Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwNone_GeomW3P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW3P1_VF_avx_256_single
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            None
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwNone_GeomW3P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
92     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     __m256           dummy_mask,cutoff_mask;
99     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
100     __m256           one     = _mm256_set1_ps(1.0);
101     __m256           two     = _mm256_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm256_set1_ps(fr->ic->epsfac);
114     charge           = mdatoms->chargeA;
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
119     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
120     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128     j_coord_offsetE = 0;
129     j_coord_offsetF = 0;
130     j_coord_offsetG = 0;
131     j_coord_offsetH = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
158
159         fix0             = _mm256_setzero_ps();
160         fiy0             = _mm256_setzero_ps();
161         fiz0             = _mm256_setzero_ps();
162         fix1             = _mm256_setzero_ps();
163         fiy1             = _mm256_setzero_ps();
164         fiz1             = _mm256_setzero_ps();
165         fix2             = _mm256_setzero_ps();
166         fiy2             = _mm256_setzero_ps();
167         fiz2             = _mm256_setzero_ps();
168
169         /* Reset potential sums */
170         velecsum         = _mm256_setzero_ps();
171
172         /* Start inner kernel loop */
173         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
174         {
175
176             /* Get j neighbor index, and coordinate index */
177             jnrA             = jjnr[jidx];
178             jnrB             = jjnr[jidx+1];
179             jnrC             = jjnr[jidx+2];
180             jnrD             = jjnr[jidx+3];
181             jnrE             = jjnr[jidx+4];
182             jnrF             = jjnr[jidx+5];
183             jnrG             = jjnr[jidx+6];
184             jnrH             = jjnr[jidx+7];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189             j_coord_offsetE  = DIM*jnrE;
190             j_coord_offsetF  = DIM*jnrF;
191             j_coord_offsetG  = DIM*jnrG;
192             j_coord_offsetH  = DIM*jnrH;
193
194             /* load j atom coordinates */
195             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196                                                  x+j_coord_offsetC,x+j_coord_offsetD,
197                                                  x+j_coord_offsetE,x+j_coord_offsetF,
198                                                  x+j_coord_offsetG,x+j_coord_offsetH,
199                                                  &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm256_sub_ps(ix0,jx0);
203             dy00             = _mm256_sub_ps(iy0,jy0);
204             dz00             = _mm256_sub_ps(iz0,jz0);
205             dx10             = _mm256_sub_ps(ix1,jx0);
206             dy10             = _mm256_sub_ps(iy1,jy0);
207             dz10             = _mm256_sub_ps(iz1,jz0);
208             dx20             = _mm256_sub_ps(ix2,jx0);
209             dy20             = _mm256_sub_ps(iy2,jy0);
210             dz20             = _mm256_sub_ps(iz2,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
214             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
215             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
216
217             rinv00           = avx256_invsqrt_f(rsq00);
218             rinv10           = avx256_invsqrt_f(rsq10);
219             rinv20           = avx256_invsqrt_f(rsq20);
220
221             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
222             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
223             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227                                                                  charge+jnrC+0,charge+jnrD+0,
228                                                                  charge+jnrE+0,charge+jnrF+0,
229                                                                  charge+jnrG+0,charge+jnrH+0);
230
231             fjx0             = _mm256_setzero_ps();
232             fjy0             = _mm256_setzero_ps();
233             fjz0             = _mm256_setzero_ps();
