Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m256           dummy_mask,cutoff_mask;
94     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
95     __m256           one     = _mm256_set1_ps(1.0);
96     __m256           two     = _mm256_set1_ps(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm256_set1_ps(fr->epsfac);
109     charge           = mdatoms->chargeA;
110
111     /* Avoid stupid compiler warnings */
112     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
113     j_coord_offsetA = 0;
114     j_coord_offsetB = 0;
115     j_coord_offsetC = 0;
116     j_coord_offsetD = 0;
117     j_coord_offsetE = 0;
118     j_coord_offsetF = 0;
119     j_coord_offsetG = 0;
120     j_coord_offsetH = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     for(iidx=0;iidx<4*DIM;iidx++)
126     {
127         scratch[iidx] = 0.0;
128     }
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
146
147         fix0             = _mm256_setzero_ps();
148         fiy0             = _mm256_setzero_ps();
149         fiz0             = _mm256_setzero_ps();
150
151         /* Load parameters for i particles */
152         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
153
154         /* Reset potential sums */
155         velecsum         = _mm256_setzero_ps();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             jnrC             = jjnr[jidx+2];
165             jnrD             = jjnr[jidx+3];
166             jnrE             = jjnr[jidx+4];
167             jnrF             = jjnr[jidx+5];
168             jnrG             = jjnr[jidx+6];
169             jnrH             = jjnr[jidx+7];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172             j_coord_offsetC  = DIM*jnrC;
173             j_coord_offsetD  = DIM*jnrD;
174             j_coord_offsetE  = DIM*jnrE;
175             j_coord_offsetF  = DIM*jnrF;
176             j_coord_offsetG  = DIM*jnrG;
177             j_coord_offsetH  = DIM*jnrH;
178
179             /* load j atom coordinates */
180             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
181                                                  x+j_coord_offsetC,x+j_coord_offsetD,
182                                                  x+j_coord_offsetE,x+j_coord_offsetF,
183                                                  x+j_coord_offsetG,x+j_coord_offsetH,
184                                                  &jx0,&jy0,&jz0);
185
186             /* Calculate displacement vector */
187             dx00             = _mm256_sub_ps(ix0,jx0);
188             dy00             = _mm256_sub_ps(iy0,jy0);
189             dz00             = _mm256_sub_ps(iz0,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
193
194             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
195
196             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
197
198             /* Load parameters for j particles */
199             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
200                                                                  charge+jnrC+0,charge+jnrD+0,
201                                                                  charge+jnrE+0,charge+jnrF+0,
202                                                                  charge+jnrG+0,charge+jnrH+0);
203
204             /**************************
205              * CALCULATE INTERACTIONS *
206              **************************/
207
208             /* Compute parameters for interactions between i and j atoms */
209             qq00             = _mm256_mul_ps(iq0,jq0);
210
211             /* COULOMB ELECTROSTATICS */
212             velec            = _mm256_mul_ps(qq00,rinv00);
213             felec            = _mm256_mul_ps(velec,rinvsq00);
214
215             /* Update potential sum for this i atom from the interaction with this j atom. */
216             velecsum         = _mm256_add_ps(velecsum,velec);
217
218             fscal            = felec;
219
220             /* Calculate temporary vectorial force */
221             tx               = _mm256_mul_ps(fscal,dx00);
222             ty               = _mm256_mul_ps(fscal,dy00);
223             tz               = _mm256_mul_ps(fscal,dz00);
224
225             /* Update vectorial force */
226             fix0             = _mm256_add_ps(fix0,tx);
227             fiy0             = _mm256_add_ps(fiy0,ty);
228             fiz0             = _mm256_add_ps(fiz0,tz);
229
230             fjptrA             = f+j_coord_offsetA;
231             fjptrB             = f+j_coord_offsetB;
232             fjptrC             = f+j_coord_offsetC;
233             fjptrD             = f+j_coord_offsetD;
234             fjptrE             = f+j_coord_offsetE;
235             fjptrF             = f+j_coord_offsetF;
236             fjptrG             = f+j_coord_offsetG;
237             fjptrH             = f+j_coord_offsetH;
238             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
239
240             /* Inner loop uses 27 flops */
241         }
242
243         if(jidx<j_index_end)
244         {
245
246             /* Get j neighbor index, and coordinate index */
247             jnrlistA         = jjnr[jidx];
248             jnrlistB         = jjnr[jidx+1];
249             jnrlistC         = jjnr[jidx+2];
250             jnrlistD         = jjnr[jidx+3];
251             jnrlistE         = jjnr[jidx+4];
252             jnrlistF         = jjnr[jidx+5];
253             jnrlistG         = jjnr[jidx+6];
254             jnrlistH         = jjnr[jidx+7];
255             /* Sign of each element will be negative for non-real atoms.
