Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_256_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     real *           vdwgridioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
98     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
99     __m256           c6grid_00;
100     real             *vdwgridparam;
101     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
102     __m256           one_half  = _mm256_set1_ps(0.5);
103     __m256           minus_one = _mm256_set1_ps(-1.0);
104     __m256i          ewitab;
105     __m128i          ewitab_lo,ewitab_hi;
106     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
108     real             *ewtab;
109     __m256           dummy_mask,cutoff_mask;
110     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
111     __m256           one     = _mm256_set1_ps(1.0);
112     __m256           two     = _mm256_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm256_set1_ps(fr->ic->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129     vdwgridparam     = fr->ljpme_c6grid;
130     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
131     ewclj            = _mm256_set1_ps(fr->ic->ewaldcoeff_lj);
132     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
133
134     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
135     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
136     beta2            = _mm256_mul_ps(beta,beta);
137     beta3            = _mm256_mul_ps(beta,beta2);
138
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
141     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
142
143     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
144     rcutoff_scalar   = fr->ic->rcoulomb;
145     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
146     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
147
148     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
149     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
150
151     /* Avoid stupid compiler warnings */
152     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
153     j_coord_offsetA = 0;
154     j_coord_offsetB = 0;
155     j_coord_offsetC = 0;
156     j_coord_offsetD = 0;
157     j_coord_offsetE = 0;
158     j_coord_offsetF = 0;
159     j_coord_offsetG = 0;
160     j_coord_offsetH = 0;
161
162     outeriter        = 0;
163     inneriter        = 0;
164
165     for(iidx=0;iidx<4*DIM;iidx++)
166     {
167         scratch[iidx] = 0.0;
168     }
169
170     /* Start outer loop over neighborlists */
171     for(iidx=0; iidx<nri; iidx++)
172     {
173         /* Load shift vector for this list */
174         i_shift_offset   = DIM*shiftidx[iidx];
175
176         /* Load limits for loop over neighbors */
177         j_index_start    = jindex[iidx];
178         j_index_end      = jindex[iidx+1];
179
180         /* Get outer coordinate index */
181         inr              = iinr[iidx];
182         i_coord_offset   = DIM*inr;
183
184         /* Load i particle coords and add shift vector */
185         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
186
187         fix0             = _mm256_setzero_ps();
188         fiy0             = _mm256_setzero_ps();
189         fiz0             = _mm256_setzero_ps();
190
191         /* Load parameters for i particles */
192         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
193         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
194         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
195
196         /* Reset potential sums */
197         velecsum         = _mm256_setzero_ps();
198         vvdwsum          = _mm256_setzero_ps();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             jnrC             = jjnr[jidx+2];
208             jnrD             = jjnr[jidx+3];
209             jnrE             = jjnr[jidx+4];
210             jnrF             = jjnr[jidx+5];
211             jnrG             = jjnr[jidx+6];
212             jnrH             = jjnr[jidx+7];
213             j_coord_offsetA  = DIM*jnrA;
214             j_coord_offsetB  = DIM*jnrB;
215             j_coord_offsetC  = DIM*jnrC;
216             j_coord_offsetD  = DIM*jnrD;
217             j_coord_offsetE  = DIM*jnrE;
218             j_coord_offsetF  = DIM*jnrF;
219             j_coord_offsetG  = DIM*jnrG;
220             j_coord_offsetH  = DIM*jnrH;
221
222             /* load j atom coordinates */
223             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
224                                                  x+j_coord_offsetC,x+j_coord_offsetD,
225                                                  x+j_coord_offsetE,x+j_coord_offsetF,
226                                                  x+j_coord_offsetG,x+j_coord_offsetH,
227                                                  &jx0,&jy0,&jz0);
228
229             /* Calculate displacement vector */
230             dx00             = _mm256_sub_ps(ix0,jx0);
231             dy00             = _mm256_sub_ps(iy0,jy0);
232             dz00             = _mm256_sub_ps(iz0,jz0);
233
234             /* Calculate squared distance and things based on it */
235             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
236
237             rinv00           = avx256_invsqrt_f(rsq00);
238
239             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
240
241             /* Load parameters for j particles */
242             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
243                                                                  charge+jnrC+0,charge+jnrD+0,
244                                                                  charge+jnrE+0,charge+jnrF+0,
245                                                                  charge+jnrG+0,charge+jnrH+0);
246             vdwjidx0A        = 2*vdwtype[jnrA+0];
247             vdwjidx0B        = 2*vdwtype[jnrB+0];
248             vdwjidx0C        = 2*vdwtype[jnrC+0];