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _mm256_mul_ps(iq0,jq0);
241
242             /* COULOMB ELECTROSTATICS */
243             velec            = _mm256_mul_ps(qq00,rinv00);
244             felec            = _mm256_mul_ps(velec,rinvsq00);
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             velecsum         = _mm256_add_ps(velecsum,velec);
248
249             fscal            = felec;
250
251             /* Calculate temporary vectorial force */
252             tx               = _mm256_mul_ps(fscal,dx00);
253             ty               = _mm256_mul_ps(fscal,dy00);
254             tz               = _mm256_mul_ps(fscal,dz00);
255
256             /* Update vectorial force */
257             fix0             = _mm256_add_ps(fix0,tx);
258             fiy0             = _mm256_add_ps(fiy0,ty);
259             fiz0             = _mm256_add_ps(fiz0,tz);
260
261             fjx0             = _mm256_add_ps(fjx0,tx);
262             fjy0             = _mm256_add_ps(fjy0,ty);
263             fjz0             = _mm256_add_ps(fjz0,tz);
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             /* Compute parameters for interactions between i and j atoms */
270             qq10             = _mm256_mul_ps(iq1,jq0);
271
272             /* COULOMB ELECTROSTATICS */
273             velec            = _mm256_mul_ps(qq10,rinv10);
274             felec            = _mm256_mul_ps(velec,rinvsq10);
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             velecsum         = _mm256_add_ps(velecsum,velec);
278
279             fscal            = felec;
280
281             /* Calculate temporary vectorial force */
282             tx               = _mm256_mul_ps(fscal,dx10);
283             ty               = _mm256_mul_ps(fscal,dy10);
284             tz               = _mm256_mul_ps(fscal,dz10);
285
286             /* Update vectorial force */
287             fix1             = _mm256_add_ps(fix1,tx);
288             fiy1             = _mm256_add_ps(fiy1,ty);
289             fiz1             = _mm256_add_ps(fiz1,tz);
290
291             fjx0             = _mm256_add_ps(fjx0,tx);
292             fjy0             = _mm256_add_ps(fjy0,ty);
293             fjz0             = _mm256_add_ps(fjz0,tz);
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq20             = _mm256_mul_ps(iq2,jq0);
301
302             /* COULOMB ELECTROSTATICS */
303             velec            = _mm256_mul_ps(qq20,rinv20);
304             felec            = _mm256_mul_ps(velec,rinvsq20);
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             velecsum         = _mm256_add_ps(velecsum,velec);
308
309             fscal            = felec;
310
311             /* Calculate temporary vectorial force */
312             tx               = _mm256_mul_ps(fscal,dx20);
313             ty               = _mm256_mul_ps(fscal,dy20);
314             tz               = _mm256_mul_ps(fscal,dz20);
315
316             /* Update vectorial force */
317             fix2             = _mm256_add_ps(fix2,tx);
318             fiy2             = _mm256_add_ps(fiy2,ty);
319             fiz2             = _mm256_add_ps(fiz2,tz);
320
321             fjx0             = _mm256_add_ps(fjx0,tx);
322             fjy0             = _mm256_add_ps(fjy0,ty);
323             fjz0             = _mm256_add_ps(fjz0,tz);
324
325             fjptrA             = f+j_coord_offsetA;
326             fjptrB             = f+j_coord_offsetB;
327             fjptrC             = f+j_coord_offsetC;
328             fjptrD             = f+j_coord_offsetD;
329             fjptrE             = f+j_coord_offsetE;
330             fjptrF             = f+j_coord_offsetF;
331             fjptrG             = f+j_coord_offsetG;
332             fjptrH             = f+j_coord_offsetH;
333
334             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
335
336             /* Inner loop uses 84 flops */
337         }
338
339         if(jidx<j_index_end)
340         {
341
342             /* Get j neighbor index, and coordinate index */
343             jnrlistA         = jjnr[jidx];
344             jnrlistB         = jjnr[jidx+1];
345             jnrlistC         = jjnr[jidx+2];
346             jnrlistD         = jjnr[jidx+3];
347             jnrlistE         = jjnr[jidx+4];
348             jnrlistF         = jjnr[jidx+5];
349             jnrlistG         = jjnr[jidx+6];
350             jnrlistH         = jjnr[jidx+7];
351             /* Sign of each element will be negative for non-real atoms.
