fd2c7b1cc087c3684453f757ba5935d99af34847
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwNone_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW4P1_VF_avx_256_single
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            None
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwNone_GeomW4P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr1;
87     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
93     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     __m256           dummy_mask,cutoff_mask;
100     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
101     __m256           one     = _mm256_set1_ps(1.0);
102     __m256           two     = _mm256_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm256_set1_ps(fr->epsfac);
115     charge           = mdatoms->chargeA;
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
120     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
121     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127     j_coord_offsetC = 0;
128     j_coord_offsetD = 0;
129     j_coord_offsetE = 0;
130     j_coord_offsetF = 0;
131     j_coord_offsetG = 0;
132     j_coord_offsetH = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     for(iidx=0;iidx<4*DIM;iidx++)
138     {
139         scratch[iidx] = 0.0;
140     }
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
158                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
159
160         fix1             = _mm256_setzero_ps();
161         fiy1             = _mm256_setzero_ps();
162         fiz1             = _mm256_setzero_ps();
163         fix2             = _mm256_setzero_ps();
164         fiy2             = _mm256_setzero_ps();
165         fiz2             = _mm256_setzero_ps();
166         fix3             = _mm256_setzero_ps();
167         fiy3             = _mm256_setzero_ps();
168         fiz3             = _mm256_setzero_ps();
169
170         /* Reset potential sums */
171         velecsum         = _mm256_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             jnrE             = jjnr[jidx+4];
183             jnrF             = jjnr[jidx+5];
184             jnrG             = jjnr[jidx+6];
185             jnrH             = jjnr[jidx+7];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190             j_coord_offsetE  = DIM*jnrE;
191             j_coord_offsetF  = DIM*jnrF;
192             j_coord_offsetG  = DIM*jnrG;
193             j_coord_offsetH  = DIM*jnrH;
194
195             /* load j atom coordinates */
196             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
197                                                  x+j_coord_offsetC,x+j_coord_offsetD,
198                                                  x+j_coord_offsetE,x+j_coord_offsetF,
199                                                  x+j_coord_offsetG,x+j_coord_offsetH,
200                                                  &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx10             = _mm256_sub_ps(ix1,jx0);
204             dy10             = _mm256_sub_ps(iy1,jy0);
205             dz10             = _mm256_sub_ps(iz1,jz0);
206             dx20             = _mm256_sub_ps(ix2,jx0);
207             dy20             = _mm256_sub_ps(iy2,jy0);
208             dz20             = _mm256_sub_ps(iz2,jz0);
209             dx30             = _mm256_sub_ps(ix3,jx0);
210             dy30             = _mm256_sub_ps(iy3,jy0);
211             dz30             = _mm256_sub_ps(iz3,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
215             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
216             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
217
218             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
219             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
220             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
221
222             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
223             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
224             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
228                                                                  charge+jnrC+0,charge+jnrD+0,
229                                                                  charge+jnrE+0,charge+jnrF+0,
230                                                                  charge+jnrG+0,charge+jnrH+0);
231
232             fjx0             = _mm256_setzero_ps();
233             fjy0             = _mm256_setzero_ps();
234             fjz0             = _mm256_setzero_ps();
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             /* Compute parameters for interactions between i and j atoms */