249             vdwjidx0D        = 2*vdwtype[jnrD+0];
250             vdwjidx0E        = 2*vdwtype[jnrE+0];
251             vdwjidx0F        = 2*vdwtype[jnrF+0];
252             vdwjidx0G        = 2*vdwtype[jnrG+0];
253             vdwjidx0H        = 2*vdwtype[jnrH+0];
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             if (gmx_mm256_any_lt(rsq00,rcutoff2))
260             {
261
262             r00              = _mm256_mul_ps(rsq00,rinv00);
263
264             /* Compute parameters for interactions between i and j atoms */
265             qq00             = _mm256_mul_ps(iq0,jq0);
266             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
267                                             vdwioffsetptr0+vdwjidx0B,
268                                             vdwioffsetptr0+vdwjidx0C,
269                                             vdwioffsetptr0+vdwjidx0D,
270                                             vdwioffsetptr0+vdwjidx0E,
271                                             vdwioffsetptr0+vdwjidx0F,
272                                             vdwioffsetptr0+vdwjidx0G,
273                                             vdwioffsetptr0+vdwjidx0H,
274                                             &c6_00,&c12_00);
275
276             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
277                                                                   vdwgridioffsetptr0+vdwjidx0B,
278                                                                   vdwgridioffsetptr0+vdwjidx0C,
279                                                                   vdwgridioffsetptr0+vdwjidx0D,
280                                                                   vdwgridioffsetptr0+vdwjidx0E,
281                                                                   vdwgridioffsetptr0+vdwjidx0F,
282                                                                   vdwgridioffsetptr0+vdwjidx0G,
283                                                                   vdwgridioffsetptr0+vdwjidx0H);
284
285             /* EWALD ELECTROSTATICS */
286             
287             /* Analytical PME correction */
288             zeta2            = _mm256_mul_ps(beta2,rsq00);
289             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
290             pmecorrF         = avx256_pmecorrF_f(zeta2);
291             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
292             felec            = _mm256_mul_ps(qq00,felec);
293             pmecorrV         = avx256_pmecorrV_f(zeta2);
294             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
295             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
296             velec            = _mm256_mul_ps(qq00,velec);
297             
298             /* Analytical LJ-PME */
299             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
300             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
301             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
302             exponent         = avx256_exp_f(ewcljrsq);
303             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
304             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
305             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
306             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
307             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
308             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
309                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_add_ps(_mm256_mul_ps(c6_00,sh_vdw_invrcut6),_mm256_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
310             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
311             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
312
313             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velec            = _mm256_and_ps(velec,cutoff_mask);
317             velecsum         = _mm256_add_ps(velecsum,velec);
318             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
319             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
320
321             fscal            = _mm256_add_ps(felec,fvdw);
322
323             fscal            = _mm256_and_ps(fscal,cutoff_mask);
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm256_mul_ps(fscal,dx00);
327             ty               = _mm256_mul_ps(fscal,dy00);
328             tz               = _mm256_mul_ps(fscal,dz00);
329
330             /* Update vectorial force */
331             fix0             = _mm256_add_ps(fix0,tx);
332             fiy0             = _mm256_add_ps(fiy0,ty);
333             fiz0             = _mm256_add_ps(fiz0,tz);
334
335             fjptrA             = f+j_coord_offsetA;
336             fjptrB             = f+j_coord_offsetB;
337             fjptrC             = f+j_coord_offsetC;
338             fjptrD             = f+j_coord_offsetD;
339             fjptrE             = f+j_coord_offsetE;
340             fjptrF             = f+j_coord_offsetF;
341             fjptrG             = f+j_coord_offsetG;
342             fjptrH             = f+j_coord_offsetH;
343             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
344
345             }
346
347             /* Inner loop uses 145 flops */
348         }
349
350         if(jidx<j_index_end)
351         {
352
353             /* Get j neighbor index, and coordinate index */
354             jnrlistA         = jjnr[jidx];
355             jnrlistB         = jjnr[jidx+1];
356             jnrlistC         = jjnr[jidx+2];
357             jnrlistD         = jjnr[jidx+3];
358             jnrlistE         = jjnr[jidx+4];
359             jnrlistF         = jjnr[jidx+5];
360             jnrlistG         = jjnr[jidx+6];
361             jnrlistH         = jjnr[jidx+7];
362             /* Sign of each element will be negative for non-real atoms.
