Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwNone_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW4P1_VF_avx_256_single
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            None
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwNone_GeomW4P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     __m256           dummy_mask,cutoff_mask;
102     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
103     __m256           one     = _mm256_set1_ps(1.0);
104     __m256           two     = _mm256_set1_ps(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm256_set1_ps(fr->epsfac);
117     charge           = mdatoms->chargeA;
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
122     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
123     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129     j_coord_offsetC = 0;
130     j_coord_offsetD = 0;
131     j_coord_offsetE = 0;
132     j_coord_offsetF = 0;
133     j_coord_offsetG = 0;
134     j_coord_offsetH = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
160                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
161
162         fix1             = _mm256_setzero_ps();
163         fiy1             = _mm256_setzero_ps();
164         fiz1             = _mm256_setzero_ps();
165         fix2             = _mm256_setzero_ps();
166         fiy2             = _mm256_setzero_ps();
167         fiz2             = _mm256_setzero_ps();
168         fix3             = _mm256_setzero_ps();
169         fiy3             = _mm256_setzero_ps();
170         fiz3             = _mm256_setzero_ps();
171
172         /* Reset potential sums */
173         velecsum         = _mm256_setzero_ps();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             jnrC             = jjnr[jidx+2];
183             jnrD             = jjnr[jidx+3];
184             jnrE             = jjnr[jidx+4];
185             jnrF             = jjnr[jidx+5];
186             jnrG             = jjnr[jidx+6];
187             jnrH             = jjnr[jidx+7];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190             j_coord_offsetC  = DIM*jnrC;
191             j_coord_offsetD  = DIM*jnrD;
192             j_coord_offsetE  = DIM*jnrE;
193             j_coord_offsetF  = DIM*jnrF;
194             j_coord_offsetG  = DIM*jnrG;
195             j_coord_offsetH  = DIM*jnrH;
196
197             /* load j atom coordinates */
198             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
199                                                  x+j_coord_offsetC,x+j_coord_offsetD,
200                                                  x+j_coord_offsetE,x+j_coord_offsetF,
201                                                  x+j_coord_offsetG,x+j_coord_offsetH,
202                                                  &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx10             = _mm256_sub_ps(ix1,jx0);
206             dy10             = _mm256_sub_ps(iy1,jy0);
207             dz10             = _mm256_sub_ps(iz1,jz0);
208             dx20             = _mm256_sub_ps(ix2,jx0);
209             dy20             = _mm256_sub_ps(iy2,jy0);
210             dz20             = _mm256_sub_ps(iz2,jz0);
211             dx30             = _mm256_sub_ps(ix3,jx0);
212             dy30             = _mm256_sub_ps(iy3,jy0);
213             dz30             = _mm256_sub_ps(iz3,jz0);
214
215             /* Calculate squared distance and things based on it */
216             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
217             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
218             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
219
220             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
221             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
222             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
223
224             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
225             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
226             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
227
228             /* Load parameters for j particles */
229             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
230                                                                  charge+jnrC+0,charge+jnrD+0,
231                                                                  charge+jnrE+0,charge+jnrF+0,
232                                                                  charge+jnrG+0,charge+jnrH+0);
233
234             fjx0             = _mm256_setzero_ps();
235             fjy0             = _mm256_setzero_ps();
236             fjz0             = _mm256_setzero_ps();
237
238             /**************************
239              * CALCULATE INTERACTIONS *