241             qq10             = _mm256_mul_ps(iq1,jq0);
242
243             /* COULOMB ELECTROSTATICS */
244             velec            = _mm256_mul_ps(qq10,rinv10);
245             felec            = _mm256_mul_ps(velec,rinvsq10);
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             velecsum         = _mm256_add_ps(velecsum,velec);
249
250             fscal            = felec;
251
252             /* Calculate temporary vectorial force */
253             tx               = _mm256_mul_ps(fscal,dx10);
254             ty               = _mm256_mul_ps(fscal,dy10);
255             tz               = _mm256_mul_ps(fscal,dz10);
256
257             /* Update vectorial force */
258             fix1             = _mm256_add_ps(fix1,tx);
259             fiy1             = _mm256_add_ps(fiy1,ty);
260             fiz1             = _mm256_add_ps(fiz1,tz);
261
262             fjx0             = _mm256_add_ps(fjx0,tx);
263             fjy0             = _mm256_add_ps(fjy0,ty);
264             fjz0             = _mm256_add_ps(fjz0,tz);
265
266             /**************************
267              * CALCULATE INTERACTIONS *
268              **************************/
269
270             /* Compute parameters for interactions between i and j atoms */
271             qq20             = _mm256_mul_ps(iq2,jq0);
272
273             /* COULOMB ELECTROSTATICS */
274             velec            = _mm256_mul_ps(qq20,rinv20);
275             felec            = _mm256_mul_ps(velec,rinvsq20);
276
277             /* Update potential sum for this i atom from the interaction with this j atom. */
278             velecsum         = _mm256_add_ps(velecsum,velec);
279
280             fscal            = felec;
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm256_mul_ps(fscal,dx20);
284             ty               = _mm256_mul_ps(fscal,dy20);
285             tz               = _mm256_mul_ps(fscal,dz20);
286
287             /* Update vectorial force */
288             fix2             = _mm256_add_ps(fix2,tx);
289             fiy2             = _mm256_add_ps(fiy2,ty);
290             fiz2             = _mm256_add_ps(fiz2,tz);
291
292             fjx0             = _mm256_add_ps(fjx0,tx);
293             fjy0             = _mm256_add_ps(fjy0,ty);
294             fjz0             = _mm256_add_ps(fjz0,tz);
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq30             = _mm256_mul_ps(iq3,jq0);
302
303             /* COULOMB ELECTROSTATICS */
304             velec            = _mm256_mul_ps(qq30,rinv30);
305             felec            = _mm256_mul_ps(velec,rinvsq30);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velecsum         = _mm256_add_ps(velecsum,velec);
309
310             fscal            = felec;
311
312             /* Calculate temporary vectorial force */
313             tx               = _mm256_mul_ps(fscal,dx30);
314             ty               = _mm256_mul_ps(fscal,dy30);
315             tz               = _mm256_mul_ps(fscal,dz30);
316
317             /* Update vectorial force */
318             fix3             = _mm256_add_ps(fix3,tx);
319             fiy3             = _mm256_add_ps(fiy3,ty);
320             fiz3             = _mm256_add_ps(fiz3,tz);
321
322             fjx0             = _mm256_add_ps(fjx0,tx);
323             fjy0             = _mm256_add_ps(fjy0,ty);
324             fjz0             = _mm256_add_ps(fjz0,tz);
325
326             fjptrA             = f+j_coord_offsetA;
327             fjptrB             = f+j_coord_offsetB;
328             fjptrC             = f+j_coord_offsetC;
329             fjptrD             = f+j_coord_offsetD;
330             fjptrE             = f+j_coord_offsetE;
331             fjptrF             = f+j_coord_offsetF;
332             fjptrG             = f+j_coord_offsetG;
333             fjptrH             = f+j_coord_offsetH;
334
335             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
336
337             /* Inner loop uses 84 flops */
338         }
339
340         if(jidx<j_index_end)
341         {
342
343             /* Get j neighbor index, and coordinate index */
344             jnrlistA         = jjnr[jidx];
345             jnrlistB         = jjnr[jidx+1];
346             jnrlistC         = jjnr[jidx+2];
347             jnrlistD         = jjnr[jidx+3];
348             jnrlistE         = jjnr[jidx+4];
349             jnrlistF         = jjnr[jidx+5];
350             jnrlistG         = jjnr[jidx+6];
351             jnrlistH         = jjnr[jidx+7];
352             /* Sign of each element will be negative for non-real atoms.