363              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
364              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
365              */
366             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
367                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
368                                             
369             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
370             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
371             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
372             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
373             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
374             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
375             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
376             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
377             j_coord_offsetA  = DIM*jnrA;
378             j_coord_offsetB  = DIM*jnrB;
379             j_coord_offsetC  = DIM*jnrC;
380             j_coord_offsetD  = DIM*jnrD;
381             j_coord_offsetE  = DIM*jnrE;
382             j_coord_offsetF  = DIM*jnrF;
383             j_coord_offsetG  = DIM*jnrG;
384             j_coord_offsetH  = DIM*jnrH;
385
386             /* load j atom coordinates */
387             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
388                                                  x+j_coord_offsetC,x+j_coord_offsetD,
389                                                  x+j_coord_offsetE,x+j_coord_offsetF,
390                                                  x+j_coord_offsetG,x+j_coord_offsetH,
391                                                  &jx0,&jy0,&jz0);
392
393             /* Calculate displacement vector */
394             dx00             = _mm256_sub_ps(ix0,jx0);
395             dy00             = _mm256_sub_ps(iy0,jy0);
396             dz00             = _mm256_sub_ps(iz0,jz0);
397
398             /* Calculate squared distance and things based on it */
399             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
400
401             rinv00           = avx256_invsqrt_f(rsq00);
402
403             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
404
405             /* Load parameters for j particles */
406             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
407                                                                  charge+jnrC+0,charge+jnrD+0,
408                                                                  charge+jnrE+0,charge+jnrF+0,
409                                                                  charge+jnrG+0,charge+jnrH+0);
410             vdwjidx0A        = 2*vdwtype[jnrA+0];
411             vdwjidx0B        = 2*vdwtype[jnrB+0];
412             vdwjidx0C        = 2*vdwtype[jnrC+0];
413             vdwjidx0D        = 2*vdwtype[jnrD+0];
414             vdwjidx0E        = 2*vdwtype[jnrE+0];
415             vdwjidx0F        = 2*vdwtype[jnrF+0];
416             vdwjidx0G        = 2*vdwtype[jnrG+0];
417             vdwjidx0H        = 2*vdwtype[jnrH+0];
418
419             /**************************
420              * CALCULATE INTERACTIONS *
421              **************************/
422
423             if (gmx_mm256_any_lt(rsq00,rcutoff2))
424             {
425
426             r00              = _mm256_mul_ps(rsq00,rinv00);
427             r00              = _mm256_andnot_ps(dummy_mask,r00);
428
429             /* Compute parameters for interactions between i and j atoms */
430             qq00             = _mm256_mul_ps(iq0,jq0);
431             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
432                                             vdwioffsetptr0+vdwjidx0B,
433                                             vdwioffsetptr0+vdwjidx0C,
434                                             vdwioffsetptr0+vdwjidx0D,
435                                             vdwioffsetptr0+vdwjidx0E,
436                                             vdwioffsetptr0+vdwjidx0F,
437                                             vdwioffsetptr0+vdwjidx0G,
438                                             vdwioffsetptr0+vdwjidx0H,
439                                             &c6_00,&c12_00);
440
441             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
442                                                                   vdwgridioffsetptr0+vdwjidx0B,
443                                                                   vdwgridioffsetptr0+vdwjidx0C,
444                                                                   vdwgridioffsetptr0+vdwjidx0D,
445                                                                   vdwgridioffsetptr0+vdwjidx0E,
446                                                                   vdwgridioffsetptr0+vdwjidx0F,
447                                                                   vdwgridioffsetptr0+vdwjidx0G,
448                                                                   vdwgridioffsetptr0+vdwjidx0H);
449
450             /* EWALD ELECTROSTATICS */
451             
452             /* Analytical PME correction */
453             zeta2            = _mm256_mul_ps(beta2,rsq00);
454             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
455             pmecorrF         = avx256_pmecorrF_f(zeta2);
