Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m256           dummy_mask,cutoff_mask;
96     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
97     __m256           one     = _mm256_set1_ps(1.0);
98     __m256           two     = _mm256_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm256_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112
113     /* Avoid stupid compiler warnings */
114     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
115     j_coord_offsetA = 0;
116     j_coord_offsetB = 0;
117     j_coord_offsetC = 0;
118     j_coord_offsetD = 0;
119     j_coord_offsetE = 0;
120     j_coord_offsetF = 0;
121     j_coord_offsetG = 0;
122     j_coord_offsetH = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     for(iidx=0;iidx<4*DIM;iidx++)
128     {
129         scratch[iidx] = 0.0;
130     }
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
148
149         fix0             = _mm256_setzero_ps();
150         fiy0             = _mm256_setzero_ps();
151         fiz0             = _mm256_setzero_ps();
152
153         /* Load parameters for i particles */
154         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
155
156         /* Reset potential sums */
157         velecsum         = _mm256_setzero_ps();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             jnrC             = jjnr[jidx+2];
167             jnrD             = jjnr[jidx+3];
168             jnrE             = jjnr[jidx+4];
169             jnrF             = jjnr[jidx+5];
170             jnrG             = jjnr[jidx+6];
171             jnrH             = jjnr[jidx+7];
172             j_coord_offsetA  = DIM*jnrA;
173             j_coord_offsetB  = DIM*jnrB;
174             j_coord_offsetC  = DIM*jnrC;
175             j_coord_offsetD  = DIM*jnrD;
176             j_coord_offsetE  = DIM*jnrE;
177             j_coord_offsetF  = DIM*jnrF;
178             j_coord_offsetG  = DIM*jnrG;
179             j_coord_offsetH  = DIM*jnrH;
180
181             /* load j atom coordinates */
182             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
183                                                  x+j_coord_offsetC,x+j_coord_offsetD,
184                                                  x+j_coord_offsetE,x+j_coord_offsetF,
185                                                  x+j_coord_offsetG,x+j_coord_offsetH,
186                                                  &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm256_sub_ps(ix0,jx0);
190             dy00             = _mm256_sub_ps(iy0,jy0);
191             dz00             = _mm256_sub_ps(iz0,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
195
196             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
197
198             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
199
200             /* Load parameters for j particles */
201             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
202                                                                  charge+jnrC+0,charge+jnrD+0,
203                                                                  charge+jnrE+0,charge+jnrF+0,
204                                                                  charge+jnrG+0,charge+jnrH+0);
205
206             /**************************
207              * CALCULATE INTERACTIONS *
208              **************************/
209
210             /* Compute parameters for interactions between i and j atoms */
211             qq00             = _mm256_mul_ps(iq0,jq0);
212
213             /* COULOMB ELECTROSTATICS */
214             velec            = _mm256_mul_ps(qq00,rinv00);
215             felec            = _mm256_mul_ps(velec,rinvsq00);
216
217             /* Update potential sum for this i atom from the interaction with this j atom. */
218             velecsum         = _mm256_add_ps(velecsum,velec);
219
220             fscal            = felec;
221
222             /* Calculate temporary vectorial force */
223             tx               = _mm256_mul_ps(fscal,dx00);
224             ty               = _mm256_mul_ps(fscal,dy00);
225             tz               = _mm256_mul_ps(fscal,dz00);
226
227             /* Update vectorial force */
228             fix0             = _mm256_add_ps(fix0,tx);
229             fiy0             = _mm256_add_ps(fiy0,ty);
230             fiz0             = _mm256_add_ps(fiz0,tz);
231
232             fjptrA             = f+j_coord_offsetA;
233             fjptrB             = f+j_coord_offsetB;
234             fjptrC             = f+j_coord_offsetC;
235             fjptrD             = f+j_coord_offsetD;
236             fjptrE             = f+j_coord_offsetE;
237             fjptrF             = f+j_coord_offsetF;
238             fjptrG             = f+j_coord_offsetG;
239             fjptrH             = f+j_coord_offsetH;
240             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
241
242             /* Inner loop uses 27 flops */
243         }
244
245         if(jidx<j_index_end)
246         {
247
248             /* Get j neighbor index, and coordinate index */
249             jnrlistA         = jjnr[jidx];
250             jnrlistB         = jjnr[jidx+1];
251             jnrlistC         = jjnr[jidx+2];
252             jnrlistD         = jjnr[jidx+3];
253             jnrlistE         = jjnr[jidx+4];
254             jnrlistF         = jjnr[jidx+5];
255             jnrlistG         = jjnr[jidx+6];
256             jnrlistH         = jjnr[jidx+7];
257             /* Sign of each element will be negative for non-real atoms.