353              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
354              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
355              */
356             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
357                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
358                                             
359             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
360             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
361             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
362             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
363             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
364             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
365             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
366             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
367             j_coord_offsetA  = DIM*jnrA;
368             j_coord_offsetB  = DIM*jnrB;
369             j_coord_offsetC  = DIM*jnrC;
370             j_coord_offsetD  = DIM*jnrD;
371             j_coord_offsetE  = DIM*jnrE;
372             j_coord_offsetF  = DIM*jnrF;
373             j_coord_offsetG  = DIM*jnrG;
374             j_coord_offsetH  = DIM*jnrH;
375
376             /* load j atom coordinates */
377             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
378                                                  x+j_coord_offsetC,x+j_coord_offsetD,
379                                                  x+j_coord_offsetE,x+j_coord_offsetF,
380                                                  x+j_coord_offsetG,x+j_coord_offsetH,
381                                                  &jx0,&jy0,&jz0);
382
383             /* Calculate displacement vector */
384             dx10             = _mm256_sub_ps(ix1,jx0);
385             dy10             = _mm256_sub_ps(iy1,jy0);
386             dz10             = _mm256_sub_ps(iz1,jz0);
387             dx20             = _mm256_sub_ps(ix2,jx0);
388             dy20             = _mm256_sub_ps(iy2,jy0);
389             dz20             = _mm256_sub_ps(iz2,jz0);
390             dx30             = _mm256_sub_ps(ix3,jx0);
391             dy30             = _mm256_sub_ps(iy3,jy0);
392             dz30             = _mm256_sub_ps(iz3,jz0);
393
394             /* Calculate squared distance and things based on it */
395             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
396             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
397             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
398
399             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
400             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
401             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
402
403             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
404             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
405             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
406
407             /* Load parameters for j particles */
408             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
409                                                                  charge+jnrC+0,charge+jnrD+0,
410                                                                  charge+jnrE+0,charge+jnrF+0,
411                                                                  charge+jnrG+0,charge+jnrH+0);
412
413             fjx0             = _mm256_setzero_ps();
414             fjy0             = _mm256_setzero_ps();
415             fjz0             = _mm256_setzero_ps();
416
417             /**************************
418              * CALCULATE INTERACTIONS *
419              **************************/
420
421             /* Compute parameters for interactions between i and j atoms */
422             qq10             = _mm256_mul_ps(iq1,jq0);
423
424             /* COULOMB ELECTROSTATICS */
425             velec            = _mm256_mul_ps(qq10,rinv10);
426             felec            = _mm256_mul_ps(velec,rinvsq10);
427
428             /* Update potential sum for this i atom from the interaction with this j atom. */
429             velec            = _mm256_andnot_ps(dummy_mask,velec);
430             velecsum         = _mm256_add_ps(velecsum,velec);
431
432             fscal            = felec;
433
434             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
435
436             /* Calculate temporary vectorial force */
437             tx               = _mm256_mul_ps(fscal,dx10);
438             ty               = _mm256_mul_ps(fscal,dy10);
439             tz               = _mm256_mul_ps(fscal,dz10);
440
441             /* Update vectorial force */
442             fix1             = _mm256_add_ps(fix1,tx);
443             fiy1             = _mm256_add_ps(fiy1,ty);
444             fiz1             = _mm256_add_ps(fiz1,tz);
445
446             fjx0             = _mm256_add_ps(fjx0,tx);
447             fjy0             = _mm256_add_ps(fjy0,ty);
448             fjz0             = _mm256_add_ps(fjz0,tz);
449
450             /**************************
451              * CALCULATE INTERACTIONS *
452              **************************/
453
454             /* Compute parameters for interactions between i and j atoms */