352              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
353              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
354              */
355             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
356                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
357                                             
358             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
359             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
360             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
361             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
362             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
363             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
364             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
365             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
366             j_coord_offsetA  = DIM*jnrA;
367             j_coord_offsetB  = DIM*jnrB;
368             j_coord_offsetC  = DIM*jnrC;
369             j_coord_offsetD  = DIM*jnrD;
370             j_coord_offsetE  = DIM*jnrE;
371             j_coord_offsetF  = DIM*jnrF;
372             j_coord_offsetG  = DIM*jnrG;
373             j_coord_offsetH  = DIM*jnrH;
374
375             /* load j atom coordinates */
376             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
377                                                  x+j_coord_offsetC,x+j_coord_offsetD,
378                                                  x+j_coord_offsetE,x+j_coord_offsetF,
379                                                  x+j_coord_offsetG,x+j_coord_offsetH,
380                                                  &jx0,&jy0,&jz0);
381
382             /* Calculate displacement vector */
383             dx00             = _mm256_sub_ps(ix0,jx0);
384             dy00             = _mm256_sub_ps(iy0,jy0);
385             dz00             = _mm256_sub_ps(iz0,jz0);
386             dx10             = _mm256_sub_ps(ix1,jx0);
387             dy10             = _mm256_sub_ps(iy1,jy0);
388             dz10             = _mm256_sub_ps(iz1,jz0);
389             dx20             = _mm256_sub_ps(ix2,jx0);
390             dy20             = _mm256_sub_ps(iy2,jy0);
391             dz20             = _mm256_sub_ps(iz2,jz0);
392
393             /* Calculate squared distance and things based on it */
394             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
395             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
396             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
397
398             rinv00           = avx256_invsqrt_f(rsq00);
399             rinv10           = avx256_invsqrt_f(rsq10);
400             rinv20           = avx256_invsqrt_f(rsq20);
401
402             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
403             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
404             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
405
406             /* Load parameters for j particles */
407             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
408                                                                  charge+jnrC+0,charge+jnrD+0,
409                                                                  charge+jnrE+0,charge+jnrF+0,
410                                                                  charge+jnrG+0,charge+jnrH+0);
411
412             fjx0             = _mm256_setzero_ps();
413             fjy0             = _mm256_setzero_ps();
414             fjz0             = _mm256_setzero_ps();
415
416             /**************************
417              * CALCULATE INTERACTIONS *
418              **************************/
419
420             /* Compute parameters for interactions between i and j atoms */
421             qq00             = _mm256_mul_ps(iq0,jq0);
422
423             /* COULOMB ELECTROSTATICS */
424             velec            = _mm256_mul_ps(qq00,rinv00);
425             felec            = _mm256_mul_ps(velec,rinvsq00);
426
427             /* Update potential sum for this i atom from the interaction with this j atom. */
428             velec            = _mm256_andnot_ps(dummy_mask,velec);
429             velecsum         = _mm256_add_ps(velecsum,velec);
430
431             fscal            = felec;
432
433             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
434
435             /* Calculate temporary vectorial force */
436             tx               = _mm256_mul_ps(fscal,dx00);
437             ty               = _mm256_mul_ps(fscal,dy00);
438             tz               = _mm256_mul_ps(fscal,dz00);
439
440             /* Update vectorial force */
441             fix0             = _mm256_add_ps(fix0,tx);
442             fiy0             = _mm256_add_ps(fiy0,ty);
443             fiz0             = _mm256_add_ps(fiz0,tz);
444
445             fjx0             = _mm256_add_ps(fjx0,tx);
446             fjy0             = _mm256_add_ps(fjy0,ty);
447             fjz0             = _mm256_add_ps(fjz0,tz);
448
449             /**************************
450              * CALCULATE INTERACTIONS *
451              **************************/
452
453             /* Compute parameters for interactions between i and j atoms */