258              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
259              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
260              */
261             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
262                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
263                                             
264             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
265             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
266             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
267             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
268             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
269             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
270             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
271             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
272             j_coord_offsetA  = DIM*jnrA;
273             j_coord_offsetB  = DIM*jnrB;
274             j_coord_offsetC  = DIM*jnrC;
275             j_coord_offsetD  = DIM*jnrD;
276             j_coord_offsetE  = DIM*jnrE;
277             j_coord_offsetF  = DIM*jnrF;
278             j_coord_offsetG  = DIM*jnrG;
279             j_coord_offsetH  = DIM*jnrH;
280
281             /* load j atom coordinates */
282             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
283                                                  x+j_coord_offsetC,x+j_coord_offsetD,
284                                                  x+j_coord_offsetE,x+j_coord_offsetF,
285                                                  x+j_coord_offsetG,x+j_coord_offsetH,
286                                                  &jx0,&jy0,&jz0);
287
288             /* Calculate displacement vector */
289             dx00             = _mm256_sub_ps(ix0,jx0);
290             dy00             = _mm256_sub_ps(iy0,jy0);
291             dz00             = _mm256_sub_ps(iz0,jz0);
292
293             /* Calculate squared distance and things based on it */
294             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
295
296             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
297
298             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
299
300             /* Load parameters for j particles */
301             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
302                                                                  charge+jnrC+0,charge+jnrD+0,
303                                                                  charge+jnrE+0,charge+jnrF+0,
304                                                                  charge+jnrG+0,charge+jnrH+0);
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             /* Compute parameters for interactions between i and j atoms */
311             qq00             = _mm256_mul_ps(iq0,jq0);
312
313             /* COULOMB ELECTROSTATICS */
314             velec            = _mm256_mul_ps(qq00,rinv00);
315             felec            = _mm256_mul_ps(velec,rinvsq00);
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velec            = _mm256_andnot_ps(dummy_mask,velec);
319             velecsum         = _mm256_add_ps(velecsum,velec);
320
321             fscal            = felec;
322
323             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm256_mul_ps(fscal,dx00);
327             ty               = _mm256_mul_ps(fscal,dy00);
328             tz               = _mm256_mul_ps(fscal,dz00);
329
330             /* Update vectorial force */
331             fix0             = _mm256_add_ps(fix0,tx);
332             fiy0             = _mm256_add_ps(fiy0,ty);
333             fiz0             = _mm256_add_ps(fiz0,tz);
334
335             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
336             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
337             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
338             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
339             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
340             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
341             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
342             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
343             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
344
345             /* Inner loop uses 27 flops */
346         }
347
348         /* End of innermost loop */
349
350         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
351                                                  f+i_coord_offset,fshift+i_shift_offset);
352
353         ggid                        = gid[iidx];
354         /* Update potential energies */
355         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
356
357         /* Increment number of inner iterations */
358         inneriter                  += j_index_end - j_index_start;
359
360         /* Outer loop uses 8 flops */
361     }
362
363     /* Increment number of outer iterations */
364     outeriter        += nri;
365
366     /* Update outer/inner flops */
367
368     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*27);
369 }
370 /*
371  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_avx_256_single
372  * Electrostatics interaction: Coulomb
373  * VdW interaction:            None
374  * Geometry:                   Particle-Particle
375  * Calculate force/pot:        Force
376  */
377 void
378 nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_avx_256_single
379                     (t_nblist                    * gmx_restrict       nlist,
380                      rvec                        * gmx_restrict          xx,
381                      rvec                        * gmx_restrict          ff,
382                      t_forcerec                  * gmx_restrict          fr,
383                      t_mdatoms                   * gmx_restrict     mdatoms,
384                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
385                      t_nrnb                      * gmx_restrict        nrnb)
386 {
387     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
388      * just 0 for non-waters.
389      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
390      * jnr indices corresponding to data put in the four positions in the SIMD register.