256              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
257              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
258              */
259             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
260                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
261                                             
262             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
263             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
264             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
265             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
266             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
267             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
268             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
269             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
270             j_coord_offsetA  = DIM*jnrA;
271             j_coord_offsetB  = DIM*jnrB;
272             j_coord_offsetC  = DIM*jnrC;
273             j_coord_offsetD  = DIM*jnrD;
274             j_coord_offsetE  = DIM*jnrE;
275             j_coord_offsetF  = DIM*jnrF;
276             j_coord_offsetG  = DIM*jnrG;
277             j_coord_offsetH  = DIM*jnrH;
278
279             /* load j atom coordinates */
280             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
281                                                  x+j_coord_offsetC,x+j_coord_offsetD,
282                                                  x+j_coord_offsetE,x+j_coord_offsetF,
283                                                  x+j_coord_offsetG,x+j_coord_offsetH,
284                                                  &jx0,&jy0,&jz0);
285
286             /* Calculate displacement vector */
287             dx00             = _mm256_sub_ps(ix0,jx0);
288             dy00             = _mm256_sub_ps(iy0,jy0);
289             dz00             = _mm256_sub_ps(iz0,jz0);
290
291             /* Calculate squared distance and things based on it */
292             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
293
294             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
295
296             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
297
298             /* Load parameters for j particles */
299             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
300                                                                  charge+jnrC+0,charge+jnrD+0,
301                                                                  charge+jnrE+0,charge+jnrF+0,
302                                                                  charge+jnrG+0,charge+jnrH+0);
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq00             = _mm256_mul_ps(iq0,jq0);
310
311             /* COULOMB ELECTROSTATICS */
312             velec            = _mm256_mul_ps(qq00,rinv00);
313             felec            = _mm256_mul_ps(velec,rinvsq00);
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velec            = _mm256_andnot_ps(dummy_mask,velec);
317             velecsum         = _mm256_add_ps(velecsum,velec);
318
319             fscal            = felec;
320
321             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
322
323             /* Calculate temporary vectorial force */
324             tx               = _mm256_mul_ps(fscal,dx00);
325             ty               = _mm256_mul_ps(fscal,dy00);
326             tz               = _mm256_mul_ps(fscal,dz00);
327
328             /* Update vectorial force */
329             fix0             = _mm256_add_ps(fix0,tx);
330             fiy0             = _mm256_add_ps(fiy0,ty);
331             fiz0             = _mm256_add_ps(fiz0,tz);
332
333             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
334             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
335             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
336             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
337             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
338             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
339             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
340             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
341             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
342
343             /* Inner loop uses 27 flops */
344         }
345
346         /* End of innermost loop */
347
348         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
349                                                  f+i_coord_offset,fshift+i_shift_offset);
350
351         ggid                        = gid[iidx];
352         /* Update potential energies */
353         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
354
355         /* Increment number of inner iterations */
356         inneriter                  += j_index_end - j_index_start;
357
358         /* Outer loop uses 8 flops */
359     }
360
361     /* Increment number of outer iterations */
362     outeriter        += nri;
363
364     /* Update outer/inner flops */
365
366     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*27);
367 }
368 /*
369  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_avx_256_single
370  * Electrostatics interaction: Coulomb
371  * VdW interaction:            None
372  * Geometry:                   Particle-Particle
373  * Calculate force/pot:        Force
374  */
375 void
376 nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_avx_256_single
377                     (t_nblist                    * gmx_restrict       nlist,
378                      rvec                        * gmx_restrict          xx,
379                      rvec                        * gmx_restrict          ff,
380                      t_forcerec                  * gmx_restrict          fr,
381                      t_mdatoms                   * gmx_restrict     mdatoms,
382                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
383                      t_nrnb                      * gmx_restrict        nrnb)
384 {
385     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
386      * just 0 for non-waters.
387      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
388      * jnr indices corresponding to data put in the four positions in the SIMD register.