240              **************************/
241
242             /* Compute parameters for interactions between i and j atoms */
243             qq10             = _mm256_mul_ps(iq1,jq0);
244
245             /* COULOMB ELECTROSTATICS */
246             velec            = _mm256_mul_ps(qq10,rinv10);
247             felec            = _mm256_mul_ps(velec,rinvsq10);
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             velecsum         = _mm256_add_ps(velecsum,velec);
251
252             fscal            = felec;
253
254             /* Calculate temporary vectorial force */
255             tx               = _mm256_mul_ps(fscal,dx10);
256             ty               = _mm256_mul_ps(fscal,dy10);
257             tz               = _mm256_mul_ps(fscal,dz10);
258
259             /* Update vectorial force */
260             fix1             = _mm256_add_ps(fix1,tx);
261             fiy1             = _mm256_add_ps(fiy1,ty);
262             fiz1             = _mm256_add_ps(fiz1,tz);
263
264             fjx0             = _mm256_add_ps(fjx0,tx);
265             fjy0             = _mm256_add_ps(fjy0,ty);
266             fjz0             = _mm256_add_ps(fjz0,tz);
267
268             /**************************
269              * CALCULATE INTERACTIONS *
270              **************************/
271
272             /* Compute parameters for interactions between i and j atoms */
273             qq20             = _mm256_mul_ps(iq2,jq0);
274
275             /* COULOMB ELECTROSTATICS */
276             velec            = _mm256_mul_ps(qq20,rinv20);
277             felec            = _mm256_mul_ps(velec,rinvsq20);
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             velecsum         = _mm256_add_ps(velecsum,velec);
281
282             fscal            = felec;
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm256_mul_ps(fscal,dx20);
286             ty               = _mm256_mul_ps(fscal,dy20);
287             tz               = _mm256_mul_ps(fscal,dz20);
288
289             /* Update vectorial force */
290             fix2             = _mm256_add_ps(fix2,tx);
291             fiy2             = _mm256_add_ps(fiy2,ty);
292             fiz2             = _mm256_add_ps(fiz2,tz);
293
294             fjx0             = _mm256_add_ps(fjx0,tx);
295             fjy0             = _mm256_add_ps(fjy0,ty);
296             fjz0             = _mm256_add_ps(fjz0,tz);
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             /* Compute parameters for interactions between i and j atoms */
303             qq30             = _mm256_mul_ps(iq3,jq0);
304
305             /* COULOMB ELECTROSTATICS */
306             velec            = _mm256_mul_ps(qq30,rinv30);
307             felec            = _mm256_mul_ps(velec,rinvsq30);
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velecsum         = _mm256_add_ps(velecsum,velec);
311
312             fscal            = felec;
313
314             /* Calculate temporary vectorial force */
315             tx               = _mm256_mul_ps(fscal,dx30);
316             ty               = _mm256_mul_ps(fscal,dy30);
317             tz               = _mm256_mul_ps(fscal,dz30);
318
319             /* Update vectorial force */
320             fix3             = _mm256_add_ps(fix3,tx);
321             fiy3             = _mm256_add_ps(fiy3,ty);
322             fiz3             = _mm256_add_ps(fiz3,tz);
323
324             fjx0             = _mm256_add_ps(fjx0,tx);
325             fjy0             = _mm256_add_ps(fjy0,ty);
326             fjz0             = _mm256_add_ps(fjz0,tz);
327
328             fjptrA             = f+j_coord_offsetA;
329             fjptrB             = f+j_coord_offsetB;
330             fjptrC             = f+j_coord_offsetC;
331             fjptrD             = f+j_coord_offsetD;
332             fjptrE             = f+j_coord_offsetE;
333             fjptrF             = f+j_coord_offsetF;
334             fjptrG             = f+j_coord_offsetG;
335             fjptrH             = f+j_coord_offsetH;
336
337             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
338
339             /* Inner loop uses 84 flops */
340         }
341
342         if(jidx<j_index_end)
343         {
344
345             /* Get j neighbor index, and coordinate index */
346             jnrlistA         = jjnr[jidx];
347             jnrlistB         = jjnr[jidx+1];
348             jnrlistC         = jjnr[jidx+2];
349             jnrlistD         = jjnr[jidx+3];
350             jnrlistE         = jjnr[jidx+4];
351             jnrlistF         = jjnr[jidx+5];
352             jnrlistG         = jjnr[jidx+6];
353             jnrlistH         = jjnr[jidx+7];
354             /* Sign of each element will be negative for non-real atoms.
