cf14c8d70f296f35e8d5550c58be4805880db65c
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     real *           vdwgridioffsetptr0;
88     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
90     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
93     real             *charge;
94     int              nvdwtype;
95     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
99     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
100     __m256           c6grid_00;
101     real             *vdwgridparam;
102     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
103     __m256           one_half  = _mm256_set1_ps(0.5);
104     __m256           minus_one = _mm256_set1_ps(-1.0);
105     __m256i          ewitab;
106     __m128i          ewitab_lo,ewitab_hi;
107     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
109     real             *ewtab;
110     __m256           dummy_mask,cutoff_mask;
111     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
112     __m256           one     = _mm256_set1_ps(1.0);
113     __m256           two     = _mm256_set1_ps(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_ps(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130     vdwgridparam     = fr->ljpme_c6grid;
131     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
132     ewclj            = _mm256_set1_ps(fr->ewaldcoeff_lj);
133     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
134
135     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
136     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
137     beta2            = _mm256_mul_ps(beta,beta);
138     beta3            = _mm256_mul_ps(beta,beta2);
139
140     ewtab            = fr->ic->tabq_coul_FDV0;
141     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
142     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
143
144     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
145     rcutoff_scalar   = fr->rcoulomb;
146     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
147     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
148
149     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
150     rvdw             = _mm256_set1_ps(fr->rvdw);
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156     j_coord_offsetC = 0;
157     j_coord_offsetD = 0;
158     j_coord_offsetE = 0;
159     j_coord_offsetF = 0;
160     j_coord_offsetG = 0;
161     j_coord_offsetH = 0;
162
163     outeriter        = 0;
164     inneriter        = 0;
165
166     for(iidx=0;iidx<4*DIM;iidx++)
167     {
168         scratch[iidx] = 0.0;
169     }
170
171     /* Start outer loop over neighborlists */
172     for(iidx=0; iidx<nri; iidx++)
173     {
174         /* Load shift vector for this list */
175         i_shift_offset   = DIM*shiftidx[iidx];
176
177         /* Load limits for loop over neighbors */
178         j_index_start    = jindex[iidx];
179         j_index_end      = jindex[iidx+1];
180
181         /* Get outer coordinate index */
182         inr              = iinr[iidx];
183         i_coord_offset   = DIM*inr;
184
185         /* Load i particle coords and add shift vector */
186         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
187
188         fix0             = _mm256_setzero_ps();
189         fiy0             = _mm256_setzero_ps();
190         fiz0             = _mm256_setzero_ps();
191
192         /* Load parameters for i particles */
193         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
194         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
195         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
196
197         /* Reset potential sums */
198         velecsum         = _mm256_setzero_ps();
199         vvdwsum          = _mm256_setzero_ps();
200
201         /* Start inner kernel loop */
202         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
203         {
204
205             /* Get j neighbor index, and coordinate index */
206             jnrA             = jjnr[jidx];
207             jnrB             = jjnr[jidx+1];
208             jnrC             = jjnr[jidx+2];
209             jnrD             = jjnr[jidx+3];
210             jnrE             = jjnr[jidx+4];
211             jnrF             = jjnr[jidx+5];
212             jnrG             = jjnr[jidx+6];
213             jnrH             = jjnr[jidx+7];
214             j_coord_offsetA  = DIM*jnrA;
215             j_coord_offsetB  = DIM*jnrB;
216             j_coord_offsetC  = DIM*jnrC;
217             j_coord_offsetD  = DIM*jnrD;
218             j_coord_offsetE  = DIM*jnrE;
219             j_coord_offsetF  = DIM*jnrF;
220             j_coord_offsetG  = DIM*jnrG;
221             j_coord_offsetH  = DIM*jnrH;
222
223             /* load j atom coordinates */
224             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
225                                                  x+j_coord_offsetC,x+j_coord_offsetD,
226                                                  x+j_coord_offsetE,x+j_coord_offsetF,
227                                                  x+j_coord_offsetG,x+j_coord_offsetH,
228                                                  &jx0,&jy0,&jz0);
229
230             /* Calculate displacement vector */
231             dx00             = _mm256_sub_ps(ix0,jx0);
232             dy00             = _mm256_sub_ps(iy0,jy0);
233             dz00             = _mm256_sub_ps(iz0,jz0);
234
235             /* Calculate squared distance and things based on it */
236             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
237
238             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
239
240             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
241
242             /* Load parameters for j particles */