456             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
457             felec            = _mm256_mul_ps(qq00,felec);
458             pmecorrV         = avx256_pmecorrV_f(zeta2);
459             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
460             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
461             velec            = _mm256_mul_ps(qq00,velec);
462             
463             /* Analytical LJ-PME */
464             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
465             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
466             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
467             exponent         = avx256_exp_f(ewcljrsq);
468             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
469             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
470             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
471             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
472             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
473             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
474                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_add_ps(_mm256_mul_ps(c6_00,sh_vdw_invrcut6),_mm256_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
475             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
476             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
477
478             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
479
480             /* Update potential sum for this i atom from the interaction with this j atom. */
481             velec            = _mm256_and_ps(velec,cutoff_mask);
482             velec            = _mm256_andnot_ps(dummy_mask,velec);
483             velecsum         = _mm256_add_ps(velecsum,velec);
484             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
485             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
486             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
487
488             fscal            = _mm256_add_ps(felec,fvdw);
489
490             fscal            = _mm256_and_ps(fscal,cutoff_mask);
491
492             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
493
494             /* Calculate temporary vectorial force */
495             tx               = _mm256_mul_ps(fscal,dx00);
496             ty               = _mm256_mul_ps(fscal,dy00);
497             tz               = _mm256_mul_ps(fscal,dz00);
498
499             /* Update vectorial force */
500             fix0             = _mm256_add_ps(fix0,tx);
501             fiy0             = _mm256_add_ps(fiy0,ty);
502             fiz0             = _mm256_add_ps(fiz0,tz);
503
504             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
505             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
506             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
507             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
508             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
509             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
510             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
511             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
512             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
513
514             }
515
516             /* Inner loop uses 146 flops */
517         }
518
519         /* End of innermost loop */
520
521         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
522                                                  f+i_coord_offset,fshift+i_shift_offset);
523
524         ggid                        = gid[iidx];
525         /* Update potential energies */
526         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
527         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
528
529         /* Increment number of inner iterations */
530         inneriter                  += j_index_end - j_index_start;
531
532         /* Outer loop uses 9 flops */
533     }
534
535     /* Increment number of outer iterations */
536     outeriter        += nri;
537
538     /* Update outer/inner flops */
539
540     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*146);
541 }
542 /*
543  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_256_single
544  * Electrostatics interaction: Ewald
545  * VdW interaction:            LJEwald
546  * Geometry:                   Particle-Particle
547  * Calculate force/pot:        Force
548  */
549 void
550 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_256_single
551                     (t_nblist                    * gmx_restrict       nlist,
552                      rvec                        * gmx_restrict          xx,
553                      rvec                        * gmx_restrict          ff,
554                      struct t_forcerec           * gmx_restrict          fr,
555                      t_mdatoms                   * gmx_restrict     mdatoms,
556                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
557                      t_nrnb                      * gmx_restrict        nrnb)
558 {
559     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
560      * just 0 for non-waters.