355              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
356              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
357              */
358             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
359                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
360                                             
361             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
362             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
363             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
364             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
365             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
366             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
367             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
368             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
369             j_coord_offsetA  = DIM*jnrA;
370             j_coord_offsetB  = DIM*jnrB;
371             j_coord_offsetC  = DIM*jnrC;
372             j_coord_offsetD  = DIM*jnrD;
373             j_coord_offsetE  = DIM*jnrE;
374             j_coord_offsetF  = DIM*jnrF;
375             j_coord_offsetG  = DIM*jnrG;
376             j_coord_offsetH  = DIM*jnrH;
377
378             /* load j atom coordinates */
379             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
380                                                  x+j_coord_offsetC,x+j_coord_offsetD,
381                                                  x+j_coord_offsetE,x+j_coord_offsetF,
382                                                  x+j_coord_offsetG,x+j_coord_offsetH,
383                                                  &jx0,&jy0,&jz0);
384
385             /* Calculate displacement vector */
386             dx10             = _mm256_sub_ps(ix1,jx0);
387             dy10             = _mm256_sub_ps(iy1,jy0);
388             dz10             = _mm256_sub_ps(iz1,jz0);
389             dx20             = _mm256_sub_ps(ix2,jx0);
390             dy20             = _mm256_sub_ps(iy2,jy0);
391             dz20             = _mm256_sub_ps(iz2,jz0);
392             dx30             = _mm256_sub_ps(ix3,jx0);
393             dy30             = _mm256_sub_ps(iy3,jy0);
394             dz30             = _mm256_sub_ps(iz3,jz0);
395
396             /* Calculate squared distance and things based on it */
397             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
398             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
399             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
400
401             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
402             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
403             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
404
405             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
406             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
407             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
408
409             /* Load parameters for j particles */
410             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
411                                                                  charge+jnrC+0,charge+jnrD+0,
412                                                                  charge+jnrE+0,charge+jnrF+0,
413                                                                  charge+jnrG+0,charge+jnrH+0);
414
415             fjx0             = _mm256_setzero_ps();
416             fjy0             = _mm256_setzero_ps();
417             fjz0             = _mm256_setzero_ps();
418
419             /**************************
420              * CALCULATE INTERACTIONS *
421              **************************/
422
423             /* Compute parameters for interactions between i and j atoms */
424             qq10             = _mm256_mul_ps(iq1,jq0);
425
426             /* COULOMB ELECTROSTATICS */
427             velec            = _mm256_mul_ps(qq10,rinv10);
428             felec            = _mm256_mul_ps(velec,rinvsq10);
429
430             /* Update potential sum for this i atom from the interaction with this j atom. */
431             velec            = _mm256_andnot_ps(dummy_mask,velec);
432             velecsum         = _mm256_add_ps(velecsum,velec);
433
434             fscal            = felec;
435
436             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
437
438             /* Calculate temporary vectorial force */
439             tx               = _mm256_mul_ps(fscal,dx10);
440             ty               = _mm256_mul_ps(fscal,dy10);
441             tz               = _mm256_mul_ps(fscal,dz10);
442
443             /* Update vectorial force */
444             fix1             = _mm256_add_ps(fix1,tx);
445             fiy1             = _mm256_add_ps(fiy1,ty);
446             fiz1             = _mm256_add_ps(fiz1,tz);
447
448             fjx0             = _mm256_add_ps(fjx0,tx);
449             fjy0             = _mm256_add_ps(fjy0,ty);
450             fjz0             = _mm256_add_ps(fjz0,tz);
451
452             /**************************
453              * CALCULATE INTERACTIONS *
454              **************************/
455
456             /* Compute parameters for interactions between i and j atoms */