243             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
244                                                                  charge+jnrC+0,charge+jnrD+0,
245                                                                  charge+jnrE+0,charge+jnrF+0,
246                                                                  charge+jnrG+0,charge+jnrH+0);
247             vdwjidx0A        = 2*vdwtype[jnrA+0];
248             vdwjidx0B        = 2*vdwtype[jnrB+0];
249             vdwjidx0C        = 2*vdwtype[jnrC+0];
250             vdwjidx0D        = 2*vdwtype[jnrD+0];
251             vdwjidx0E        = 2*vdwtype[jnrE+0];
252             vdwjidx0F        = 2*vdwtype[jnrF+0];
253             vdwjidx0G        = 2*vdwtype[jnrG+0];
254             vdwjidx0H        = 2*vdwtype[jnrH+0];
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             if (gmx_mm256_any_lt(rsq00,rcutoff2))
261             {
262
263             r00              = _mm256_mul_ps(rsq00,rinv00);
264
265             /* Compute parameters for interactions between i and j atoms */
266             qq00             = _mm256_mul_ps(iq0,jq0);
267             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
268                                             vdwioffsetptr0+vdwjidx0B,
269                                             vdwioffsetptr0+vdwjidx0C,
270                                             vdwioffsetptr0+vdwjidx0D,
271                                             vdwioffsetptr0+vdwjidx0E,
272                                             vdwioffsetptr0+vdwjidx0F,
273                                             vdwioffsetptr0+vdwjidx0G,
274                                             vdwioffsetptr0+vdwjidx0H,
275                                             &c6_00,&c12_00);
276
277             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
278                                                                   vdwgridioffsetptr0+vdwjidx0B,
279                                                                   vdwgridioffsetptr0+vdwjidx0C,
280                                                                   vdwgridioffsetptr0+vdwjidx0D,
281                                                                   vdwgridioffsetptr0+vdwjidx0E,
282                                                                   vdwgridioffsetptr0+vdwjidx0F,
283                                                                   vdwgridioffsetptr0+vdwjidx0G,
284                                                                   vdwgridioffsetptr0+vdwjidx0H);
285
286             /* EWALD ELECTROSTATICS */
287             
288             /* Analytical PME correction */
289             zeta2            = _mm256_mul_ps(beta2,rsq00);
290             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
291             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
292             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
293             felec            = _mm256_mul_ps(qq00,felec);
294             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
295             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
296             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
297             velec            = _mm256_mul_ps(qq00,velec);
298             
299             /* Analytical LJ-PME */
300             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
301             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
302             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
303             exponent         = gmx_simd_exp_r(ewcljrsq);
304             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
305             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
306             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
307             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
308             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
309             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
310                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_add_ps(_mm256_mul_ps(c6_00,sh_vdw_invrcut6),_mm256_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
311             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
312             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
313
314             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velec            = _mm256_and_ps(velec,cutoff_mask);
318             velecsum         = _mm256_add_ps(velecsum,velec);
319             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
320             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
321
322             fscal            = _mm256_add_ps(felec,fvdw);
323
324             fscal            = _mm256_and_ps(fscal,cutoff_mask);
325
326             /* Calculate temporary vectorial force */
327             tx               = _mm256_mul_ps(fscal,dx00);
328             ty               = _mm256_mul_ps(fscal,dy00);
329             tz               = _mm256_mul_ps(fscal,dz00);
330
331             /* Update vectorial force */
332             fix0             = _mm256_add_ps(fix0,tx);
333             fiy0             = _mm256_add_ps(fiy0,ty);
334             fiz0             = _mm256_add_ps(fiz0,tz);
335
336             fjptrA             = f+j_coord_offsetA;
337             fjptrB             = f+j_coord_offsetB;
338             fjptrC             = f+j_coord_offsetC;
339             fjptrD             = f+j_coord_offsetD;
340             fjptrE             = f+j_coord_offsetE;
341             fjptrF             = f+j_coord_offsetF;
342             fjptrG             = f+j_coord_offsetG;