454             qq10             = _mm256_mul_ps(iq1,jq0);
455
456             /* COULOMB ELECTROSTATICS */
457             velec            = _mm256_mul_ps(qq10,rinv10);
458             felec            = _mm256_mul_ps(velec,rinvsq10);
459
460             /* Update potential sum for this i atom from the interaction with this j atom. */
461             velec            = _mm256_andnot_ps(dummy_mask,velec);
462             velecsum         = _mm256_add_ps(velecsum,velec);
463
464             fscal            = felec;
465
466             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
467
468             /* Calculate temporary vectorial force */
469             tx               = _mm256_mul_ps(fscal,dx10);
470             ty               = _mm256_mul_ps(fscal,dy10);
471             tz               = _mm256_mul_ps(fscal,dz10);
472
473             /* Update vectorial force */
474             fix1             = _mm256_add_ps(fix1,tx);
475             fiy1             = _mm256_add_ps(fiy1,ty);
476             fiz1             = _mm256_add_ps(fiz1,tz);
477
478             fjx0             = _mm256_add_ps(fjx0,tx);
479             fjy0             = _mm256_add_ps(fjy0,ty);
480             fjz0             = _mm256_add_ps(fjz0,tz);
481
482             /**************************
483              * CALCULATE INTERACTIONS *
484              **************************/
485
486             /* Compute parameters for interactions between i and j atoms */
487             qq20             = _mm256_mul_ps(iq2,jq0);
488
489             /* COULOMB ELECTROSTATICS */
490             velec            = _mm256_mul_ps(qq20,rinv20);
491             felec            = _mm256_mul_ps(velec,rinvsq20);
492
493             /* Update potential sum for this i atom from the interaction with this j atom. */
494             velec            = _mm256_andnot_ps(dummy_mask,velec);
495             velecsum         = _mm256_add_ps(velecsum,velec);
496
497             fscal            = felec;
498
499             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
500
501             /* Calculate temporary vectorial force */
502             tx               = _mm256_mul_ps(fscal,dx20);
503             ty               = _mm256_mul_ps(fscal,dy20);
504             tz               = _mm256_mul_ps(fscal,dz20);
505
506             /* Update vectorial force */
507             fix2             = _mm256_add_ps(fix2,tx);
508             fiy2             = _mm256_add_ps(fiy2,ty);
509             fiz2             = _mm256_add_ps(fiz2,tz);
510
511             fjx0             = _mm256_add_ps(fjx0,tx);
512             fjy0             = _mm256_add_ps(fjy0,ty);
513             fjz0             = _mm256_add_ps(fjz0,tz);
514
515             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
516             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
517             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
518             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
519             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
520             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
521             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
522             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
523
524             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
525
526             /* Inner loop uses 84 flops */
527         }
528
529         /* End of innermost loop */
530
531         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
532                                                  f+i_coord_offset,fshift+i_shift_offset);
533
534         ggid                        = gid[iidx];
535         /* Update potential energies */
536         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
537
538         /* Increment number of inner iterations */
539         inneriter                  += j_index_end - j_index_start;
540
541         /* Outer loop uses 19 flops */
542     }
543
544     /* Increment number of outer iterations */
545     outeriter        += nri;
546
547     /* Update outer/inner flops */
548
549     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*84);
550 }
551 /*
552  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW3P1_F_avx_256_single
553  * Electrostatics interaction: Coulomb
554  * VdW interaction:            None
555  * Geometry:                   Water3-Particle
556  * Calculate force/pot:        Force
557  */
558 void
559 nb_kernel_ElecCoul_VdwNone_GeomW3P1_F_avx_256_single
560                     (t_nblist                    * gmx_restrict       nlist,
561                      rvec                        * gmx_restrict          xx,
562                      rvec                        * gmx_restrict          ff,
563                      struct t_forcerec           * gmx_restrict          fr,
564                      t_mdatoms                   * gmx_restrict     mdatoms,
565                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
566                      t_nrnb                      * gmx_restrict        nrnb)
567 {
568     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
569      * just 0 for non-waters.
570      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
571      * jnr indices corresponding to data put in the four positions in the SIMD register.