455             qq20             = _mm256_mul_ps(iq2,jq0);
456
457             /* COULOMB ELECTROSTATICS */
458             velec            = _mm256_mul_ps(qq20,rinv20);
459             felec            = _mm256_mul_ps(velec,rinvsq20);
460
461             /* Update potential sum for this i atom from the interaction with this j atom. */
462             velec            = _mm256_andnot_ps(dummy_mask,velec);
463             velecsum         = _mm256_add_ps(velecsum,velec);
464
465             fscal            = felec;
466
467             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
468
469             /* Calculate temporary vectorial force */
470             tx               = _mm256_mul_ps(fscal,dx20);
471             ty               = _mm256_mul_ps(fscal,dy20);
472             tz               = _mm256_mul_ps(fscal,dz20);
473
474             /* Update vectorial force */
475             fix2             = _mm256_add_ps(fix2,tx);
476             fiy2             = _mm256_add_ps(fiy2,ty);
477             fiz2             = _mm256_add_ps(fiz2,tz);
478
479             fjx0             = _mm256_add_ps(fjx0,tx);
480             fjy0             = _mm256_add_ps(fjy0,ty);
481             fjz0             = _mm256_add_ps(fjz0,tz);
482
483             /**************************
484              * CALCULATE INTERACTIONS *
485              **************************/
486
487             /* Compute parameters for interactions between i and j atoms */
488             qq30             = _mm256_mul_ps(iq3,jq0);
489
490             /* COULOMB ELECTROSTATICS */
491             velec            = _mm256_mul_ps(qq30,rinv30);
492             felec            = _mm256_mul_ps(velec,rinvsq30);
493
494             /* Update potential sum for this i atom from the interaction with this j atom. */
495             velec            = _mm256_andnot_ps(dummy_mask,velec);
496             velecsum         = _mm256_add_ps(velecsum,velec);
497
498             fscal            = felec;
499
500             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
501
502             /* Calculate temporary vectorial force */
503             tx               = _mm256_mul_ps(fscal,dx30);
504             ty               = _mm256_mul_ps(fscal,dy30);
505             tz               = _mm256_mul_ps(fscal,dz30);
506
507             /* Update vectorial force */
508             fix3             = _mm256_add_ps(fix3,tx);
509             fiy3             = _mm256_add_ps(fiy3,ty);
510             fiz3             = _mm256_add_ps(fiz3,tz);
511
512             fjx0             = _mm256_add_ps(fjx0,tx);
513             fjy0             = _mm256_add_ps(fjy0,ty);
514             fjz0             = _mm256_add_ps(fjz0,tz);
515
516             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
517             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
518             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
519             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
520             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
521             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
522             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
523             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
524
525             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
526
527             /* Inner loop uses 84 flops */
528         }
529
530         /* End of innermost loop */
531
532         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
533                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
534
535         ggid                        = gid[iidx];
536         /* Update potential energies */
537         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
538
539         /* Increment number of inner iterations */
540         inneriter                  += j_index_end - j_index_start;
541
542         /* Outer loop uses 19 flops */
543     }
544
545     /* Increment number of outer iterations */
546     outeriter        += nri;
547
548     /* Update outer/inner flops */
549
550     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*84);
551 }
552 /*
553  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW4P1_F_avx_256_single
554  * Electrostatics interaction: Coulomb
555  * VdW interaction:            None
556  * Geometry:                   Water4-Particle
557  * Calculate force/pot:        Force
558  */
559 void
560 nb_kernel_ElecCoul_VdwNone_GeomW4P1_F_avx_256_single
561                     (t_nblist                    * gmx_restrict       nlist,
562                      rvec                        * gmx_restrict          xx,
563                      rvec                        * gmx_restrict          ff,
564                      t_forcerec                  * gmx_restrict          fr,
565                      t_mdatoms                   * gmx_restrict     mdatoms,
566                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
567                      t_nrnb                      * gmx_restrict        nrnb)
568 {
569     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
570      * just 0 for non-waters.
571      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
572      * jnr indices corresponding to data put in the four positions in the SIMD register.