343             fjptrH             = f+j_coord_offsetH;
344             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
345
346             }
347
348             /* Inner loop uses 145 flops */
349         }
350
351         if(jidx<j_index_end)
352         {
353
354             /* Get j neighbor index, and coordinate index */
355             jnrlistA         = jjnr[jidx];
356             jnrlistB         = jjnr[jidx+1];
357             jnrlistC         = jjnr[jidx+2];
358             jnrlistD         = jjnr[jidx+3];
359             jnrlistE         = jjnr[jidx+4];
360             jnrlistF         = jjnr[jidx+5];
361             jnrlistG         = jjnr[jidx+6];
362             jnrlistH         = jjnr[jidx+7];
363             /* Sign of each element will be negative for non-real atoms.
364              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
365              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
366              */
367             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
368                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
369                                             
370             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
371             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
372             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
373             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
374             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
375             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
376             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
377             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
378             j_coord_offsetA  = DIM*jnrA;
379             j_coord_offsetB  = DIM*jnrB;
380             j_coord_offsetC  = DIM*jnrC;
381             j_coord_offsetD  = DIM*jnrD;
382             j_coord_offsetE  = DIM*jnrE;
383             j_coord_offsetF  = DIM*jnrF;
384             j_coord_offsetG  = DIM*jnrG;
385             j_coord_offsetH  = DIM*jnrH;
386
387             /* load j atom coordinates */
388             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
389                                                  x+j_coord_offsetC,x+j_coord_offsetD,
390                                                  x+j_coord_offsetE,x+j_coord_offsetF,
391                                                  x+j_coord_offsetG,x+j_coord_offsetH,
392                                                  &jx0,&jy0,&jz0);
393
394             /* Calculate displacement vector */
395             dx00             = _mm256_sub_ps(ix0,jx0);
396             dy00             = _mm256_sub_ps(iy0,jy0);
397             dz00             = _mm256_sub_ps(iz0,jz0);
398
399             /* Calculate squared distance and things based on it */
400             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
401
402             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
403
404             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
405
406             /* Load parameters for j particles */
407             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
408                                                                  charge+jnrC+0,charge+jnrD+0,
409                                                                  charge+jnrE+0,charge+jnrF+0,
410                                                                  charge+jnrG+0,charge+jnrH+0);
411             vdwjidx0A        = 2*vdwtype[jnrA+0];
412             vdwjidx0B        = 2*vdwtype[jnrB+0];
413             vdwjidx0C        = 2*vdwtype[jnrC+0];
414             vdwjidx0D        = 2*vdwtype[jnrD+0];
415             vdwjidx0E        = 2*vdwtype[jnrE+0];
416             vdwjidx0F        = 2*vdwtype[jnrF+0];
417             vdwjidx0G        = 2*vdwtype[jnrG+0];
418             vdwjidx0H        = 2*vdwtype[jnrH+0];
419
420             /**************************
421              * CALCULATE INTERACTIONS *
422              **************************/
423
424             if (gmx_mm256_any_lt(rsq00,rcutoff2))
425             {
426
427             r00              = _mm256_mul_ps(rsq00,rinv00);
428             r00              = _mm256_andnot_ps(dummy_mask,r00);
429
430             /* Compute parameters for interactions between i and j atoms */
431             qq00             = _mm256_mul_ps(iq0,jq0);
432             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
433                                             vdwioffsetptr0+vdwjidx0B,
434                                             vdwioffsetptr0+vdwjidx0C,
435                                             vdwioffsetptr0+vdwjidx0D,
436                                             vdwioffsetptr0+vdwjidx0E,
437                                             vdwioffsetptr0+vdwjidx0F,
438                                             vdwioffsetptr0+vdwjidx0G,
439                                             vdwioffsetptr0+vdwjidx0H,
440                                             &c6_00,&c12_00);
441
442             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
443                                                                   vdwgridioffsetptr0+vdwjidx0B,
444                                                                   vdwgridioffsetptr0+vdwjidx0C,
445                                                                   vdwgridioffsetptr0+vdwjidx0D,
446                                                                   vdwgridioffsetptr0+vdwjidx0E,
447                                                                   vdwgridioffsetptr0+vdwjidx0F,
448                                                                   vdwgridioffsetptr0+vdwjidx0G,
