+j_coord_offsetC;
1221             fjptrD             = f+j_coord_offsetD;
1222             fjptrE             = f+j_coord_offsetE;
1223             fjptrF             = f+j_coord_offsetF;
1224             fjptrG             = f+j_coord_offsetG;
1225             fjptrH             = f+j_coord_offsetH;
1226
1227             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1228
1229             /* Inner loop uses 203 flops */
1230         }
1231
1232         if(jidx<j_index_end)
1233         {
1234
1235             /* Get j neighbor index, and coordinate index */
1236             jnrlistA         = jjnr[jidx];
1237             jnrlistB         = jjnr[jidx+1];
1238             jnrlistC         = jjnr[jidx+2];
1239             jnrlistD         = jjnr[jidx+3];
1240             jnrlistE         = jjnr[jidx+4];
1241             jnrlistF         = jjnr[jidx+5];
1242             jnrlistG         = jjnr[jidx+6];
1243             jnrlistH         = jjnr[jidx+7];
1244             /* Sign of each element will be negative for non-real atoms.
1245              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1246              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1247              */
1248             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1249                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1250                                             
1251             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1252             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1253             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1254             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1255             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1256             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1257             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1258             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1259             j_coord_offsetA  = DIM*jnrA;
1260             j_coord_offsetB  = DIM*jnrB;
1261             j_coord_offsetC  = DIM*jnrC;
1262             j_coord_offsetD  = DIM*jnrD;
1263             j_coord_offsetE  = DIM*jnrE;
1264             j_coord_offsetF  = DIM*jnrF;
1265             j_coord_offsetG  = DIM*jnrG;
1266             j_coord_offsetH  = DIM*jnrH;
1267
1268             /* load j atom coordinates */
1269             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1270                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1271                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1272                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1273                                                  &jx0,&jy0,&jz0);
1274
1275             /* Calculate displacement vector */
1276             dx00             = _mm256_sub_ps(ix0,jx0);
1277             dy00             = _mm256_sub_ps(iy0,jy0);
1278             dz00             = _mm256_sub_ps(iz0,jz0);
1279             dx10             = _mm256_sub_ps(ix1,jx0);
1280             dy10             = _mm256_sub_ps(iy1,jy0);
1281             dz10             = _mm256_sub_ps(iz1,jz0);
1282             dx20             = _mm256_sub_ps(ix2,jx0);
1283             dy20             = _mm256_sub_ps(iy2,jy0);
1284             dz20             = _mm256_sub_ps(iz2,jz0);
1285
1286             /* Calculate squared distance and things based on it */
1287             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1288             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1289             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1290
1291             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1292             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1293             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1294
1295             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1296             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1297             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1298
1299             /* Load parameters for j particles */
1300             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1301                                                                  charge+jnrC+0,charge+jnrD+0,
1302                                                                  charge+jnrE+0,charge+jnrF+0,
1303                                                                  charge+jnrG+0,charge+jnrH+0);
1304             vdwjidx0A        = 2*vdwtype[jnrA+0];
1305             vdwjidx0B        = 2*vdwtype[jnrB+0];
1306             vdwjidx0C        = 2*vdwtype[jnrC+0];
1307             vdwjidx0D        = 2*vdwtype[jnrD+0];
1308             vdwjidx0E        = 2*vdwtype[jnrE+0];
1309             vdwjidx0F        = 2*vdwtype[jnrF+0];
1310             vdwjidx0G        = 2*vdwtype[jnrG+0];
1311             vdwjidx0H        = 2*vdwtype[jnrH+0];
1312
1313             fjx0             = _mm256_setzero_ps();
1314             fjy0             = _mm256_setzero_ps();
1315             fjz0             = _mm256_setzero_ps();
1316
1317             /**************************
1318              * CALCULATE INTERACTIONS *
1319              **************************/
1320
1321             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1322             {
1323
1324             r00              = _mm256_mul_ps(rsq00,rinv00);
1325             r00              = _mm256_andnot_ps(dummy_mask,r00);
1326
1327             /* Compute parameters for interactions between i and j atoms */
1328             qq00             = _mm256_mul_ps(iq0,jq0);
1329             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1330                                             vdwioffsetptr0+vdwjidx0B,
1331                                             vdwioffsetptr0+vdwjidx0C,
1332                                             vdwioffsetptr0+vdwjidx0D,
1333                                             vdwioffsetptr0+vdwjidx0E,
1334                                             vdwioffsetptr0+vdwjidx0F,
1335                                             vdwioffsetptr0+vdwjidx0G,
1336                                             vdwioffsetptr0+vdwjidx0H,
1337                                             &c6_00,&c12_00);
1338
1339             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
1340                                                                   vdwgridioffsetptr0+vdwjidx0B,
1341                                                                   vdwgridioffsetptr0+vdwjidx0C,
1342                                                                   vdwgridioffsetptr0+vdwjidx0D,
1343                                                                   vdwgridioffsetptr0+vdwjidx0E,
1344                                                                   vdwgridioffsetptr0+vdwjidx0F,
1345                                                                   vdwgridioffsetptr0+vdwjidx0G,
1346                                                                   vdwgridioffsetptr0+vdwjidx0H);
1347
1348             /* EWALD ELECTROSTATICS */
1349             
1350             /* Analytical PME correction */
1351             zeta2            = _mm256_mul_ps(beta2,rsq00);