561      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
562      * jnr indices corresponding to data put in the four positions in the SIMD register.
563      */
564     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
565     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
566     int              jnrA,jnrB,jnrC,jnrD;
567     int              jnrE,jnrF,jnrG,jnrH;
568     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
569     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
570     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
571     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
572     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
573     real             rcutoff_scalar;
574     real             *shiftvec,*fshift,*x,*f;
575     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
576     real             scratch[4*DIM];
577     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
578     real *           vdwioffsetptr0;
579     real *           vdwgridioffsetptr0;
580     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
581     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
582     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
583     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
584     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
585     real             *charge;
586     int              nvdwtype;
587     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
588     int              *vdwtype;
589     real             *vdwparam;
590     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
591     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
592     __m256           c6grid_00;
593     real             *vdwgridparam;
594     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
595     __m256           one_half  = _mm256_set1_ps(0.5);
596     __m256           minus_one = _mm256_set1_ps(-1.0);
597     __m256i          ewitab;
598     __m128i          ewitab_lo,ewitab_hi;
599     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
600     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
601     real             *ewtab;
602     __m256           dummy_mask,cutoff_mask;
603     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
604     __m256           one     = _mm256_set1_ps(1.0);
605     __m256           two     = _mm256_set1_ps(2.0);
606     x                = xx[0];
607     f                = ff[0];
608
609     nri              = nlist->nri;
610     iinr             = nlist->iinr;
611     jindex           = nlist->jindex;
612     jjnr             = nlist->jjnr;
613     shiftidx         = nlist->shift;
614     gid              = nlist->gid;
615     shiftvec         = fr->shift_vec[0];
616     fshift           = fr->fshift[0];
617     facel            = _mm256_set1_ps(fr->ic->epsfac);
618     charge           = mdatoms->chargeA;
619     nvdwtype         = fr->ntype;
620     vdwparam         = fr->nbfp;
621     vdwtype          = mdatoms->typeA;
622     vdwgridparam     = fr->ljpme_c6grid;
623     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
624     ewclj            = _mm256_set1_ps(fr->ic->ewaldcoeff_lj);
625     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
626
627     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
628     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
629     beta2            = _mm256_mul_ps(beta,beta);
630     beta3            = _mm256_mul_ps(beta,beta2);
631
632     ewtab            = fr->ic->tabq_coul_F;
633     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
634     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
635
636     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
637     rcutoff_scalar   = fr->ic->rcoulomb;
638     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
639     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
640
641     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
642     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
643
644     /* Avoid stupid compiler warnings */
645     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
646     j_coord_offsetA = 0;
647     j_coord_offsetB = 0;
648     j_coord_offsetC = 0;
649     j_coord_offsetD = 0;
650     j_coord_offsetE = 0;
651     j_coord_offsetF = 0;
652     j_coord_offsetG = 0;
653     j_coord_offsetH = 0;
654
655     outeriter        = 0;
656     inneriter        = 0;
657
658     for(iidx=0;iidx<4*DIM;iidx++)
659     {
660         scratch[iidx] = 0.0;
661     }
662
663     /* Start outer loop over neighborlists */
664     for(iidx=0; iidx<nri; iidx++)
665     {
666         /* Load shift vector for this list */
667         i_shift_offset   = DIM*shiftidx[iidx];
668
669         /* Load limits for loop over neighbors */
670         j_index_start    = jindex[iidx];
671         j_index_end      = jindex[iidx+1];
672
673         /* Get outer coordinate index */
674         inr              = iinr[iidx];
675         i_coord_offset   = DIM*inr;
676
677         /* Load i particle coords and add shift vector */
678         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
679
680         fix0             = _mm256_setzero_ps();
681         fiy0             = _mm256_setzero_ps();
682         fiz0             = _mm256_setzero_ps();
683
684         /* Load parameters for i particles */
685         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