573      */
574     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
575     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
576     int              jnrA,jnrB,jnrC,jnrD;
577     int              jnrE,jnrF,jnrG,jnrH;
578     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
579     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
580     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
581     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
582     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
583     real             rcutoff_scalar;
584     real             *shiftvec,*fshift,*x,*f;
585     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
586     real             scratch[4*DIM];
587     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
588     real *           vdwioffsetptr1;
589     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
590     real *           vdwioffsetptr2;
591     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
592     real *           vdwioffsetptr3;
593     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
594     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
595     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
596     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
597     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
598     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
599     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
600     real             *charge;
601     __m256           dummy_mask,cutoff_mask;
602     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
603     __m256           one     = _mm256_set1_ps(1.0);
604     __m256           two     = _mm256_set1_ps(2.0);
605     x                = xx[0];
606     f                = ff[0];
607
608     nri              = nlist->nri;
609     iinr             = nlist->iinr;
610     jindex           = nlist->jindex;
611     jjnr             = nlist->jjnr;
612     shiftidx         = nlist->shift;
613     gid              = nlist->gid;
614     shiftvec         = fr->shift_vec[0];
615     fshift           = fr->fshift[0];
616     facel            = _mm256_set1_ps(fr->epsfac);
617     charge           = mdatoms->chargeA;
618
619     /* Setup water-specific parameters */
620     inr              = nlist->iinr[0];
621     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
622     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
623     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
624
625     /* Avoid stupid compiler warnings */
626     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
627     j_coord_offsetA = 0;
628     j_coord_offsetB = 0;
629     j_coord_offsetC = 0;
630     j_coord_offsetD = 0;
631     j_coord_offsetE = 0;
632     j_coord_offsetF = 0;
633     j_coord_offsetG = 0;
634     j_coord_offsetH = 0;
635
636     outeriter        = 0;
637     inneriter        = 0;
638
639     for(iidx=0;iidx<4*DIM;iidx++)
640     {
641         scratch[iidx] = 0.0;
642     }
643
644     /* Start outer loop over neighborlists */
645     for(iidx=0; iidx<nri; iidx++)
646     {
647         /* Load shift vector for this list */
648         i_shift_offset   = DIM*shiftidx[iidx];
649
650         /* Load limits for loop over neighbors */
651         j_index_start    = jindex[iidx];
652         j_index_end      = jindex[iidx+1];
653
654         /* Get outer coordinate index */
655         inr              = iinr[iidx];
656         i_coord_offset   = DIM*inr;
657
658         /* Load i particle coords and add shift vector */
659         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
660                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
661
662         fix1             = _mm256_setzero_ps();
663         fiy1             = _mm256_setzero_ps();
664         fiz1             = _mm256_setzero_ps();
665         fix2             = _mm256_setzero_ps();
666         fiy2             = _mm256_setzero_ps();
667         fiz2             = _mm256_setzero_ps();
668         fix3             = _mm256_setzero_ps();
669         fiy3             = _mm256_setzero_ps();
670         fiz3             = _mm256_setzero_ps();
671
672         /* Start inner kernel loop */
673         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
674         {
675
676             /* Get j neighbor index, and coordinate index */
677             jnrA             = jjnr[jidx];
678             jnrB             = jjnr[jidx+1];
679             jnrC             = jjnr[jidx+2];
680             jnrD             = jjnr[jidx+3];
681             jnrE             = jjnr[jidx+4];
682             jnrF             = jjnr[jidx+5];
683             jnrG             = jjnr[jidx+6];
684             jnrH             = jjnr[jidx+7];
685             j_coord_offsetA  = DIM*jnrA;
686             j_coord_offsetB  = DIM*jnrB;
687             j_coord_offsetC  = DIM*jnrC;
688             j_coord_offsetD  = DIM*jnrD;
689             j_coord_offsetE  = DIM*jnrE;
690             j_coord_offsetF  = DIM*jnrF;
691             j_coord_offsetG  = DIM*jnrG;
692             j_coord_offsetH  = DIM*jnrH;
693
694             /* load j atom coordinates */