389      */
390     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
391     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
392     int              jnrA,jnrB,jnrC,jnrD;
393     int              jnrE,jnrF,jnrG,jnrH;
394     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
395     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
396     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
397     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
398     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
399     real             rcutoff_scalar;
400     real             *shiftvec,*fshift,*x,*f;
401     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
402     real             scratch[4*DIM];
403     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
404     real *           vdwioffsetptr0;
405     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
406     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
407     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
408     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
409     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
410     real             *charge;
411     __m256           dummy_mask,cutoff_mask;
412     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
413     __m256           one     = _mm256_set1_ps(1.0);
414     __m256           two     = _mm256_set1_ps(2.0);
415     x                = xx[0];
416     f                = ff[0];
417
418     nri              = nlist->nri;
419     iinr             = nlist->iinr;
420     jindex           = nlist->jindex;
421     jjnr             = nlist->jjnr;
422     shiftidx         = nlist->shift;
423     gid              = nlist->gid;
424     shiftvec         = fr->shift_vec[0];
425     fshift           = fr->fshift[0];
426     facel            = _mm256_set1_ps(fr->epsfac);
427     charge           = mdatoms->chargeA;
428
429     /* Avoid stupid compiler warnings */
430     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
431     j_coord_offsetA = 0;
432     j_coord_offsetB = 0;
433     j_coord_offsetC = 0;
434     j_coord_offsetD = 0;
435     j_coord_offsetE = 0;
436     j_coord_offsetF = 0;
437     j_coord_offsetG = 0;
438     j_coord_offsetH = 0;
439
440     outeriter        = 0;
441     inneriter        = 0;
442
443     for(iidx=0;iidx<4*DIM;iidx++)
444     {
445         scratch[iidx] = 0.0;
446     }
447
448     /* Start outer loop over neighborlists */
449     for(iidx=0; iidx<nri; iidx++)
450     {
451         /* Load shift vector for this list */
452         i_shift_offset   = DIM*shiftidx[iidx];
453
454         /* Load limits for loop over neighbors */
455         j_index_start    = jindex[iidx];
456         j_index_end      = jindex[iidx+1];
457
458         /* Get outer coordinate index */
459         inr              = iinr[iidx];
460         i_coord_offset   = DIM*inr;
461
462         /* Load i particle coords and add shift vector */
463         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
464
465         fix0             = _mm256_setzero_ps();
466         fiy0             = _mm256_setzero_ps();
467         fiz0             = _mm256_setzero_ps();
468
469         /* Load parameters for i particles */
470         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
471
472         /* Start inner kernel loop */
473         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
474         {
475
476             /* Get j neighbor index, and coordinate index */
477             jnrA             = jjnr[jidx];
478             jnrB             = jjnr[jidx+1];
479             jnrC             = jjnr[jidx+2];
480             jnrD             = jjnr[jidx+3];
481             jnrE             = jjnr[jidx+4];
482             jnrF             = jjnr[jidx+5];
483             jnrG             = jjnr[jidx+6];
484             jnrH             = jjnr[jidx+7];
485             j_coord_offsetA  = DIM*jnrA;
486             j_coord_offsetB  = DIM*jnrB;
487             j_coord_offsetC  = DIM*jnrC;
488             j_coord_offsetD  = DIM*jnrD;
489             j_coord_offsetE  = DIM*jnrE;
490             j_coord_offsetF  = DIM*jnrF;
491             j_coord_offsetG  = DIM*jnrG;
492             j_coord_offsetH  = DIM*jnrH;
493
494             /* load j atom coordinates */
495             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
496                                                  x+j_coord_offsetC,x+j_coord_offsetD,
497                                                  x+j_coord_offsetE,x+j_coord_offsetF,
498                                                  x+j_coord_offsetG,x+j_coord_offsetH,
499                                                  &jx0,&jy0,&jz0);
500
501             /* Calculate displacement vector */
502             dx00             = _mm256_sub_ps(ix0,jx0);
503             dy00             = _mm256_sub_ps(iy0,jy0);
504             dz00             = _mm256_sub_ps(iz0,jz0);
505
506             /* Calculate squared distance and things based on it */
507             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
508
509             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
510
511             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
512
513             /* Load parameters for j particles */
514             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
515                                                                  charge+jnrC+0,charge+jnrD+0,
516                                                                  charge+jnrE+0,charge+jnrF+0,
517                                                                  charge+jnrG+0,charge+jnrH+0);
518
519             /**************************
520              * CALCULATE INTERACTIONS *
521              **************************/
522
523             /* Compute parameters for interactions between i and j atoms */
524             qq00             = _mm256_mul_ps(iq0,jq0);
525
526             /* COULOMB ELECTROSTATICS */
527             velec            = _mm256_mul_ps(qq00,rinv00);
528             felec            = _mm256_mul_ps(velec,rinvsq00);
529
530             fscal            = felec;
531
532             /* Calculate temporary vectorial force */
533             tx               = _mm256_mul_ps(fscal,dx00);
534             ty               = _mm256_mul_ps(fscal,dy00);
535             tz               = _mm256_mul_ps(fscal,dz00);
536