686         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
687         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
688
689         /* Start inner kernel loop */
690         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
691         {
692
693             /* Get j neighbor index, and coordinate index */
694             jnrA             = jjnr[jidx];
695             jnrB             = jjnr[jidx+1];
696             jnrC             = jjnr[jidx+2];
697             jnrD             = jjnr[jidx+3];
698             jnrE             = jjnr[jidx+4];
699             jnrF             = jjnr[jidx+5];
700             jnrG             = jjnr[jidx+6];
701             jnrH             = jjnr[jidx+7];
702             j_coord_offsetA  = DIM*jnrA;
703             j_coord_offsetB  = DIM*jnrB;
704             j_coord_offsetC  = DIM*jnrC;
705             j_coord_offsetD  = DIM*jnrD;
706             j_coord_offsetE  = DIM*jnrE;
707             j_coord_offsetF  = DIM*jnrF;
708             j_coord_offsetG  = DIM*jnrG;
709             j_coord_offsetH  = DIM*jnrH;
710
711             /* load j atom coordinates */
712             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
713                                                  x+j_coord_offsetC,x+j_coord_offsetD,
714                                                  x+j_coord_offsetE,x+j_coord_offsetF,
715                                                  x+j_coord_offsetG,x+j_coord_offsetH,
716                                                  &jx0,&jy0,&jz0);
717
718             /* Calculate displacement vector */
719             dx00             = _mm256_sub_ps(ix0,jx0);
720             dy00             = _mm256_sub_ps(iy0,jy0);
721             dz00             = _mm256_sub_ps(iz0,jz0);
722
723             /* Calculate squared distance and things based on it */
724             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
725
726             rinv00           = avx256_invsqrt_f(rsq00);
727
728             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
729
730             /* Load parameters for j particles */
731             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
732                                                                  charge+jnrC+0,charge+jnrD+0,
733                                                                  charge+jnrE+0,charge+jnrF+0,
734                                                                  charge+jnrG+0,charge+jnrH+0);
735             vdwjidx0A        = 2*vdwtype[jnrA+0];
736             vdwjidx0B        = 2*vdwtype[jnrB+0];
737             vdwjidx0C        = 2*vdwtype[jnrC+0];
738             vdwjidx0D        = 2*vdwtype[jnrD+0];
739             vdwjidx0E        = 2*vdwtype[jnrE+0];
740             vdwjidx0F        = 2*vdwtype[jnrF+0];
741             vdwjidx0G        = 2*vdwtype[jnrG+0];
742             vdwjidx0H        = 2*vdwtype[jnrH+0];
743
744             /**************************
745              * CALCULATE INTERACTIONS *
746              **************************/
747
748             if (gmx_mm256_any_lt(rsq00,rcutoff2))
749             {
750
751             r00              = _mm256_mul_ps(rsq00,rinv00);
752
753             /* Compute parameters for interactions between i and j atoms */
754             qq00             = _mm256_mul_ps(iq0,jq0);
755             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
756                                             vdwioffsetptr0+vdwjidx0B,
757                                             vdwioffsetptr0+vdwjidx0C,
758                                             vdwioffsetptr0+vdwjidx0D,
759                                             vdwioffsetptr0+vdwjidx0E,
760                                             vdwioffsetptr0+vdwjidx0F,
761                                             vdwioffsetptr0+vdwjidx0G,
762                                             vdwioffsetptr0+vdwjidx0H,
763                                             &c6_00,&c12_00);
764
765             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
766                                                                   vdwgridioffsetptr0+vdwjidx0B,
767                                                                   vdwgridioffsetptr0+vdwjidx0C,
768                                                                   vdwgridioffsetptr0+vdwjidx0D,
769                                                                   vdwgridioffsetptr0+vdwjidx0E,
770                                                                   vdwgridioffsetptr0+vdwjidx0F,
771                                                                   vdwgridioffsetptr0+vdwjidx0G,
772                                                                   vdwgridioffsetptr0+vdwjidx0H);
773
774             /* EWALD ELECTROSTATICS */
775             
776             /* Analytical PME correction */
777             zeta2            = _mm256_mul_ps(beta2,rsq00);
778             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
779             pmecorrF         = avx256_pmecorrF_f(zeta2);
780             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
781             felec            = _mm256_mul_ps(qq00,felec);
782             
783             /* Analytical LJ-PME */
784             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
785             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
786             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