695             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
696                                                  x+j_coord_offsetC,x+j_coord_offsetD,
697                                                  x+j_coord_offsetE,x+j_coord_offsetF,
698                                                  x+j_coord_offsetG,x+j_coord_offsetH,
699                                                  &jx0,&jy0,&jz0);
700
701             /* Calculate displacement vector */
702             dx10             = _mm256_sub_ps(ix1,jx0);
703             dy10             = _mm256_sub_ps(iy1,jy0);
704             dz10             = _mm256_sub_ps(iz1,jz0);
705             dx20             = _mm256_sub_ps(ix2,jx0);
706             dy20             = _mm256_sub_ps(iy2,jy0);
707             dz20             = _mm256_sub_ps(iz2,jz0);
708             dx30             = _mm256_sub_ps(ix3,jx0);
709             dy30             = _mm256_sub_ps(iy3,jy0);
710             dz30             = _mm256_sub_ps(iz3,jz0);
711
712             /* Calculate squared distance and things based on it */
713             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
714             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
715             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
716
717             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
718             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
719             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
720
721             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
722             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
723             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
724
725             /* Load parameters for j particles */
726             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
727                                                                  charge+jnrC+0,charge+jnrD+0,
728                                                                  charge+jnrE+0,charge+jnrF+0,
729                                                                  charge+jnrG+0,charge+jnrH+0);
730
731             fjx0             = _mm256_setzero_ps();
732             fjy0             = _mm256_setzero_ps();
733             fjz0             = _mm256_setzero_ps();
734
735             /**************************
736              * CALCULATE INTERACTIONS *
737              **************************/
738
739             /* Compute parameters for interactions between i and j atoms */
740             qq10             = _mm256_mul_ps(iq1,jq0);
741
742             /* COULOMB ELECTROSTATICS */
743             velec            = _mm256_mul_ps(qq10,rinv10);
744             felec            = _mm256_mul_ps(velec,rinvsq10);
745
746             fscal            = felec;
747
748             /* Calculate temporary vectorial force */
749             tx               = _mm256_mul_ps(fscal,dx10);
750             ty               = _mm256_mul_ps(fscal,dy10);
751             tz               = _mm256_mul_ps(fscal,dz10);
752
753             /* Update vectorial force */
754             fix1             = _mm256_add_ps(fix1,tx);
755             fiy1             = _mm256_add_ps(fiy1,ty);
756             fiz1             = _mm256_add_ps(fiz1,tz);
757
758             fjx0             = _mm256_add_ps(fjx0,tx);
759             fjy0             = _mm256_add_ps(fjy0,ty);
760             fjz0             = _mm256_add_ps(fjz0,tz);
761
762             /**************************
763              * CALCULATE INTERACTIONS *
764              **************************/
765
766             /* Compute parameters for interactions between i and j atoms */
767             qq20             = _mm256_mul_ps(iq2,jq0);
768
769             /* COULOMB ELECTROSTATICS */
770             velec            = _mm256_mul_ps(qq20,rinv20);
771             felec            = _mm256_mul_ps(velec,rinvsq20);
772
773             fscal            = felec;
774
775             /* Calculate temporary vectorial force */
776             tx               = _mm256_mul_ps(fscal,dx20);
777             ty               = _mm256_mul_ps(fscal,dy20);
778             tz               = _mm256_mul_ps(fscal,dz20);
779
780             /* Update vectorial force */
781             fix2             = _mm256_add_ps(fix2,tx);
782             fiy2             = _mm256_add_ps(fiy2,ty);
783             fiz2             = _mm256_add_ps(fiz2,tz);
784
785             fjx0             = _mm256_add_ps(fjx0,tx);
786             fjy0             = _mm256_add_ps(fjy0,ty);
787             fjz0             = _mm256_add_ps(fjz0,tz);
788
789             /**************************
790              * CALCULATE INTERACTIONS *
791              **************************/
792
793             /* Compute parameters for interactions between i and j atoms */
794             qq30             = _mm256_mul_ps(iq3,jq0);
795
796             /* COULOMB ELECTROSTATICS */
797             velec            = _mm256_mul_ps(qq30,rinv30);
798             felec            = _mm256_mul_ps(velec,rinvsq30);
799
800             fscal            = felec;
801
802             /* Calculate temporary vectorial force */