1352             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1353             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1354             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1355             felec            = _mm256_mul_ps(qq00,felec);
1356             
1357             /* Analytical LJ-PME */
1358             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1359             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
1360             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
1361             exponent         = gmx_simd_exp_r(ewcljrsq);
1362             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1363             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1364             /* f6A = 6 * C6grid * (1 - poly) */
1365             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
1366             /* f6B = C6grid * exponent * beta^6 */
1367             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
1368             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1369             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1370
1371             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1372
1373             fscal            = _mm256_add_ps(felec,fvdw);
1374
1375             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1376
1377             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1378
1379             /* Calculate temporary vectorial force */
1380             tx               = _mm256_mul_ps(fscal,dx00);
1381             ty               = _mm256_mul_ps(fscal,dy00);
1382             tz               = _mm256_mul_ps(fscal,dz00);
1383
1384             /* Update vectorial force */
1385             fix0             = _mm256_add_ps(fix0,tx);
1386             fiy0             = _mm256_add_ps(fiy0,ty);
1387             fiz0             = _mm256_add_ps(fiz0,tz);
1388
1389             fjx0             = _mm256_add_ps(fjx0,tx);
1390             fjy0             = _mm256_add_ps(fjy0,ty);
1391             fjz0             = _mm256_add_ps(fjz0,tz);
1392
1393             }
1394
1395             /**************************
1396              * CALCULATE INTERACTIONS *
1397              **************************/
1398
1399             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1400             {
1401
1402             r10              = _mm256_mul_ps(rsq10,rinv10);
1403             r10              = _mm256_andnot_ps(dummy_mask,r10);
1404
1405             /* Compute parameters for interactions between i and j atoms */
1406             qq10             = _mm256_mul_ps(iq1,jq0);
1407
1408             /* EWALD ELECTROSTATICS */
1409             
1410             /* Analytical PME correction */
1411             zeta2            = _mm256_mul_ps(beta2,rsq10);
1412             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1413             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1414             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1415             felec            = _mm256_mul_ps(qq10,felec);
1416             
1417             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1418
1419             fscal            = felec;
1420
1421             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1422
1423             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1424
1425             /* Calculate temporary vectorial force */
1426             tx               = _mm256_mul_ps(fscal,dx10);
1427             ty               = _mm256_mul_ps(fscal,dy10);
1428             tz               = _mm256_mul_ps(fscal,dz10);
1429
1430             /* Update vectorial force */
1431             fix1             = _mm256_add_ps(fix1,tx);
1432             fiy1             = _mm256_add_ps(fiy1,ty);
1433             fiz1             = _mm256_add_ps(fiz1,tz);
1434
1435             fjx0             = _mm256_add_ps(fjx0,tx);
1436             fjy0             = _mm256_add_ps(fjy0,ty);
1437             fjz0             = _mm256_add_ps(fjz0,tz);
1438
1439             }
1440
1441             /**************************
1442              * CALCULATE INTERACTIONS *
1443              **************************/
1444
1445             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1446             {
1447
1448             r20              = _mm256_mul_ps(rsq20,rinv20);
1449             r20              = _mm256_andnot_ps(dummy_mask,r20);
1450
1451             /* Compute parameters for interactions between i and j atoms */
1452             qq20             = _mm256_mul_ps(iq2,jq0);
1453
1454             /* EWALD ELECTROSTATICS */
1455             
1456             /* Analytical PME correction */
1457             zeta2            = _mm256_mul_ps(beta2,rsq20);
1458             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1459             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1460             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1461             felec            = _mm256_mul_ps(qq20,felec);
1462             
1463             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1464
1465             fscal            = felec;
1466
1467             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1468
1469             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1470
1471             /* Calculate temporary vectorial force */
1472             tx               = _mm256_mul_ps(fscal,dx20);
1473             ty               = _mm256_mul_ps(fscal,dy20);
1474             tz               = _mm256_mul_ps(fscal,dz20);
1475
1476             /* Update vectorial force */
1477             fix2             = _mm256_add_ps(fix2,tx);
1478             fiy2             = _mm256_add_ps(fiy2,ty);
1479             fiz2             = _mm256_add_ps(fiz2,tz);
1480
1481             fjx0             = _mm256_add_ps(fjx0,tx);
1482             fjy0             = _mm256_add_ps(fjy0,ty);
1483             fjz0             = _mm256_add_ps(fjz0,tz);
1484
1485             }
1486
1487             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1488             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1489             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1490             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1491             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1492             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1493             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1494             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1495
1496             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1497
1498             /* Inner loop uses 206 flops */
1499         }
1500
1501         /* End of innermost loop */
1502
1503         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1504                                                  f+i_coord_offset,fshift+i_shift_offset);
1505
1506         /* Increment number of inner iterations */
1507         inneriter                  += j_index_end - j_index_start;
1508
1509         /* Outer loop uses 18 flops */
1510     }
1511
1512     /* Increment number of outer iterations */
1513     outeriter        += nri;
1514
1515     /* Update outer/inner flops */
1516
1517     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*206);
1518 }