Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwLJ_GeomW4P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_256_single
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     real *           vdwioffsetptr3;
92     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
94     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256           dummy_mask,cutoff_mask;
108     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
109     __m256           one     = _mm256_set1_ps(1.0);
110     __m256           two     = _mm256_set1_ps(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm256_set1_ps(fr->ic->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
131     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
132     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
133     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141     j_coord_offsetE = 0;
142     j_coord_offsetF = 0;
143     j_coord_offsetG = 0;
144     j_coord_offsetH = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
171
172         fix0             = _mm256_setzero_ps();
173         fiy0             = _mm256_setzero_ps();
174         fiz0             = _mm256_setzero_ps();
175         fix1             = _mm256_setzero_ps();
176         fiy1             = _mm256_setzero_ps();
177         fiz1             = _mm256_setzero_ps();
178         fix2             = _mm256_setzero_ps();
179         fiy2             = _mm256_setzero_ps();
180         fiz2             = _mm256_setzero_ps();
181         fix3             = _mm256_setzero_ps();
182         fiy3             = _mm256_setzero_ps();
183         fiz3             = _mm256_setzero_ps();
184
185         /* Reset potential sums */
186         velecsum         = _mm256_setzero_ps();
187         vvdwsum          = _mm256_setzero_ps();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             jnrE             = jjnr[jidx+4];
199             jnrF             = jjnr[jidx+5];
200             jnrG             = jjnr[jidx+6];
201             jnrH             = jjnr[jidx+7];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204             j_coord_offsetC  = DIM*jnrC;
205             j_coord_offsetD  = DIM*jnrD;
206             j_coord_offsetE  = DIM*jnrE;
207             j_coord_offsetF  = DIM*jnrF;
208             j_coord_offsetG  = DIM*jnrG;
209             j_coord_offsetH  = DIM*jnrH;
210
211             /* load j atom coordinates */
212             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
213                                                  x+j_coord_offsetC,x+j_coord_offsetD,
214                                                  x+j_coord_offsetE,x+j_coord_offsetF,
215                                                  x+j_coord_offsetG,x+j_coord_offsetH,
216                                                  &jx0,&jy0,&jz0);
217
218             /* Calculate displacement vector */
219             dx00             = _mm256_sub_ps(ix0,jx0);
220             dy00             = _mm256_sub_ps(iy0,jy0);
221             dz00             = _mm256_sub_ps(iz0,jz0);
222             dx10             = _mm256_sub_ps(ix1,jx0);
223             dy10             = _mm256_sub_ps(iy1,jy0);
224             dz10             = _mm256_sub_ps(iz1,jz0);
225             dx20             = _mm256_sub_ps(ix2,jx0);
226             dy20             = _mm256_sub_ps(iy2,jy0);
227             dz20             = _mm256_sub_ps(iz2,jz0);
228             dx30             = _mm256_sub_ps(ix3,jx0);
229             dy30             = _mm256_sub_ps(iy3,jy0);
230             dz30             = _mm256_sub_ps(iz3,jz0);
231
232             /* Calculate squared distance and things based on it */
233             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
234             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
235             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
236             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
237
238             rinv10           = avx256_invsqrt_f(rsq10);
239             rinv20           = avx256_invsqrt_f(rsq20);
240             rinv30           = avx256_invsqrt_f(rsq30);
241
242             rinvsq00         = avx256_inv_f(rsq00);
243             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
244             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
245             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
246
247             /* Load parameters for j particles */
248             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
249                                                                  charge+jnrC+0,charge+jnrD+0,
250                                                                  charge+jnrE+0,charge+jnrF+0,
251                                                                  charge+jnrG+0,charge+jnrH+0);
252             vdwjidx0A        = 2*vdwtype[jnrA+0];
253             vdwjidx0B        = 2*vdwtype[jnrB+0];
254             vdwjidx0C        = 2*vdwtype[jnrC+0];
255             vdwjidx0D        = 2*vdwtype[jnrD+0];
256             vdwjidx0E        = 2*vdwtype[jnrE+0];
257             vdwjidx0F        = 2*vdwtype[jnrF+0];
258             vdwjidx0G        = 2*vdwtype[jnrG+0];
259             vdwjidx0H        = 2*vdwtype[jnrH+0];
260
261             fjx0             = _mm256_setzero_ps();
262             fjy0             = _mm256_setzero_ps();
263             fjz0             = _mm256_setzero_ps();