537             /* Update vectorial force */
538             fix0             = _mm256_add_ps(fix0,tx);
539             fiy0             = _mm256_add_ps(fiy0,ty);
540             fiz0             = _mm256_add_ps(fiz0,tz);
541
542             fjptrA             = f+j_coord_offsetA;
543             fjptrB             = f+j_coord_offsetB;
544             fjptrC             = f+j_coord_offsetC;
545             fjptrD             = f+j_coord_offsetD;
546             fjptrE             = f+j_coord_offsetE;
547             fjptrF             = f+j_coord_offsetF;
548             fjptrG             = f+j_coord_offsetG;
549             fjptrH             = f+j_coord_offsetH;
550             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
551
552             /* Inner loop uses 26 flops */
553         }
554
555         if(jidx<j_index_end)
556         {
557
558             /* Get j neighbor index, and coordinate index */
559             jnrlistA         = jjnr[jidx];
560             jnrlistB         = jjnr[jidx+1];
561             jnrlistC         = jjnr[jidx+2];
562             jnrlistD         = jjnr[jidx+3];
563             jnrlistE         = jjnr[jidx+4];
564             jnrlistF         = jjnr[jidx+5];
565             jnrlistG         = jjnr[jidx+6];
566             jnrlistH         = jjnr[jidx+7];
567             /* Sign of each element will be negative for non-real atoms.
568              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
569              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
570              */
571             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
572                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
573                                             
574             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
575             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
576             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
577             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
578             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
579             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
580             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
581             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
582             j_coord_offsetA  = DIM*jnrA;
583             j_coord_offsetB  = DIM*jnrB;
584             j_coord_offsetC  = DIM*jnrC;
585             j_coord_offsetD  = DIM*jnrD;
586             j_coord_offsetE  = DIM*jnrE;
587             j_coord_offsetF  = DIM*jnrF;
588             j_coord_offsetG  = DIM*jnrG;
589             j_coord_offsetH  = DIM*jnrH;
590
591             /* load j atom coordinates */
592             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
593                                                  x+j_coord_offsetC,x+j_coord_offsetD,
594                                                  x+j_coord_offsetE,x+j_coord_offsetF,
595                                                  x+j_coord_offsetG,x+j_coord_offsetH,
596                                                  &jx0,&jy0,&jz0);
597
598             /* Calculate displacement vector */
599             dx00             = _mm256_sub_ps(ix0,jx0);
600             dy00             = _mm256_sub_ps(iy0,jy0);
601             dz00             = _mm256_sub_ps(iz0,jz0);
602
603             /* Calculate squared distance and things based on it */
604             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
605
606             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
607
608             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
609
610             /* Load parameters for j particles */
611             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
612                                                                  charge+jnrC+0,charge+jnrD+0,
613                                                                  charge+jnrE+0,charge+jnrF+0,
614                                                                  charge+jnrG+0,charge+jnrH+0);
615
616             /**************************
617              * CALCULATE INTERACTIONS *
618              **************************/
619
620             /* Compute parameters for interactions between i and j atoms */
621             qq00             = _mm256_mul_ps(iq0,jq0);
622
623             /* COULOMB ELECTROSTATICS */
624             velec            = _mm256_mul_ps(qq00,rinv00);
625             felec            = _mm256_mul_ps(velec,rinvsq00);
626
627             fscal            = felec;
628
629             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
630
631             /* Calculate temporary vectorial force */
632             tx               = _mm256_mul_ps(fscal,dx00);
633             ty               = _mm256_mul_ps(fscal,dy00);
634             tz               = _mm256_mul_ps(fscal,dz00);
635
636             /* Update vectorial force */
637             fix0             = _mm256_add_ps(fix0,tx);
638             fiy0             = _mm256_add_ps(fiy0,ty);
639             fiz0             = _mm256_add_ps(fiz0,tz);
640
641             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
642             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
643             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
644             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
645             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
646             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
647             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
648             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
649             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
650
651             /* Inner loop uses 26 flops */
652         }
653
654         /* End of innermost loop */
655
656         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
657                                                  f+i_coord_offset,fshift+i_shift_offset);
658
659         /* Increment number of inner iterations */
660         inneriter                  += j_index_end - j_index_start;
661
662         /* Outer loop uses 7 flops */
663     }
664
665     /* Increment number of outer iterations */
666     outeriter        += nri;
667
668     /* Update outer/inner flops */
669
670     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*26);
671 }