449                                                                   vdwgridioffsetptr0+vdwjidx0H);
450
451             /* EWALD ELECTROSTATICS */
452             
453             /* Analytical PME correction */
454             zeta2            = _mm256_mul_ps(beta2,rsq00);
455             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
456             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
457             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
458             felec            = _mm256_mul_ps(qq00,felec);
459             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
460             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
461             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
462             velec            = _mm256_mul_ps(qq00,velec);
463             
464             /* Analytical LJ-PME */
465             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
466             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
467             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
468             exponent         = gmx_simd_exp_r(ewcljrsq);
469             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
470             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
471             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
472             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
473             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
474             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
475                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_add_ps(_mm256_mul_ps(c6_00,sh_vdw_invrcut6),_mm256_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
476             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
477             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
478
479             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
480
481             /* Update potential sum for this i atom from the interaction with this j atom. */
482             velec            = _mm256_and_ps(velec,cutoff_mask);
483             velec            = _mm256_andnot_ps(dummy_mask,velec);
484             velecsum         = _mm256_add_ps(velecsum,velec);
485             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
486             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
487             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
488
489             fscal            = _mm256_add_ps(felec,fvdw);
490
491             fscal            = _mm256_and_ps(fscal,cutoff_mask);
492
493             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
494
495             /* Calculate temporary vectorial force */
496             tx               = _mm256_mul_ps(fscal,dx00);
497             ty               = _mm256_mul_ps(fscal,dy00);
498             tz               = _mm256_mul_ps(fscal,dz00);
499
500             /* Update vectorial force */
501             fix0             = _mm256_add_ps(fix0,tx);
502             fiy0             = _mm256_add_ps(fiy0,ty);
503             fiz0             = _mm256_add_ps(fiz0,tz);
504
505             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
506             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
507             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
508             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
509             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
510             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
511             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
512             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
513             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
514
515             }
516
517             /* Inner loop uses 146 flops */
518         }
519
520         /* End of innermost loop */
521
522         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
523                                                  f+i_coord_offset,fshift+i_shift_offset);
524
525         ggid                        = gid[iidx];
526         /* Update potential energies */
527         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
528         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
529
530         /* Increment number of inner iterations */
531         inneriter                  += j_index_end - j_index_start;
532
533         /* Outer loop uses 9 flops */
534     }
535
536     /* Increment number of outer iterations */
537     outeriter        += nri;
538
539     /* Update outer/inner flops */
540
541     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*146);
542 }
543 /*
544  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_256_single
545  * Electrostatics interaction: Ewald
546  * VdW interaction:            LJEwald
547  * Geometry:                   Particle-Particle
548  * Calculate force/pot:        Force
549  */
550 void
551 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_256_single
552                     (t_nblist                    * gmx_restrict       nlist,
553                      rvec                        * gmx_restrict          xx,
554                      rvec                        * gmx_restrict          ff,
555                      t_forcerec                  * gmx_restrict          fr,
556                      t_mdatoms                   * gmx_restrict     mdatoms,
557                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
558                      t_nrnb                      * gmx_restrict        nrnb)
559 {
560     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
561      * just 0 for non-waters.