457             qq20             = _mm256_mul_ps(iq2,jq0);
458
459             /* COULOMB ELECTROSTATICS */
460             velec            = _mm256_mul_ps(qq20,rinv20);
461             felec            = _mm256_mul_ps(velec,rinvsq20);
462
463             /* Update potential sum for this i atom from the interaction with this j atom. */
464             velec            = _mm256_andnot_ps(dummy_mask,velec);
465             velecsum         = _mm256_add_ps(velecsum,velec);
466
467             fscal            = felec;
468
469             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
470
471             /* Calculate temporary vectorial force */
472             tx               = _mm256_mul_ps(fscal,dx20);
473             ty               = _mm256_mul_ps(fscal,dy20);
474             tz               = _mm256_mul_ps(fscal,dz20);
475
476             /* Update vectorial force */
477             fix2             = _mm256_add_ps(fix2,tx);
478             fiy2             = _mm256_add_ps(fiy2,ty);
479             fiz2             = _mm256_add_ps(fiz2,tz);
480
481             fjx0             = _mm256_add_ps(fjx0,tx);
482             fjy0             = _mm256_add_ps(fjy0,ty);
483             fjz0             = _mm256_add_ps(fjz0,tz);
484
485             /**************************
486              * CALCULATE INTERACTIONS *
487              **************************/
488
489             /* Compute parameters for interactions between i and j atoms */
490             qq30             = _mm256_mul_ps(iq3,jq0);
491
492             /* COULOMB ELECTROSTATICS */
493             velec            = _mm256_mul_ps(qq30,rinv30);
494             felec            = _mm256_mul_ps(velec,rinvsq30);
495
496             /* Update potential sum for this i atom from the interaction with this j atom. */
497             velec            = _mm256_andnot_ps(dummy_mask,velec);
498             velecsum         = _mm256_add_ps(velecsum,velec);
499
500             fscal            = felec;
501
502             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
503
504             /* Calculate temporary vectorial force */
505             tx               = _mm256_mul_ps(fscal,dx30);
506             ty               = _mm256_mul_ps(fscal,dy30);
507             tz               = _mm256_mul_ps(fscal,dz30);
508
509             /* Update vectorial force */
510             fix3             = _mm256_add_ps(fix3,tx);
511             fiy3             = _mm256_add_ps(fiy3,ty);
512             fiz3             = _mm256_add_ps(fiz3,tz);
513
514             fjx0             = _mm256_add_ps(fjx0,tx);
515             fjy0             = _mm256_add_ps(fjy0,ty);
516             fjz0             = _mm256_add_ps(fjz0,tz);
517
518             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
519             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
520             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
521             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
522             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
523             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
524             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
525             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
526
527             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
528
529             /* Inner loop uses 84 flops */
530         }
531
532         /* End of innermost loop */
533
534         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
535                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
536
537         ggid                        = gid[iidx];
538         /* Update potential energies */
539         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
540
541         /* Increment number of inner iterations */
542         inneriter                  += j_index_end - j_index_start;
543
544         /* Outer loop uses 19 flops */
545     }
546
547     /* Increment number of outer iterations */
548     outeriter        += nri;
549
550     /* Update outer/inner flops */
551
552     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*84);
553 }
554 /*
555  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW4P1_F_avx_256_single
556  * Electrostatics interaction: Coulomb
557  * VdW interaction:            None
558  * Geometry:                   Water4-Particle
559  * Calculate force/pot:        Force
560  */
561 void
562 nb_kernel_ElecCoul_VdwNone_GeomW4P1_F_avx_256_single
563                     (t_nblist                    * gmx_restrict       nlist,
564                      rvec                        * gmx_restrict          xx,
565                      rvec                        * gmx_restrict          ff,
566                      t_forcerec                  * gmx_restrict          fr,
567                      t_mdatoms                   * gmx_restrict     mdatoms,
568                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
569                      t_nrnb                      * gmx_restrict        nrnb)
570 {
571     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
572      * just 0 for non-waters.
573      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
574      * jnr indices corresponding to data put in the four positions in the SIMD register.