787             exponent         = avx256_exp_f(ewcljrsq);
788             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
789             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
790             /* f6A = 6 * C6grid * (1 - poly) */
791             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
792             /* f6B = C6grid * exponent * beta^6 */
793             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
794             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
795             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
796
797             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
798
799             fscal            = _mm256_add_ps(felec,fvdw);
800
801             fscal            = _mm256_and_ps(fscal,cutoff_mask);
802
803             /* Calculate temporary vectorial force */
804             tx               = _mm256_mul_ps(fscal,dx00);
805             ty               = _mm256_mul_ps(fscal,dy00);
806             tz               = _mm256_mul_ps(fscal,dz00);
807
808             /* Update vectorial force */
809             fix0             = _mm256_add_ps(fix0,tx);
810             fiy0             = _mm256_add_ps(fiy0,ty);
811             fiz0             = _mm256_add_ps(fiz0,tz);
812
813             fjptrA             = f+j_coord_offsetA;
814             fjptrB             = f+j_coord_offsetB;
815             fjptrC             = f+j_coord_offsetC;
816             fjptrD             = f+j_coord_offsetD;
817             fjptrE             = f+j_coord_offsetE;
818             fjptrF             = f+j_coord_offsetF;
819             fjptrG             = f+j_coord_offsetG;
820             fjptrH             = f+j_coord_offsetH;
821             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
822
823             }
824
825             /* Inner loop uses 82 flops */
826         }
827
828         if(jidx<j_index_end)
829         {
830
831             /* Get j neighbor index, and coordinate index */
832             jnrlistA         = jjnr[jidx];
833             jnrlistB         = jjnr[jidx+1];
834             jnrlistC         = jjnr[jidx+2];
835             jnrlistD         = jjnr[jidx+3];
836             jnrlistE         = jjnr[jidx+4];
837             jnrlistF         = jjnr[jidx+5];
838             jnrlistG         = jjnr[jidx+6];
839             jnrlistH         = jjnr[jidx+7];
840             /* Sign of each element will be negative for non-real atoms.
841              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
842              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
843              */
844             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
845                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
846                                             
847             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
848             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
849             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
850             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
851             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
852             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
853             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
854             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
855             j_coord_offsetA  = DIM*jnrA;
856             j_coord_offsetB  = DIM*jnrB;
857             j_coord_offsetC  = DIM*jnrC;
858             j_coord_offsetD  = DIM*jnrD;
859             j_coord_offsetE  = DIM*jnrE;
860             j_coord_offsetF  = DIM*jnrF;
861             j_coord_offsetG  = DIM*jnrG;
862             j_coord_offsetH  = DIM*jnrH;
863
864             /* load j atom coordinates */
865             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
866                                                  x+j_coord_offsetC,x+j_coord_offsetD,
867                                                  x+j_coord_offsetE,x+j_coord_offsetF,
868                                                  x+j_coord_offsetG,x+j_coord_offsetH,
869                                                  &jx0,&jy0,&jz0);
870
871             /* Calculate displacement vector */
872             dx00             = _mm256_sub_ps(ix0,jx0);
873             dy00             = _mm256_sub_ps(iy0,jy0);
874             dz00             = _mm256_sub_ps(iz0,jz0);
875
876             /* Calculate squared distance and things based on it */
877             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
878
879             rinv00           = avx256_invsqrt_f(rsq00);
880
881             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
882
883             /* Load parameters for j particles */
884             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
885                                                                  charge+jnrC+0,charge+jnrD+0,
886                                                                  charge+jnrE+0,charge+jnrF+0,
887                                                                  charge+jnrG+0,charge+jnrH+0);
888             vdwjidx0A        = 2*vdwtype[jnrA+0];
889             vdwjidx0B        = 2*vdwtype[jnrB+0];
890             vdwjidx0C        = 2*vdwtype[jnrC+0];
891             vdwjidx0D        = 2*vdwtype[jnrD+0];
892             vdwjidx0E        = 2*vdwtype[jnrE+0];