562      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
563      * jnr indices corresponding to data put in the four positions in the SIMD register.
564      */
565     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
566     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
567     int              jnrA,jnrB,jnrC,jnrD;
568     int              jnrE,jnrF,jnrG,jnrH;
569     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
570     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
571     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
572     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
573     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
574     real             rcutoff_scalar;
575     real             *shiftvec,*fshift,*x,*f;
576     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
577     real             scratch[4*DIM];
578     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
579     real *           vdwioffsetptr0;
580     real *           vdwgridioffsetptr0;
581     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
582     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
583     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
584     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
585     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
586     real             *charge;
587     int              nvdwtype;
588     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
589     int              *vdwtype;
590     real             *vdwparam;
591     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
592     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
593     __m256           c6grid_00;
594     real             *vdwgridparam;
595     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
596     __m256           one_half  = _mm256_set1_ps(0.5);
597     __m256           minus_one = _mm256_set1_ps(-1.0);
598     __m256i          ewitab;
599     __m128i          ewitab_lo,ewitab_hi;
600     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
601     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
602     real             *ewtab;
603     __m256           dummy_mask,cutoff_mask;
604     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
605     __m256           one     = _mm256_set1_ps(1.0);
606     __m256           two     = _mm256_set1_ps(2.0);
607     x                = xx[0];
608     f                = ff[0];
609
610     nri              = nlist->nri;
611     iinr             = nlist->iinr;
612     jindex           = nlist->jindex;
613     jjnr             = nlist->jjnr;
614     shiftidx         = nlist->shift;
615     gid              = nlist->gid;
616     shiftvec         = fr->shift_vec[0];
617     fshift           = fr->fshift[0];
618     facel            = _mm256_set1_ps(fr->epsfac);
619     charge           = mdatoms->chargeA;
620     nvdwtype         = fr->ntype;
621     vdwparam         = fr->nbfp;
622     vdwtype          = mdatoms->typeA;
623     vdwgridparam     = fr->ljpme_c6grid;
624     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
625     ewclj            = _mm256_set1_ps(fr->ewaldcoeff_lj);
626     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
627
628     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
629     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
630     beta2            = _mm256_mul_ps(beta,beta);
631     beta3            = _mm256_mul_ps(beta,beta2);
632
633     ewtab            = fr->ic->tabq_coul_F;
634     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
635     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
636
637     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
638     rcutoff_scalar   = fr->rcoulomb;
639     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
640     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
641
642     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
643     rvdw             = _mm256_set1_ps(fr->rvdw);
644
645     /* Avoid stupid compiler warnings */
646     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
647     j_coord_offsetA = 0;
648     j_coord_offsetB = 0;
649     j_coord_offsetC = 0;
650     j_coord_offsetD = 0;
651     j_coord_offsetE = 0;
652     j_coord_offsetF = 0;
653     j_coord_offsetG = 0;
654     j_coord_offsetH = 0;
655
656     outeriter        = 0;
657     inneriter        = 0;
658
659     for(iidx=0;iidx<4*DIM;iidx++)
660     {
661         scratch[iidx] = 0.0;
662     }
663
664     /* Start outer loop over neighborlists */
665     for(iidx=0; iidx<nri; iidx++)
666     {
667         /* Load shift vector for this list */
668         i_shift_offset   = DIM*shiftidx[iidx];
669
670         /* Load limits for loop over neighbors */
671         j_index_start    = jindex[iidx];
672         j_index_end      = jindex[iidx+1];
673
674         /* Get outer coordinate index */
675         inr              = iinr[iidx];
676         i_coord_offset   = DIM*inr;
677
678         /* Load i particle coords and add shift vector */
679         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
680
681         fix0             = _mm256_setzero_ps();
682         fiy0             = _mm256_setzero_ps();
683         fiz0             = _mm256_setzero_ps();
684
685         /* Load parameters for i particles */
686         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
687         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