575      */
576     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
577     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
578     int              jnrA,jnrB,jnrC,jnrD;
579     int              jnrE,jnrF,jnrG,jnrH;
580     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
581     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
582     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
583     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
584     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
585     real             rcutoff_scalar;
586     real             *shiftvec,*fshift,*x,*f;
587     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
588     real             scratch[4*DIM];
589     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
590     real *           vdwioffsetptr1;
591     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
592     real *           vdwioffsetptr2;
593     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
594     real *           vdwioffsetptr3;
595     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
596     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
597     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
598     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
599     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
600     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
601     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
602     real             *charge;
603     __m256           dummy_mask,cutoff_mask;
604     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
605     __m256           one     = _mm256_set1_ps(1.0);
606     __m256           two     = _mm256_set1_ps(2.0);
607     x                = xx[0];
608     f                = ff[0];
609
610     nri              = nlist->nri;
611     iinr             = nlist->iinr;
612     jindex           = nlist->jindex;
613     jjnr             = nlist->jjnr;
614     shiftidx         = nlist->shift;
615     gid              = nlist->gid;
616     shiftvec         = fr->shift_vec[0];
617     fshift           = fr->fshift[0];
618     facel            = _mm256_set1_ps(fr->epsfac);
619     charge           = mdatoms->chargeA;
620
621     /* Setup water-specific parameters */
622     inr              = nlist->iinr[0];
623     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
624     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
625     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
626
627     /* Avoid stupid compiler warnings */
628     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
629     j_coord_offsetA = 0;
630     j_coord_offsetB = 0;
631     j_coord_offsetC = 0;
632     j_coord_offsetD = 0;
633     j_coord_offsetE = 0;
634     j_coord_offsetF = 0;
635     j_coord_offsetG = 0;
636     j_coord_offsetH = 0;
637
638     outeriter        = 0;
639     inneriter        = 0;
640
641     for(iidx=0;iidx<4*DIM;iidx++)
642     {
643         scratch[iidx] = 0.0;
644     }
645
646     /* Start outer loop over neighborlists */
647     for(iidx=0; iidx<nri; iidx++)
648     {
649         /* Load shift vector for this list */
650         i_shift_offset   = DIM*shiftidx[iidx];
651
652         /* Load limits for loop over neighbors */
653         j_index_start    = jindex[iidx];
654         j_index_end      = jindex[iidx+1];
655
656         /* Get outer coordinate index */
657         inr              = iinr[iidx];
658         i_coord_offset   = DIM*inr;
659
660         /* Load i particle coords and add shift vector */
661         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
662                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
663
664         fix1             = _mm256_setzero_ps();
665         fiy1             = _mm256_setzero_ps();
666         fiz1             = _mm256_setzero_ps();
667         fix2             = _mm256_setzero_ps();
668         fiy2             = _mm256_setzero_ps();
669         fiz2             = _mm256_setzero_ps();
670         fix3             = _mm256_setzero_ps();
671         fiy3             = _mm256_setzero_ps();
672         fiz3             = _mm256_setzero_ps();
673
674         /* Start inner kernel loop */
675         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
676         {
677
678             /* Get j neighbor index, and coordinate index */
679             jnrA             = jjnr[jidx];
680             jnrB             = jjnr[jidx+1];
681             jnrC             = jjnr[jidx+2];
682             jnrD             = jjnr[jidx+3];
683             jnrE             = jjnr[jidx+4];
684             jnrF             = jjnr[jidx+5];
685             jnrG             = jjnr[jidx+6];
686             jnrH             = jjnr[jidx+7];
687             j_coord_offsetA  = DIM*jnrA;
688             j_coord_offsetB  = DIM*jnrB;
689             j_coord_offsetC  = DIM*jnrC;
690             j_coord_offsetD  = DIM*jnrD;
691             j_coord_offsetE  = DIM*jnrE;
692             j_coord_offsetF  = DIM*jnrF;
693             j_coord_offsetG  = DIM*jnrG;
694             j_coord_offsetH  = DIM*jnrH;
695
696             /* load j atom coordinates */