572      */
573     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
574     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
575     int              jnrA,jnrB,jnrC,jnrD;
576     int              jnrE,jnrF,jnrG,jnrH;
577     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
578     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
579     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
580     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
581     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
582     real             rcutoff_scalar;
583     real             *shiftvec,*fshift,*x,*f;
584     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
585     real             scratch[4*DIM];
586     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
587     real *           vdwioffsetptr0;
588     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
589     real *           vdwioffsetptr1;
590     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
591     real *           vdwioffsetptr2;
592     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
593     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
594     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
595     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
596     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
597     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
598     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
599     real             *charge;
600     __m256           dummy_mask,cutoff_mask;
601     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
602     __m256           one     = _mm256_set1_ps(1.0);
603     __m256           two     = _mm256_set1_ps(2.0);
604     x                = xx[0];
605     f                = ff[0];
606
607     nri              = nlist->nri;
608     iinr             = nlist->iinr;
609     jindex           = nlist->jindex;
610     jjnr             = nlist->jjnr;
611     shiftidx         = nlist->shift;
612     gid              = nlist->gid;
613     shiftvec         = fr->shift_vec[0];
614     fshift           = fr->fshift[0];
615     facel            = _mm256_set1_ps(fr->ic->epsfac);
616     charge           = mdatoms->chargeA;
617
618     /* Setup water-specific parameters */
619     inr              = nlist->iinr[0];
620     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
621     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
622     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
623
624     /* Avoid stupid compiler warnings */
625     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
626     j_coord_offsetA = 0;
627     j_coord_offsetB = 0;
628     j_coord_offsetC = 0;
629     j_coord_offsetD = 0;
630     j_coord_offsetE = 0;
631     j_coord_offsetF = 0;
632     j_coord_offsetG = 0;
633     j_coord_offsetH = 0;
634
635     outeriter        = 0;
636     inneriter        = 0;
637
638     for(iidx=0;iidx<4*DIM;iidx++)
639     {
640         scratch[iidx] = 0.0;
641     }
642
643     /* Start outer loop over neighborlists */
644     for(iidx=0; iidx<nri; iidx++)
645     {
646         /* Load shift vector for this list */
647         i_shift_offset   = DIM*shiftidx[iidx];
648
649         /* Load limits for loop over neighbors */
650         j_index_start    = jindex[iidx];
651         j_index_end      = jindex[iidx+1];
652
653         /* Get outer coordinate index */
654         inr              = iinr[iidx];
655         i_coord_offset   = DIM*inr;
656
657         /* Load i particle coords and add shift vector */
658         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
659                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
660
661         fix0             = _mm256_setzero_ps();
662         fiy0             = _mm256_setzero_ps();
663         fiz0             = _mm256_setzero_ps();
664         fix1             = _mm256_setzero_ps();
665         fiy1             = _mm256_setzero_ps();
666         fiz1             = _mm256_setzero_ps();
667         fix2             = _mm256_setzero_ps();
668         fiy2             = _mm256_setzero_ps();
669         fiz2             = _mm256_setzero_ps();
670
671         /* Start inner kernel loop */
672         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
673         {
674
675             /* Get j neighbor index, and coordinate index */
676             jnrA             = jjnr[jidx];
677             jnrB             = jjnr[jidx+1];
678             jnrC             = jjnr[jidx+2];
679             jnrD             = jjnr[jidx+3];
680             jnrE             = jjnr[jidx+4];
681             jnrF             = jjnr[jidx+5];
682             jnrG             = jjnr[jidx+6];
683             jnrH             = jjnr[jidx+7];
684             j_coord_offsetA  = DIM*jnrA;
685             j_coord_offsetB  = DIM*jnrB;
686             j_coord_offsetC  = DIM*jnrC;
687             j_coord_offsetD  = DIM*jnrD;
688             j_coord_offsetE  = DIM*jnrE;
689             j_coord_offsetF  = DIM*jnrF;
690             j_coord_offsetG  = DIM*jnrG;
691             j_coord_offsetH  = DIM*jnrH;
692
693             /* load j atom coordinates */