688         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
689
690         /* Start inner kernel loop */
691         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
692         {
693
694             /* Get j neighbor index, and coordinate index */
695             jnrA             = jjnr[jidx];
696             jnrB             = jjnr[jidx+1];
697             jnrC             = jjnr[jidx+2];
698             jnrD             = jjnr[jidx+3];
699             jnrE             = jjnr[jidx+4];
700             jnrF             = jjnr[jidx+5];
701             jnrG             = jjnr[jidx+6];
702             jnrH             = jjnr[jidx+7];
703             j_coord_offsetA  = DIM*jnrA;
704             j_coord_offsetB  = DIM*jnrB;
705             j_coord_offsetC  = DIM*jnrC;
706             j_coord_offsetD  = DIM*jnrD;
707             j_coord_offsetE  = DIM*jnrE;
708             j_coord_offsetF  = DIM*jnrF;
709             j_coord_offsetG  = DIM*jnrG;
710             j_coord_offsetH  = DIM*jnrH;
711
712             /* load j atom coordinates */
713             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
714                                                  x+j_coord_offsetC,x+j_coord_offsetD,
715                                                  x+j_coord_offsetE,x+j_coord_offsetF,
716                                                  x+j_coord_offsetG,x+j_coord_offsetH,
717                                                  &jx0,&jy0,&jz0);
718
719             /* Calculate displacement vector */
720             dx00             = _mm256_sub_ps(ix0,jx0);
721             dy00             = _mm256_sub_ps(iy0,jy0);
722             dz00             = _mm256_sub_ps(iz0,jz0);
723
724             /* Calculate squared distance and things based on it */
725             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
726
727             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
728
729             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
730
731             /* Load parameters for j particles */
732             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
733                                                                  charge+jnrC+0,charge+jnrD+0,
734                                                                  charge+jnrE+0,charge+jnrF+0,
735                                                                  charge+jnrG+0,charge+jnrH+0);
736             vdwjidx0A        = 2*vdwtype[jnrA+0];
737             vdwjidx0B        = 2*vdwtype[jnrB+0];
738             vdwjidx0C        = 2*vdwtype[jnrC+0];
739             vdwjidx0D        = 2*vdwtype[jnrD+0];
740             vdwjidx0E        = 2*vdwtype[jnrE+0];
741             vdwjidx0F        = 2*vdwtype[jnrF+0];
742             vdwjidx0G        = 2*vdwtype[jnrG+0];
743             vdwjidx0H        = 2*vdwtype[jnrH+0];
744
745             /**************************
746              * CALCULATE INTERACTIONS *
747              **************************/
748
749             if (gmx_mm256_any_lt(rsq00,rcutoff2))
750             {
751
752             r00              = _mm256_mul_ps(rsq00,rinv00);
753
754             /* Compute parameters for interactions between i and j atoms */
755             qq00             = _mm256_mul_ps(iq0,jq0);
756             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
757                                             vdwioffsetptr0+vdwjidx0B,
758                                             vdwioffsetptr0+vdwjidx0C,
759                                             vdwioffsetptr0+vdwjidx0D,
760                                             vdwioffsetptr0+vdwjidx0E,
761                                             vdwioffsetptr0+vdwjidx0F,
762                                             vdwioffsetptr0+vdwjidx0G,
763                                             vdwioffsetptr0+vdwjidx0H,
764                                             &c6_00,&c12_00);
765
766             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
767                                                                   vdwgridioffsetptr0+vdwjidx0B,
768                                                                   vdwgridioffsetptr0+vdwjidx0C,
769                                                                   vdwgridioffsetptr0+vdwjidx0D,
770                                                                   vdwgridioffsetptr0+vdwjidx0E,
771                                                                   vdwgridioffsetptr0+vdwjidx0F,
772                                                                   vdwgridioffsetptr0+vdwjidx0G,
773                                                                   vdwgridioffsetptr0+vdwjidx0H);
774
775             /* EWALD ELECTROSTATICS */
776             
777             /* Analytical PME correction */
778             zeta2            = _mm256_mul_ps(beta2,rsq00);
779             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
780             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
781             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
782             felec            = _mm256_mul_ps(qq00,felec);
783             
784             /* Analytical LJ-PME */
785             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
786             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
787             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