391      */
392     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
393     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
394     int              jnrA,jnrB,jnrC,jnrD;
395     int              jnrE,jnrF,jnrG,jnrH;
396     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
397     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
398     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
399     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
400     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
401     real             rcutoff_scalar;
402     real             *shiftvec,*fshift,*x,*f;
403     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
404     real             scratch[4*DIM];
405     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
406     real *           vdwioffsetptr0;
407     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
408     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
409     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
410     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
411     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
412     real             *charge;
413     __m256           dummy_mask,cutoff_mask;
414     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
415     __m256           one     = _mm256_set1_ps(1.0);
416     __m256           two     = _mm256_set1_ps(2.0);
417     x                = xx[0];
418     f                = ff[0];
419
420     nri              = nlist->nri;
421     iinr             = nlist->iinr;
422     jindex           = nlist->jindex;
423     jjnr             = nlist->jjnr;
424     shiftidx         = nlist->shift;
425     gid              = nlist->gid;
426     shiftvec         = fr->shift_vec[0];
427     fshift           = fr->fshift[0];
428     facel            = _mm256_set1_ps(fr->epsfac);
429     charge           = mdatoms->chargeA;
430
431     /* Avoid stupid compiler warnings */
432     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
433     j_coord_offsetA = 0;
434     j_coord_offsetB = 0;
435     j_coord_offsetC = 0;
436     j_coord_offsetD = 0;
437     j_coord_offsetE = 0;
438     j_coord_offsetF = 0;
439     j_coord_offsetG = 0;
440     j_coord_offsetH = 0;
441
442     outeriter        = 0;
443     inneriter        = 0;
444
445     for(iidx=0;iidx<4*DIM;iidx++)
446     {
447         scratch[iidx] = 0.0;
448     }
449
450     /* Start outer loop over neighborlists */
451     for(iidx=0; iidx<nri; iidx++)
452     {
453         /* Load shift vector for this list */
454         i_shift_offset   = DIM*shiftidx[iidx];
455
456         /* Load limits for loop over neighbors */
457         j_index_start    = jindex[iidx];
458         j_index_end      = jindex[iidx+1];
459
460         /* Get outer coordinate index */
461         inr              = iinr[iidx];
462         i_coord_offset   = DIM*inr;
463
464         /* Load i particle coords and add shift vector */
465         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
466
467         fix0             = _mm256_setzero_ps();
468         fiy0             = _mm256_setzero_ps();
469         fiz0             = _mm256_setzero_ps();
470
471         /* Load parameters for i particles */
472         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
473
474         /* Start inner kernel loop */
475         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
476         {
477
478             /* Get j neighbor index, and coordinate index */
479             jnrA             = jjnr[jidx];
480             jnrB             = jjnr[jidx+1];
481             jnrC             = jjnr[jidx+2];
482             jnrD             = jjnr[jidx+3];
483             jnrE             = jjnr[jidx+4];
484             jnrF             = jjnr[jidx+5];
485             jnrG             = jjnr[jidx+6];
486             jnrH             = jjnr[jidx+7];
487             j_coord_offsetA  = DIM*jnrA;
488             j_coord_offsetB  = DIM*jnrB;
489             j_coord_offsetC  = DIM*jnrC;
490             j_coord_offsetD  = DIM*jnrD;
491             j_coord_offsetE  = DIM*jnrE;
492             j_coord_offsetF  = DIM*jnrF;
493             j_coord_offsetG  = DIM*jnrG;
494             j_coord_offsetH  = DIM*jnrH;
495
496             /* load j atom coordinates */
497             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
498                                                  x+j_coord_offsetC,x+j_coord_offsetD,
499                                                  x+j_coord_offsetE,x+j_coord_offsetF,
500                                                  x+j_coord_offsetG,x+j_coord_offsetH,
501                                                  &jx0,&jy0,&jz0);
502
503             /* Calculate displacement vector */
504             dx00             = _mm256_sub_ps(ix0,jx0);
505             dy00             = _mm256_sub_ps(iy0,jy0);
506             dz00             = _mm256_sub_ps(iz0,jz0);
507
508             /* Calculate squared distance and things based on it */
509             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
510
511             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
512
513             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
514
515             /* Load parameters for j particles */
516             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
517                                                                  charge+jnrC+0,charge+jnrD+0,
518                                                                  charge+jnrE+0,charge+jnrF+0,
519                                                                  charge+jnrG+0,charge+jnrH+0);
520
521             /**************************
522              * CALCULATE INTERACTIONS *
523              **************************/
524
525             /* Compute parameters for interactions between i and j atoms */
526             qq00             = _mm256_mul_ps(iq0,jq0);
527
528             /* COULOMB ELECTROSTATICS */
529             velec            = _mm256_mul_ps(qq00,rinv00);
530             felec            = _mm256_mul_ps(velec,rinvsq00);
531
532             fscal            = felec;
533
534             /* Calculate temporary vectorial force */
535             tx               = _mm256_mul_ps(fscal,dx00);
536             ty               = _mm256_mul_ps(fscal,dy00);
537             tz               = _mm256_mul_ps(fscal,dz00);
538