803             tx               = _mm256_mul_ps(fscal,dx30);
804             ty               = _mm256_mul_ps(fscal,dy30);
805             tz               = _mm256_mul_ps(fscal,dz30);
806
807             /* Update vectorial force */
808             fix3             = _mm256_add_ps(fix3,tx);
809             fiy3             = _mm256_add_ps(fiy3,ty);
810             fiz3             = _mm256_add_ps(fiz3,tz);
811
812             fjx0             = _mm256_add_ps(fjx0,tx);
813             fjy0             = _mm256_add_ps(fjy0,ty);
814             fjz0             = _mm256_add_ps(fjz0,tz);
815
816             fjptrA             = f+j_coord_offsetA;
817             fjptrB             = f+j_coord_offsetB;
818             fjptrC             = f+j_coord_offsetC;
819             fjptrD             = f+j_coord_offsetD;
820             fjptrE             = f+j_coord_offsetE;
821             fjptrF             = f+j_coord_offsetF;
822             fjptrG             = f+j_coord_offsetG;
823             fjptrH             = f+j_coord_offsetH;
824
825             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
826
827             /* Inner loop uses 81 flops */
828         }
829
830         if(jidx<j_index_end)
831         {
832
833             /* Get j neighbor index, and coordinate index */
834             jnrlistA         = jjnr[jidx];
835             jnrlistB         = jjnr[jidx+1];
836             jnrlistC         = jjnr[jidx+2];
837             jnrlistD         = jjnr[jidx+3];
838             jnrlistE         = jjnr[jidx+4];
839             jnrlistF         = jjnr[jidx+5];
840             jnrlistG         = jjnr[jidx+6];
841             jnrlistH         = jjnr[jidx+7];
842             /* Sign of each element will be negative for non-real atoms.
843              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
844              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
845              */
846             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
847                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
848                                             
849             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
850             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
851             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
852             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
853             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
854             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
855             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
856             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
857             j_coord_offsetA  = DIM*jnrA;
858             j_coord_offsetB  = DIM*jnrB;
859             j_coord_offsetC  = DIM*jnrC;
860             j_coord_offsetD  = DIM*jnrD;
861             j_coord_offsetE  = DIM*jnrE;
862             j_coord_offsetF  = DIM*jnrF;
863             j_coord_offsetG  = DIM*jnrG;
864             j_coord_offsetH  = DIM*jnrH;
865
866             /* load j atom coordinates */
867             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
868                                                  x+j_coord_offsetC,x+j_coord_offsetD,
869                                                  x+j_coord_offsetE,x+j_coord_offsetF,
870                                                  x+j_coord_offsetG,x+j_coord_offsetH,
871                                                  &jx0,&jy0,&jz0);
872
873             /* Calculate displacement vector */
874             dx10             = _mm256_sub_ps(ix1,jx0);
875             dy10             = _mm256_sub_ps(iy1,jy0);
876             dz10             = _mm256_sub_ps(iz1,jz0);
877             dx20             = _mm256_sub_ps(ix2,jx0);
878             dy20             = _mm256_sub_ps(iy2,jy0);
879             dz20             = _mm256_sub_ps(iz2,jz0);
880             dx30             = _mm256_sub_ps(ix3,jx0);
881             dy30             = _mm256_sub_ps(iy3,jy0);
882             dz30             = _mm256_sub_ps(iz3,jz0);
883
884             /* Calculate squared distance and things based on it */
885             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
886             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
887             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
888
889             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
890             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
891             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
892
893             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
894             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
895             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
896
897             /* Load parameters for j particles */
898             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
899                                                                  charge+jnrC+0,charge+jnrD+0,
900                                                                  charge+jnrE+0,charge+jnrF+0,