788             exponent         = gmx_simd_exp_r(ewcljrsq);
789             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
790             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
791             /* f6A = 6 * C6grid * (1 - poly) */
792             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
793             /* f6B = C6grid * exponent * beta^6 */
794             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
795             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
796             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
797
798             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
799
800             fscal            = _mm256_add_ps(felec,fvdw);
801
802             fscal            = _mm256_and_ps(fscal,cutoff_mask);
803
804             /* Calculate temporary vectorial force */
805             tx               = _mm256_mul_ps(fscal,dx00);
806             ty               = _mm256_mul_ps(fscal,dy00);
807             tz               = _mm256_mul_ps(fscal,dz00);
808
809             /* Update vectorial force */
810             fix0             = _mm256_add_ps(fix0,tx);
811             fiy0             = _mm256_add_ps(fiy0,ty);
812             fiz0             = _mm256_add_ps(fiz0,tz);
813
814             fjptrA             = f+j_coord_offsetA;
815             fjptrB             = f+j_coord_offsetB;
816             fjptrC             = f+j_coord_offsetC;
817             fjptrD             = f+j_coord_offsetD;
818             fjptrE             = f+j_coord_offsetE;
819             fjptrF             = f+j_coord_offsetF;
820             fjptrG             = f+j_coord_offsetG;
821             fjptrH             = f+j_coord_offsetH;
822             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
823
824             }
825
826             /* Inner loop uses 82 flops */
827         }
828
829         if(jidx<j_index_end)
830         {
831
832             /* Get j neighbor index, and coordinate index */
833             jnrlistA         = jjnr[jidx];
834             jnrlistB         = jjnr[jidx+1];
835             jnrlistC         = jjnr[jidx+2];
836             jnrlistD         = jjnr[jidx+3];
837             jnrlistE         = jjnr[jidx+4];
838             jnrlistF         = jjnr[jidx+5];
839             jnrlistG         = jjnr[jidx+6];
840             jnrlistH         = jjnr[jidx+7];
841             /* Sign of each element will be negative for non-real atoms.
842              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
843              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
844              */
845             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
846                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
847                                             
848             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
849             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
850             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
851             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
852             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
853             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
854             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
855             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
856             j_coord_offsetA  = DIM*jnrA;
857             j_coord_offsetB  = DIM*jnrB;
858             j_coord_offsetC  = DIM*jnrC;
859             j_coord_offsetD  = DIM*jnrD;
860             j_coord_offsetE  = DIM*jnrE;
861             j_coord_offsetF  = DIM*jnrF;
862             j_coord_offsetG  = DIM*jnrG;
863             j_coord_offsetH  = DIM*jnrH;
864
865             /* load j atom coordinates */
866             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
867                                                  x+j_coord_offsetC,x+j_coord_offsetD,
868                                                  x+j_coord_offsetE,x+j_coord_offsetF,
869                                                  x+j_coord_offsetG,x+j_coord_offsetH,
870                                                  &jx0,&jy0,&jz0);
871
872             /* Calculate displacement vector */
873             dx00             = _mm256_sub_ps(ix0,jx0);
874             dy00             = _mm256_sub_ps(iy0,jy0);
875             dz00             = _mm256_sub_ps(iz0,jz0);
876
877             /* Calculate squared distance and things based on it */
878             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
879
880             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
881
882             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
883
884             /* Load parameters for j particles */
885             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
886                                                                  charge+jnrC+0,charge+jnrD+0,
887                                                                  charge+jnrE+0,charge+jnrF+0,
888                                                                  charge+jnrG+0,charge+jnrH+0);
889             vdwjidx0A        = 2*vdwtype[jnrA+0];
890             vdwjidx0B        = 2*vdwtype[jnrB+0];
891             vdwjidx0C        = 2*vdwtype[jnrC+0];
892             vdwjidx0D        = 2*vdwtype[jnrD+0];
893             vdwjidx0E        = 2*vdwtype[jnrE+0];