694             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
695                                                  x+j_coord_offsetC,x+j_coord_offsetD,
696                                                  x+j_coord_offsetE,x+j_coord_offsetF,
697                                                  x+j_coord_offsetG,x+j_coord_offsetH,
698                                                  &jx0,&jy0,&jz0);
699
700             /* Calculate displacement vector */
701             dx00             = _mm256_sub_ps(ix0,jx0);
702             dy00             = _mm256_sub_ps(iy0,jy0);
703             dz00             = _mm256_sub_ps(iz0,jz0);
704             dx10             = _mm256_sub_ps(ix1,jx0);
705             dy10             = _mm256_sub_ps(iy1,jy0);
706             dz10             = _mm256_sub_ps(iz1,jz0);
707             dx20             = _mm256_sub_ps(ix2,jx0);
708             dy20             = _mm256_sub_ps(iy2,jy0);
709             dz20             = _mm256_sub_ps(iz2,jz0);
710
711             /* Calculate squared distance and things based on it */
712             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
713             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
714             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
715
716             rinv00           = avx256_invsqrt_f(rsq00);
717             rinv10           = avx256_invsqrt_f(rsq10);
718             rinv20           = avx256_invsqrt_f(rsq20);
719
720             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
721             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
722             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
723
724             /* Load parameters for j particles */
725             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
726                                                                  charge+jnrC+0,charge+jnrD+0,
727                                                                  charge+jnrE+0,charge+jnrF+0,
728                                                                  charge+jnrG+0,charge+jnrH+0);
729
730             fjx0             = _mm256_setzero_ps();
731             fjy0             = _mm256_setzero_ps();
732             fjz0             = _mm256_setzero_ps();
733
734             /**************************
735              * CALCULATE INTERACTIONS *
736              **************************/
737
738             /* Compute parameters for interactions between i and j atoms */
739             qq00             = _mm256_mul_ps(iq0,jq0);
740
741             /* COULOMB ELECTROSTATICS */
742             velec            = _mm256_mul_ps(qq00,rinv00);
743             felec            = _mm256_mul_ps(velec,rinvsq00);
744
745             fscal            = felec;
746
747             /* Calculate temporary vectorial force */
748             tx               = _mm256_mul_ps(fscal,dx00);
749             ty               = _mm256_mul_ps(fscal,dy00);
750             tz               = _mm256_mul_ps(fscal,dz00);
751
752             /* Update vectorial force */
753             fix0             = _mm256_add_ps(fix0,tx);
754             fiy0             = _mm256_add_ps(fiy0,ty);
755             fiz0             = _mm256_add_ps(fiz0,tz);
756
757             fjx0             = _mm256_add_ps(fjx0,tx);
758             fjy0             = _mm256_add_ps(fjy0,ty);
759             fjz0             = _mm256_add_ps(fjz0,tz);
760
761             /**************************
762              * CALCULATE INTERACTIONS *
763              **************************/
764
765             /* Compute parameters for interactions between i and j atoms */
766             qq10             = _mm256_mul_ps(iq1,jq0);
767
768             /* COULOMB ELECTROSTATICS */
769             velec            = _mm256_mul_ps(qq10,rinv10);
770             felec            = _mm256_mul_ps(velec,rinvsq10);
771
772             fscal            = felec;
773
774             /* Calculate temporary vectorial force */
775             tx               = _mm256_mul_ps(fscal,dx10);
776             ty               = _mm256_mul_ps(fscal,dy10);
777             tz               = _mm256_mul_ps(fscal,dz10);
778
779             /* Update vectorial force */
780             fix1             = _mm256_add_ps(fix1,tx);
781             fiy1             = _mm256_add_ps(fiy1,ty);
782             fiz1             = _mm256_add_ps(fiz1,tz);
783
784             fjx0             = _mm256_add_ps(fjx0,tx);
785             fjy0             = _mm256_add_ps(fjy0,ty);
786             fjz0             = _mm256_add_ps(fjz0,tz);
787
788             /**************************
789              * CALCULATE INTERACTIONS *
790              **************************/
791
792             /* Compute parameters for interactions between i and j atoms */
793             qq20             = _mm256_mul_ps(iq2,jq0);
794
795             /* COULOMB ELECTROSTATICS */
796             velec            = _mm256_mul_ps(qq20,rinv20);
797             felec            = _mm256_mul_ps(velec,rinvsq20);
798
799             fscal            = felec;
800
801             /* Calculate temporary vectorial force */