893             vdwjidx0F        = 2*vdwtype[jnrF+0];
894             vdwjidx0G        = 2*vdwtype[jnrG+0];
895             vdwjidx0H        = 2*vdwtype[jnrH+0];
896
897             /**************************
898              * CALCULATE INTERACTIONS *
899              **************************/
900
901             if (gmx_mm256_any_lt(rsq00,rcutoff2))
902             {
903
904             r00              = _mm256_mul_ps(rsq00,rinv00);
905             r00              = _mm256_andnot_ps(dummy_mask,r00);
906
907             /* Compute parameters for interactions between i and j atoms */
908             qq00             = _mm256_mul_ps(iq0,jq0);
909             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
910                                             vdwioffsetptr0+vdwjidx0B,
911                                             vdwioffsetptr0+vdwjidx0C,
912                                             vdwioffsetptr0+vdwjidx0D,
913                                             vdwioffsetptr0+vdwjidx0E,
914                                             vdwioffsetptr0+vdwjidx0F,
915                                             vdwioffsetptr0+vdwjidx0G,
916                                             vdwioffsetptr0+vdwjidx0H,
917                                             &c6_00,&c12_00);
918
919             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
920                                                                   vdwgridioffsetptr0+vdwjidx0B,
921                                                                   vdwgridioffsetptr0+vdwjidx0C,
922                                                                   vdwgridioffsetptr0+vdwjidx0D,
923                                                                   vdwgridioffsetptr0+vdwjidx0E,
924                                                                   vdwgridioffsetptr0+vdwjidx0F,
925                                                                   vdwgridioffsetptr0+vdwjidx0G,
926                                                                   vdwgridioffsetptr0+vdwjidx0H);
927
928             /* EWALD ELECTROSTATICS */
929             
930             /* Analytical PME correction */
931             zeta2            = _mm256_mul_ps(beta2,rsq00);
932             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
933             pmecorrF         = avx256_pmecorrF_f(zeta2);
934             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
935             felec            = _mm256_mul_ps(qq00,felec);
936             
937             /* Analytical LJ-PME */
938             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
939             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
940             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
941             exponent         = avx256_exp_f(ewcljrsq);
942             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
943             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
944             /* f6A = 6 * C6grid * (1 - poly) */
945             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
946             /* f6B = C6grid * exponent * beta^6 */
947             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
948             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
949             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
950
951             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
952
953             fscal            = _mm256_add_ps(felec,fvdw);
954
955             fscal            = _mm256_and_ps(fscal,cutoff_mask);
956
957             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
958
959             /* Calculate temporary vectorial force */
960             tx               = _mm256_mul_ps(fscal,dx00);
961             ty               = _mm256_mul_ps(fscal,dy00);
962             tz               = _mm256_mul_ps(fscal,dz00);
963
964             /* Update vectorial force */
965             fix0             = _mm256_add_ps(fix0,tx);
966             fiy0             = _mm256_add_ps(fiy0,ty);
967             fiz0             = _mm256_add_ps(fiz0,tz);
968
969             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
970             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
971             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
972             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
973             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
974             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
975             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
976             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
977             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
978
979             }
980
981             /* Inner loop uses 83 flops */
982         }
983
984         /* End of innermost loop */
985
986         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
987                                                  f+i_coord_offset,fshift+i_shift_offset);
988
989         /* Increment number of inner iterations */
990         inneriter                  += j_index_end - j_index_start;
991
992         /* Outer loop uses 7 flops */
993     }
994
995     /* Increment number of outer iterations */
996     outeriter        += nri;
997
998     /* Update outer/inner flops */
999
1000     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*83);
1001 }