901                                                                  charge+jnrG+0,charge+jnrH+0);
902
903             fjx0             = _mm256_setzero_ps();
904             fjy0             = _mm256_setzero_ps();
905             fjz0             = _mm256_setzero_ps();
906
907             /**************************
908              * CALCULATE INTERACTIONS *
909              **************************/
910
911             /* Compute parameters for interactions between i and j atoms */
912             qq10             = _mm256_mul_ps(iq1,jq0);
913
914             /* COULOMB ELECTROSTATICS */
915             velec            = _mm256_mul_ps(qq10,rinv10);
916             felec            = _mm256_mul_ps(velec,rinvsq10);
917
918             fscal            = felec;
919
920             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
921
922             /* Calculate temporary vectorial force */
923             tx               = _mm256_mul_ps(fscal,dx10);
924             ty               = _mm256_mul_ps(fscal,dy10);
925             tz               = _mm256_mul_ps(fscal,dz10);
926
927             /* Update vectorial force */
928             fix1             = _mm256_add_ps(fix1,tx);
929             fiy1             = _mm256_add_ps(fiy1,ty);
930             fiz1             = _mm256_add_ps(fiz1,tz);
931
932             fjx0             = _mm256_add_ps(fjx0,tx);
933             fjy0             = _mm256_add_ps(fjy0,ty);
934             fjz0             = _mm256_add_ps(fjz0,tz);
935
936             /**************************
937              * CALCULATE INTERACTIONS *
938              **************************/
939
940             /* Compute parameters for interactions between i and j atoms */
941             qq20             = _mm256_mul_ps(iq2,jq0);
942
943             /* COULOMB ELECTROSTATICS */
944             velec            = _mm256_mul_ps(qq20,rinv20);
945             felec            = _mm256_mul_ps(velec,rinvsq20);
946
947             fscal            = felec;
948
949             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
950
951             /* Calculate temporary vectorial force */
952             tx               = _mm256_mul_ps(fscal,dx20);
953             ty               = _mm256_mul_ps(fscal,dy20);
954             tz               = _mm256_mul_ps(fscal,dz20);
955
956             /* Update vectorial force */
957             fix2             = _mm256_add_ps(fix2,tx);
958             fiy2             = _mm256_add_ps(fiy2,ty);
959             fiz2             = _mm256_add_ps(fiz2,tz);
960
961             fjx0             = _mm256_add_ps(fjx0,tx);
962             fjy0             = _mm256_add_ps(fjy0,ty);
963             fjz0             = _mm256_add_ps(fjz0,tz);
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             /* Compute parameters for interactions between i and j atoms */
970             qq30             = _mm256_mul_ps(iq3,jq0);
971
972             /* COULOMB ELECTROSTATICS */
973             velec            = _mm256_mul_ps(qq30,rinv30);
974             felec            = _mm256_mul_ps(velec,rinvsq30);
975
976             fscal            = felec;
977
978             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
979
980             /* Calculate temporary vectorial force */
981             tx               = _mm256_mul_ps(fscal,dx30);
982             ty               = _mm256_mul_ps(fscal,dy30);
983             tz               = _mm256_mul_ps(fscal,dz30);
984
985             /* Update vectorial force */
986             fix3             = _mm256_add_ps(fix3,tx);
987             fiy3             = _mm256_add_ps(fiy3,ty);
988             fiz3             = _mm256_add_ps(fiz3,tz);
989
990             fjx0             = _mm256_add_ps(fjx0,tx);
991             fjy0             = _mm256_add_ps(fjy0,ty);
992             fjz0             = _mm256_add_ps(fjz0,tz);
993
994             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
995             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
996             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
997             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
998             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
999             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1000             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1001             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1002
1003             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1004
1005             /* Inner loop uses 81 flops */
1006         }
1007
1008         /* End of innermost loop */
1009
1010         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1011                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1012
1013         /* Increment number of inner iterations */
1014         inneriter                  += j_index_end - j_index_start;
1015
1016         /* Outer loop uses 18 flops */
1017     }
1018
1019     /* Increment number of outer iterations */
1020     outeriter        += nri;
1021
1022     /* Update outer/inner flops */
1023
1024     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*81);
1025 }