802             tx               = _mm256_mul_ps(fscal,dx20);
803             ty               = _mm256_mul_ps(fscal,dy20);
804             tz               = _mm256_mul_ps(fscal,dz20);
805
806             /* Update vectorial force */
807             fix2             = _mm256_add_ps(fix2,tx);
808             fiy2             = _mm256_add_ps(fiy2,ty);
809             fiz2             = _mm256_add_ps(fiz2,tz);
810
811             fjx0             = _mm256_add_ps(fjx0,tx);
812             fjy0             = _mm256_add_ps(fjy0,ty);
813             fjz0             = _mm256_add_ps(fjz0,tz);
814
815             fjptrA             = f+j_coord_offsetA;
816             fjptrB             = f+j_coord_offsetB;
817             fjptrC             = f+j_coord_offsetC;
818             fjptrD             = f+j_coord_offsetD;
819             fjptrE             = f+j_coord_offsetE;
820             fjptrF             = f+j_coord_offsetF;
821             fjptrG             = f+j_coord_offsetG;
822             fjptrH             = f+j_coord_offsetH;
823
824             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
825
826             /* Inner loop uses 81 flops */
827         }
828
829         if(jidx<j_index_end)
830         {
831
832             /* Get j neighbor index, and coordinate index */
833             jnrlistA         = jjnr[jidx];
834             jnrlistB         = jjnr[jidx+1];
835             jnrlistC         = jjnr[jidx+2];
836             jnrlistD         = jjnr[jidx+3];
837             jnrlistE         = jjnr[jidx+4];
838             jnrlistF         = jjnr[jidx+5];
839             jnrlistG         = jjnr[jidx+6];
840             jnrlistH         = jjnr[jidx+7];
841             /* Sign of each element will be negative for non-real atoms.
842              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
843              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
844              */
845             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
846                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
847                                             
848             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
849             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
850             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
851             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
852             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
853             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
854             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
855             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
856             j_coord_offsetA  = DIM*jnrA;
857             j_coord_offsetB  = DIM*jnrB;
858             j_coord_offsetC  = DIM*jnrC;
859             j_coord_offsetD  = DIM*jnrD;
860             j_coord_offsetE  = DIM*jnrE;
861             j_coord_offsetF  = DIM*jnrF;
862             j_coord_offsetG  = DIM*jnrG;
863             j_coord_offsetH  = DIM*jnrH;
864
865             /* load j atom coordinates */
866             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
867                                                  x+j_coord_offsetC,x+j_coord_offsetD,
868                                                  x+j_coord_offsetE,x+j_coord_offsetF,
869                                                  x+j_coord_offsetG,x+j_coord_offsetH,
870                                                  &jx0,&jy0,&jz0);
871
872             /* Calculate displacement vector */
873             dx00             = _mm256_sub_ps(ix0,jx0);
874             dy00             = _mm256_sub_ps(iy0,jy0);
875             dz00             = _mm256_sub_ps(iz0,jz0);
876             dx10             = _mm256_sub_ps(ix1,jx0);
877             dy10             = _mm256_sub_ps(iy1,jy0);
878             dz10             = _mm256_sub_ps(iz1,jz0);
879             dx20             = _mm256_sub_ps(ix2,jx0);
880             dy20             = _mm256_sub_ps(iy2,jy0);
881             dz20             = _mm256_sub_ps(iz2,jz0);
882
883             /* Calculate squared distance and things based on it */
884             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
885             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
886             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
887
888             rinv00           = avx256_invsqrt_f(rsq00);
889             rinv10           = avx256_invsqrt_f(rsq10);
890             rinv20           = avx256_invsqrt_f(rsq20);
891
892             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
893             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
894             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
895
896             /* Load parameters for j particles */
897             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
898                                                                  charge+jnrC+0,charge+jnrD+0,
899                                                                  charge+jnrE+0,charge+jnrF+0,
900                                                                  charge+jnrG+0,charge+jnrH+0);
901