894             vdwjidx0F        = 2*vdwtype[jnrF+0];
895             vdwjidx0G        = 2*vdwtype[jnrG+0];
896             vdwjidx0H        = 2*vdwtype[jnrH+0];
897
898             /**************************
899              * CALCULATE INTERACTIONS *
900              **************************/
901
902             if (gmx_mm256_any_lt(rsq00,rcutoff2))
903             {
904
905             r00              = _mm256_mul_ps(rsq00,rinv00);
906             r00              = _mm256_andnot_ps(dummy_mask,r00);
907
908             /* Compute parameters for interactions between i and j atoms */
909             qq00             = _mm256_mul_ps(iq0,jq0);
910             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
911                                             vdwioffsetptr0+vdwjidx0B,
912                                             vdwioffsetptr0+vdwjidx0C,
913                                             vdwioffsetptr0+vdwjidx0D,
914                                             vdwioffsetptr0+vdwjidx0E,
915                                             vdwioffsetptr0+vdwjidx0F,
916                                             vdwioffsetptr0+vdwjidx0G,
917                                             vdwioffsetptr0+vdwjidx0H,
918                                             &c6_00,&c12_00);
919
920             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
921                                                                   vdwgridioffsetptr0+vdwjidx0B,
922                                                                   vdwgridioffsetptr0+vdwjidx0C,
923                                                                   vdwgridioffsetptr0+vdwjidx0D,
924                                                                   vdwgridioffsetptr0+vdwjidx0E,
925                                                                   vdwgridioffsetptr0+vdwjidx0F,
926                                                                   vdwgridioffsetptr0+vdwjidx0G,
927                                                                   vdwgridioffsetptr0+vdwjidx0H);
928
929             /* EWALD ELECTROSTATICS */
930             
931             /* Analytical PME correction */
932             zeta2            = _mm256_mul_ps(beta2,rsq00);
933             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
934             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
935             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
936             felec            = _mm256_mul_ps(qq00,felec);
937             
938             /* Analytical LJ-PME */
939             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
940             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
941             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
942             exponent         = gmx_simd_exp_r(ewcljrsq);
943             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
944             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
945             /* f6A = 6 * C6grid * (1 - poly) */
946             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
947             /* f6B = C6grid * exponent * beta^6 */
948             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
949             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
950             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
951
952             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
953
954             fscal            = _mm256_add_ps(felec,fvdw);
955
956             fscal            = _mm256_and_ps(fscal,cutoff_mask);
957
958             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
959
960             /* Calculate temporary vectorial force */
961             tx               = _mm256_mul_ps(fscal,dx00);
962             ty               = _mm256_mul_ps(fscal,dy00);
963             tz               = _mm256_mul_ps(fscal,dz00);
964
965             /* Update vectorial force */
966             fix0             = _mm256_add_ps(fix0,tx);
967             fiy0             = _mm256_add_ps(fiy0,ty);
968             fiz0             = _mm256_add_ps(fiz0,tz);
969
970             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
971             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
972             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
973             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
974             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
975             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
976             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
977             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
978             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
979
980             }
981
982             /* Inner loop uses 83 flops */
983         }
984
985         /* End of innermost loop */
986
987         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
988                                                  f+i_coord_offset,fshift+i_shift_offset);
989
990         /* Increment number of inner iterations */
991         inneriter                  += j_index_end - j_index_start;
992
993         /* Outer loop uses 7 flops */
994     }
995
996     /* Increment number of outer iterations */
997     outeriter        += nri;
998
999     /* Update outer/inner flops */
1000
1001     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*83);
1002 }