697             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
698                                                  x+j_coord_offsetC,x+j_coord_offsetD,
699                                                  x+j_coord_offsetE,x+j_coord_offsetF,
700                                                  x+j_coord_offsetG,x+j_coord_offsetH,
701                                                  &jx0,&jy0,&jz0);
702
703             /* Calculate displacement vector */
704             dx10             = _mm256_sub_ps(ix1,jx0);
705             dy10             = _mm256_sub_ps(iy1,jy0);
706             dz10             = _mm256_sub_ps(iz1,jz0);
707             dx20             = _mm256_sub_ps(ix2,jx0);
708             dy20             = _mm256_sub_ps(iy2,jy0);
709             dz20             = _mm256_sub_ps(iz2,jz0);
710             dx30             = _mm256_sub_ps(ix3,jx0);
711             dy30             = _mm256_sub_ps(iy3,jy0);
712             dz30             = _mm256_sub_ps(iz3,jz0);
713
714             /* Calculate squared distance and things based on it */
715             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
716             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
717             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
718
719             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
720             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
721             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
722
723             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
724             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
725             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
726
727             /* Load parameters for j particles */
728             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
729                                                                  charge+jnrC+0,charge+jnrD+0,
730                                                                  charge+jnrE+0,charge+jnrF+0,
731                                                                  charge+jnrG+0,charge+jnrH+0);
732
733             fjx0             = _mm256_setzero_ps();
734             fjy0             = _mm256_setzero_ps();
735             fjz0             = _mm256_setzero_ps();
736
737             /**************************
738              * CALCULATE INTERACTIONS *
739              **************************/
740
741             /* Compute parameters for interactions between i and j atoms */
742             qq10             = _mm256_mul_ps(iq1,jq0);
743
744             /* COULOMB ELECTROSTATICS */
745             velec            = _mm256_mul_ps(qq10,rinv10);
746             felec            = _mm256_mul_ps(velec,rinvsq10);
747
748             fscal            = felec;
749
750             /* Calculate temporary vectorial force */
751             tx               = _mm256_mul_ps(fscal,dx10);
752             ty               = _mm256_mul_ps(fscal,dy10);
753             tz               = _mm256_mul_ps(fscal,dz10);
754
755             /* Update vectorial force */
756             fix1             = _mm256_add_ps(fix1,tx);
757             fiy1             = _mm256_add_ps(fiy1,ty);
758             fiz1             = _mm256_add_ps(fiz1,tz);
759
760             fjx0             = _mm256_add_ps(fjx0,tx);
761             fjy0             = _mm256_add_ps(fjy0,ty);
762             fjz0             = _mm256_add_ps(fjz0,tz);
763
764             /**************************
765              * CALCULATE INTERACTIONS *
766              **************************/
767
768             /* Compute parameters for interactions between i and j atoms */
769             qq20             = _mm256_mul_ps(iq2,jq0);
770
771             /* COULOMB ELECTROSTATICS */
772             velec            = _mm256_mul_ps(qq20,rinv20);
773             felec            = _mm256_mul_ps(velec,rinvsq20);
774
775             fscal            = felec;
776
777             /* Calculate temporary vectorial force */
778             tx               = _mm256_mul_ps(fscal,dx20);
779             ty               = _mm256_mul_ps(fscal,dy20);
780             tz               = _mm256_mul_ps(fscal,dz20);
781
782             /* Update vectorial force */
783             fix2             = _mm256_add_ps(fix2,tx);
784             fiy2             = _mm256_add_ps(fiy2,ty);
785             fiz2             = _mm256_add_ps(fiz2,tz);
786
787             fjx0             = _mm256_add_ps(fjx0,tx);
788             fjy0             = _mm256_add_ps(fjy0,ty);
789             fjz0             = _mm256_add_ps(fjz0,tz);
790
791             /**************************
792              * CALCULATE INTERACTIONS *
793              **************************/
794
795             /* Compute parameters for interactions between i and j atoms */
796             qq30             = _mm256_mul_ps(iq3,jq0);
797
798             /* COULOMB ELECTROSTATICS */
799             velec            = _mm256_mul_ps(qq30,rinv30);
800             felec            = _mm256_mul_ps(velec,rinvsq30);
801
802             fscal            = felec;
803
804             /* Calculate temporary vectorial force */