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             /* Compute parameters for interactions between i and j atoms */
270             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
271                                             vdwioffsetptr0+vdwjidx0B,
272                                             vdwioffsetptr0+vdwjidx0C,
273                                             vdwioffsetptr0+vdwjidx0D,
274                                             vdwioffsetptr0+vdwjidx0E,
275                                             vdwioffsetptr0+vdwjidx0F,
276                                             vdwioffsetptr0+vdwjidx0G,
277                                             vdwioffsetptr0+vdwjidx0H,
278                                             &c6_00,&c12_00);
279
280             /* LENNARD-JONES DISPERSION/REPULSION */
281
282             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
283             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
284             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
285             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
286             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
287
288             /* Update potential sum for this i atom from the interaction with this j atom. */
289             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
290
291             fscal            = fvdw;
292
293             /* Calculate temporary vectorial force */
294             tx               = _mm256_mul_ps(fscal,dx00);
295             ty               = _mm256_mul_ps(fscal,dy00);
296             tz               = _mm256_mul_ps(fscal,dz00);
297
298             /* Update vectorial force */
299             fix0             = _mm256_add_ps(fix0,tx);
300             fiy0             = _mm256_add_ps(fiy0,ty);
301             fiz0             = _mm256_add_ps(fiz0,tz);
302
303             fjx0             = _mm256_add_ps(fjx0,tx);
304             fjy0             = _mm256_add_ps(fjy0,ty);
305             fjz0             = _mm256_add_ps(fjz0,tz);
306
307             /**************************
308              * CALCULATE INTERACTIONS *
309              **************************/
310
311             /* Compute parameters for interactions between i and j atoms */
312             qq10             = _mm256_mul_ps(iq1,jq0);
313
314             /* COULOMB ELECTROSTATICS */
315             velec            = _mm256_mul_ps(qq10,rinv10);
316             felec            = _mm256_mul_ps(velec,rinvsq10);
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velecsum         = _mm256_add_ps(velecsum,velec);
320
321             fscal            = felec;
322
323             /* Calculate temporary vectorial force */
324             tx               = _mm256_mul_ps(fscal,dx10);
325             ty               = _mm256_mul_ps(fscal,dy10);
326             tz               = _mm256_mul_ps(fscal,dz10);
327
328             /* Update vectorial force */
329             fix1             = _mm256_add_ps(fix1,tx);
330             fiy1             = _mm256_add_ps(fiy1,ty);
331             fiz1             = _mm256_add_ps(fiz1,tz);
332
333             fjx0             = _mm256_add_ps(fjx0,tx);
334             fjy0             = _mm256_add_ps(fjy0,ty);
335             fjz0             = _mm256_add_ps(fjz0,tz);
336
337             /**************************
338              * CALCULATE INTERACTIONS *
339              **************************/
340
341             /* Compute parameters for interactions between i and j atoms */
342             qq20             = _mm256_mul_ps(iq2,jq0);
343
344             /* COULOMB ELECTROSTATICS */
345             velec            = _mm256_mul_ps(qq20,rinv20);
346             felec            = _mm256_mul_ps(velec,rinvsq20);
347
348             /* Update potential sum for this i atom from the interaction with this j atom. */
349             velecsum         = _mm256_add_ps(velecsum,velec);
350
351             fscal            = felec;
352
353             /* Calculate temporary vectorial force */
354             tx               = _mm256_mul_ps(fscal,dx20);
355             ty               = _mm256_mul_ps(fscal,dy20);
356             tz               = _mm256_mul_ps(fscal,dz20);
357
358             /* Update vectorial force */
359             fix2             = _mm256_add_ps(fix2,tx);
360             fiy2             = _mm256_add_ps(fiy2,ty);
361             fiz2             = _mm256_add_ps(fiz2,tz);
362
363             fjx0             = _mm256_add_ps(fjx0,tx);
364             fjy0             = _mm256_add_ps(fjy0,ty);
365             fjz0             = _mm256_add_ps(fjz0,tz);
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq30             = _mm256_mul_ps(iq3,jq0);
373
374             /* COULOMB ELECTROSTATICS */
375             velec            = _mm256_mul_ps(qq30,rinv30);
376             felec            = _mm256_mul_ps(velec,rinvsq30);
377
378             /* Update potential sum for this i atom from the interaction with this j atom. */
379             velecsum         = _mm256_add_ps(velecsum,velec);
380
381             fscal            = felec;
382
383             /* Calculate temporary vectorial force */
384             tx               = _mm256_mul_ps(fscal,dx30);
385             ty               = _mm256_mul_ps(fscal,dy30);
386             tz               = _mm256_mul_ps(fscal,dz30);
387