539             /* Update vectorial force */
540             fix0             = _mm256_add_ps(fix0,tx);
541             fiy0             = _mm256_add_ps(fiy0,ty);
542             fiz0             = _mm256_add_ps(fiz0,tz);
543
544             fjptrA             = f+j_coord_offsetA;
545             fjptrB             = f+j_coord_offsetB;
546             fjptrC             = f+j_coord_offsetC;
547             fjptrD             = f+j_coord_offsetD;
548             fjptrE             = f+j_coord_offsetE;
549             fjptrF             = f+j_coord_offsetF;
550             fjptrG             = f+j_coord_offsetG;
551             fjptrH             = f+j_coord_offsetH;
552             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
553
554             /* Inner loop uses 26 flops */
555         }
556
557         if(jidx<j_index_end)
558         {
559
560             /* Get j neighbor index, and coordinate index */
561             jnrlistA         = jjnr[jidx];
562             jnrlistB         = jjnr[jidx+1];
563             jnrlistC         = jjnr[jidx+2];
564             jnrlistD         = jjnr[jidx+3];
565             jnrlistE         = jjnr[jidx+4];
566             jnrlistF         = jjnr[jidx+5];
567             jnrlistG         = jjnr[jidx+6];
568             jnrlistH         = jjnr[jidx+7];
569             /* Sign of each element will be negative for non-real atoms.
570              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
571              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
572              */
573             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
574                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
575                                             
576             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
577             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
578             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
579             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
580             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
581             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
582             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
583             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
584             j_coord_offsetA  = DIM*jnrA;
585             j_coord_offsetB  = DIM*jnrB;
586             j_coord_offsetC  = DIM*jnrC;
587             j_coord_offsetD  = DIM*jnrD;
588             j_coord_offsetE  = DIM*jnrE;
589             j_coord_offsetF  = DIM*jnrF;
590             j_coord_offsetG  = DIM*jnrG;
591             j_coord_offsetH  = DIM*jnrH;
592
593             /* load j atom coordinates */
594             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
595                                                  x+j_coord_offsetC,x+j_coord_offsetD,
596                                                  x+j_coord_offsetE,x+j_coord_offsetF,
597                                                  x+j_coord_offsetG,x+j_coord_offsetH,
598                                                  &jx0,&jy0,&jz0);
599
600             /* Calculate displacement vector */
601             dx00             = _mm256_sub_ps(ix0,jx0);
602             dy00             = _mm256_sub_ps(iy0,jy0);
603             dz00             = _mm256_sub_ps(iz0,jz0);
604
605             /* Calculate squared distance and things based on it */
606             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
607
608             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
609
610             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
611
612             /* Load parameters for j particles */
613             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
614                                                                  charge+jnrC+0,charge+jnrD+0,
615                                                                  charge+jnrE+0,charge+jnrF+0,
616                                                                  charge+jnrG+0,charge+jnrH+0);
617
618             /**************************
619              * CALCULATE INTERACTIONS *
620              **************************/
621
622             /* Compute parameters for interactions between i and j atoms */
623             qq00             = _mm256_mul_ps(iq0,jq0);
624
625             /* COULOMB ELECTROSTATICS */
626             velec            = _mm256_mul_ps(qq00,rinv00);
627             felec            = _mm256_mul_ps(velec,rinvsq00);
628
629             fscal            = felec;
630
631             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
632
633             /* Calculate temporary vectorial force */
634             tx               = _mm256_mul_ps(fscal,dx00);
635             ty               = _mm256_mul_ps(fscal,dy00);
636             tz               = _mm256_mul_ps(fscal,dz00);
637
638             /* Update vectorial force */
639             fix0             = _mm256_add_ps(fix0,tx);
640             fiy0             = _mm256_add_ps(fiy0,ty);
641             fiz0             = _mm256_add_ps(fiz0,tz);
642
643             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
644             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
645             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
646             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
647             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
648             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
649             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
650             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
651             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
652
653             /* Inner loop uses 26 flops */
654         }
655
656         /* End of innermost loop */
657
658         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
659                                                  f+i_coord_offset,fshift+i_shift_offset);
660
661         /* Increment number of inner iterations */
662         inneriter                  += j_index_end - j_index_start;
663
664         /* Outer loop uses 7 flops */
665     }
666
667     /* Increment number of outer iterations */
668     outeriter        += nri;
669
670     /* Update outer/inner flops */
671
672     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*26);
673 }