805             tx               = _mm256_mul_ps(fscal,dx30);
806             ty               = _mm256_mul_ps(fscal,dy30);
807             tz               = _mm256_mul_ps(fscal,dz30);
808
809             /* Update vectorial force */
810             fix3             = _mm256_add_ps(fix3,tx);
811             fiy3             = _mm256_add_ps(fiy3,ty);
812             fiz3             = _mm256_add_ps(fiz3,tz);
813
814             fjx0             = _mm256_add_ps(fjx0,tx);
815             fjy0             = _mm256_add_ps(fjy0,ty);
816             fjz0             = _mm256_add_ps(fjz0,tz);
817
818             fjptrA             = f+j_coord_offsetA;
819             fjptrB             = f+j_coord_offsetB;
820             fjptrC             = f+j_coord_offsetC;
821             fjptrD             = f+j_coord_offsetD;
822             fjptrE             = f+j_coord_offsetE;
823             fjptrF             = f+j_coord_offsetF;
824             fjptrG             = f+j_coord_offsetG;
825             fjptrH             = f+j_coord_offsetH;
826
827             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
828
829             /* Inner loop uses 81 flops */
830         }
831
832         if(jidx<j_index_end)
833         {
834
835             /* Get j neighbor index, and coordinate index */
836             jnrlistA         = jjnr[jidx];
837             jnrlistB         = jjnr[jidx+1];
838             jnrlistC         = jjnr[jidx+2];
839             jnrlistD         = jjnr[jidx+3];
840             jnrlistE         = jjnr[jidx+4];
841             jnrlistF         = jjnr[jidx+5];
842             jnrlistG         = jjnr[jidx+6];
843             jnrlistH         = jjnr[jidx+7];
844             /* Sign of each element will be negative for non-real atoms.
845              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
846              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
847              */
848             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
849                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
850                                             
851             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
852             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
853             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
854             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
855             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
856             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
857             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
858             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
859             j_coord_offsetA  = DIM*jnrA;
860             j_coord_offsetB  = DIM*jnrB;
861             j_coord_offsetC  = DIM*jnrC;
862             j_coord_offsetD  = DIM*jnrD;
863             j_coord_offsetE  = DIM*jnrE;
864             j_coord_offsetF  = DIM*jnrF;
865             j_coord_offsetG  = DIM*jnrG;
866             j_coord_offsetH  = DIM*jnrH;
867
868             /* load j atom coordinates */
869             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
870                                                  x+j_coord_offsetC,x+j_coord_offsetD,
871                                                  x+j_coord_offsetE,x+j_coord_offsetF,
872                                                  x+j_coord_offsetG,x+j_coord_offsetH,
873                                                  &jx0,&jy0,&jz0);
874
875             /* Calculate displacement vector */
876             dx10             = _mm256_sub_ps(ix1,jx0);
877             dy10             = _mm256_sub_ps(iy1,jy0);
878             dz10             = _mm256_sub_ps(iz1,jz0);
879             dx20             = _mm256_sub_ps(ix2,jx0);
880             dy20             = _mm256_sub_ps(iy2,jy0);
881             dz20             = _mm256_sub_ps(iz2,jz0);
882             dx30             = _mm256_sub_ps(ix3,jx0);
883             dy30             = _mm256_sub_ps(iy3,jy0);
884             dz30             = _mm256_sub_ps(iz3,jz0);
885
886             /* Calculate squared distance and things based on it */
887             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
888             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
889             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
890
891             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
892             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
893             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
894
895             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
896             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
897             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
898
899             /* Load parameters for j particles */
900             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
901                                                                  charge+jnrC+0,charge+jnrD+0,
902                                                                  charge+jnrE+0,charge+jnrF+0,
903                                                                  charge+jnrG+0,charge+jnrH+0);