902             fjx0             = _mm256_setzero_ps();
903             fjy0             = _mm256_setzero_ps();
904             fjz0             = _mm256_setzero_ps();
905
906             /**************************
907              * CALCULATE INTERACTIONS *
908              **************************/
909
910             /* Compute parameters for interactions between i and j atoms */
911             qq00             = _mm256_mul_ps(iq0,jq0);
912
913             /* COULOMB ELECTROSTATICS */
914             velec            = _mm256_mul_ps(qq00,rinv00);
915             felec            = _mm256_mul_ps(velec,rinvsq00);
916
917             fscal            = felec;
918
919             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
920
921             /* Calculate temporary vectorial force */
922             tx               = _mm256_mul_ps(fscal,dx00);
923             ty               = _mm256_mul_ps(fscal,dy00);
924             tz               = _mm256_mul_ps(fscal,dz00);
925
926             /* Update vectorial force */
927             fix0             = _mm256_add_ps(fix0,tx);
928             fiy0             = _mm256_add_ps(fiy0,ty);
929             fiz0             = _mm256_add_ps(fiz0,tz);
930
931             fjx0             = _mm256_add_ps(fjx0,tx);
932             fjy0             = _mm256_add_ps(fjy0,ty);
933             fjz0             = _mm256_add_ps(fjz0,tz);
934
935             /**************************
936              * CALCULATE INTERACTIONS *
937              **************************/
938
939             /* Compute parameters for interactions between i and j atoms */
940             qq10             = _mm256_mul_ps(iq1,jq0);
941
942             /* COULOMB ELECTROSTATICS */
943             velec            = _mm256_mul_ps(qq10,rinv10);
944             felec            = _mm256_mul_ps(velec,rinvsq10);
945
946             fscal            = felec;
947
948             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
949
950             /* Calculate temporary vectorial force */
951             tx               = _mm256_mul_ps(fscal,dx10);
952             ty               = _mm256_mul_ps(fscal,dy10);
953             tz               = _mm256_mul_ps(fscal,dz10);
954
955             /* Update vectorial force */
956             fix1             = _mm256_add_ps(fix1,tx);
957             fiy1             = _mm256_add_ps(fiy1,ty);
958             fiz1             = _mm256_add_ps(fiz1,tz);
959
960             fjx0             = _mm256_add_ps(fjx0,tx);
961             fjy0             = _mm256_add_ps(fjy0,ty);
962             fjz0             = _mm256_add_ps(fjz0,tz);
963
964             /**************************
965              * CALCULATE INTERACTIONS *
966              **************************/
967
968             /* Compute parameters for interactions between i and j atoms */
969             qq20             = _mm256_mul_ps(iq2,jq0);
970
971             /* COULOMB ELECTROSTATICS */
972             velec            = _mm256_mul_ps(qq20,rinv20);
973             felec            = _mm256_mul_ps(velec,rinvsq20);
974
975             fscal            = felec;
976
977             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
978
979             /* Calculate temporary vectorial force */
980             tx               = _mm256_mul_ps(fscal,dx20);
981             ty               = _mm256_mul_ps(fscal,dy20);
982             tz               = _mm256_mul_ps(fscal,dz20);
983
984             /* Update vectorial force */
985             fix2             = _mm256_add_ps(fix2,tx);
986             fiy2             = _mm256_add_ps(fiy2,ty);
987             fiz2             = _mm256_add_ps(fiz2,tz);
988
989             fjx0             = _mm256_add_ps(fjx0,tx);
990             fjy0             = _mm256_add_ps(fjy0,ty);
991             fjz0             = _mm256_add_ps(fjz0,tz);
992
993             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
994             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
995             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
996             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
997             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
998             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
999             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1000             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1001
1002             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1003
1004             /* Inner loop uses 81 flops */
1005         }
1006
1007         /* End of innermost loop */
1008
1009         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1010                                                  f+i_coord_offset,fshift+i_shift_offset);
1011
1012         /* Increment number of inner iterations */
1013         inneriter                  += j_index_end - j_index_start;
1014
1015         /* Outer loop uses 18 flops */
1016     }
1017
1018     /* Increment number of outer iterations */
1019     outeriter        += nri;
1020
1021     /* Update outer/inner flops */
1022
1023     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*81);
1024 }