904
905             fjx0             = _mm256_setzero_ps();
906             fjy0             = _mm256_setzero_ps();
907             fjz0             = _mm256_setzero_ps();
908
909             /**************************
910              * CALCULATE INTERACTIONS *
911              **************************/
912
913             /* Compute parameters for interactions between i and j atoms */
914             qq10             = _mm256_mul_ps(iq1,jq0);
915
916             /* COULOMB ELECTROSTATICS */
917             velec            = _mm256_mul_ps(qq10,rinv10);
918             felec            = _mm256_mul_ps(velec,rinvsq10);
919
920             fscal            = felec;
921
922             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
923
924             /* Calculate temporary vectorial force */
925             tx               = _mm256_mul_ps(fscal,dx10);
926             ty               = _mm256_mul_ps(fscal,dy10);
927             tz               = _mm256_mul_ps(fscal,dz10);
928
929             /* Update vectorial force */
930             fix1             = _mm256_add_ps(fix1,tx);
931             fiy1             = _mm256_add_ps(fiy1,ty);
932             fiz1             = _mm256_add_ps(fiz1,tz);
933
934             fjx0             = _mm256_add_ps(fjx0,tx);
935             fjy0             = _mm256_add_ps(fjy0,ty);
936             fjz0             = _mm256_add_ps(fjz0,tz);
937
938             /**************************
939              * CALCULATE INTERACTIONS *
940              **************************/
941
942             /* Compute parameters for interactions between i and j atoms */
943             qq20             = _mm256_mul_ps(iq2,jq0);
944
945             /* COULOMB ELECTROSTATICS */
946             velec            = _mm256_mul_ps(qq20,rinv20);
947             felec            = _mm256_mul_ps(velec,rinvsq20);
948
949             fscal            = felec;
950
951             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
952
953             /* Calculate temporary vectorial force */
954             tx               = _mm256_mul_ps(fscal,dx20);
955             ty               = _mm256_mul_ps(fscal,dy20);
956             tz               = _mm256_mul_ps(fscal,dz20);
957
958             /* Update vectorial force */
959             fix2             = _mm256_add_ps(fix2,tx);
960             fiy2             = _mm256_add_ps(fiy2,ty);
961             fiz2             = _mm256_add_ps(fiz2,tz);
962
963             fjx0             = _mm256_add_ps(fjx0,tx);
964             fjy0             = _mm256_add_ps(fjy0,ty);
965             fjz0             = _mm256_add_ps(fjz0,tz);
966
967             /**************************
968              * CALCULATE INTERACTIONS *
969              **************************/
970
971             /* Compute parameters for interactions between i and j atoms */
972             qq30             = _mm256_mul_ps(iq3,jq0);
973
974             /* COULOMB ELECTROSTATICS */
975             velec            = _mm256_mul_ps(qq30,rinv30);
976             felec            = _mm256_mul_ps(velec,rinvsq30);
977
978             fscal            = felec;
979
980             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
981
982             /* Calculate temporary vectorial force */
983             tx               = _mm256_mul_ps(fscal,dx30);
984             ty               = _mm256_mul_ps(fscal,dy30);
985             tz               = _mm256_mul_ps(fscal,dz30);
986
987             /* Update vectorial force */
988             fix3             = _mm256_add_ps(fix3,tx);
989             fiy3             = _mm256_add_ps(fiy3,ty);
990             fiz3             = _mm256_add_ps(fiz3,tz);
991
992             fjx0             = _mm256_add_ps(fjx0,tx);
993             fjy0             = _mm256_add_ps(fjy0,ty);
994             fjz0             = _mm256_add_ps(fjz0,tz);
995
996             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
997             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
998             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
999             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1000             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1001             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1002             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1003             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1004
1005             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1006
1007             /* Inner loop uses 81 flops */
1008         }
1009
1010         /* End of innermost loop */
1011
1012         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1013                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1014
1015         /* Increment number of inner iterations */
1016         inneriter                  += j_index_end - j_index_start;
1017
1018         /* Outer loop uses 18 flops */
1019     }
1020
1021     /* Increment number of outer iterations */
1022     outeriter        += nri;
1023
1024     /* Update outer/inner flops */
1025
1026     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*81);
1027 }