388             /* Update vectorial force */
389             fix3             = _mm256_add_ps(fix3,tx);
390             fiy3             = _mm256_add_ps(fiy3,ty);
391             fiz3             = _mm256_add_ps(fiz3,tz);
392
393             fjx0             = _mm256_add_ps(fjx0,tx);
394             fjy0             = _mm256_add_ps(fjy0,ty);
395             fjz0             = _mm256_add_ps(fjz0,tz);
396
397             fjptrA             = f+j_coord_offsetA;
398             fjptrB             = f+j_coord_offsetB;
399             fjptrC             = f+j_coord_offsetC;
400             fjptrD             = f+j_coord_offsetD;
401             fjptrE             = f+j_coord_offsetE;
402             fjptrF             = f+j_coord_offsetF;
403             fjptrG             = f+j_coord_offsetG;
404             fjptrH             = f+j_coord_offsetH;
405
406             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
407
408             /* Inner loop uses 116 flops */
409         }
410
411         if(jidx<j_index_end)
412         {
413
414             /* Get j neighbor index, and coordinate index */
415             jnrlistA         = jjnr[jidx];
416             jnrlistB         = jjnr[jidx+1];
417             jnrlistC         = jjnr[jidx+2];
418             jnrlistD         = jjnr[jidx+3];
419             jnrlistE         = jjnr[jidx+4];
420             jnrlistF         = jjnr[jidx+5];
421             jnrlistG         = jjnr[jidx+6];
422             jnrlistH         = jjnr[jidx+7];
423             /* Sign of each element will be negative for non-real atoms.
424              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
425              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
426              */
427             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
428                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
429                                             
430             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
431             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
432             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
433             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
434             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
435             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
436             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
437             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
438             j_coord_offsetA  = DIM*jnrA;
439             j_coord_offsetB  = DIM*jnrB;
440             j_coord_offsetC  = DIM*jnrC;
441             j_coord_offsetD  = DIM*jnrD;
442             j_coord_offsetE  = DIM*jnrE;
443             j_coord_offsetF  = DIM*jnrF;
444             j_coord_offsetG  = DIM*jnrG;
445             j_coord_offsetH  = DIM*jnrH;
446
447             /* load j atom coordinates */
448             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
449                                                  x+j_coord_offsetC,x+j_coord_offsetD,
450                                                  x+j_coord_offsetE,x+j_coord_offsetF,
451                                                  x+j_coord_offsetG,x+j_coord_offsetH,
452                                                  &jx0,&jy0,&jz0);
453
454             /* Calculate displacement vector */
455             dx00             = _mm256_sub_ps(ix0,jx0);
456             dy00             = _mm256_sub_ps(iy0,jy0);
457             dz00             = _mm256_sub_ps(iz0,jz0);
458             dx10             = _mm256_sub_ps(ix1,jx0);
459             dy10             = _mm256_sub_ps(iy1,jy0);
460             dz10             = _mm256_sub_ps(iz1,jz0);
461             dx20             = _mm256_sub_ps(ix2,jx0);
462             dy20             = _mm256_sub_ps(iy2,jy0);
463             dz20             = _mm256_sub_ps(iz2,jz0);
464             dx30             = _mm256_sub_ps(ix3,jx0);
465             dy30             = _mm256_sub_ps(iy3,jy0);
466             dz30             = _mm256_sub_ps(iz3,jz0);
467
468             /* Calculate squared distance and things based on it */
469             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
470             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
471             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
472             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
473
474             rinv10           = avx256_invsqrt_f(rsq10);
475             rinv20           = avx256_invsqrt_f(rsq20);
476             rinv30           = avx256_invsqrt_f(rsq30);
477
478             rinvsq00         = avx256_inv_f(rsq00);
479             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
480             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
481             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
482
483             /* Load parameters for j particles */
484             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
485                                                                  charge+jnrC+0,charge+jnrD+0,
486                                                                  charge+jnrE+0,charge+jnrF+0,
487                                                                  charge+jnrG+0,charge+jnrH+0);
488             vdwjidx0A        = 2*vdwtype[jnrA+0];
489             vdwjidx0B        = 2*vdwtype[jnrB+0];
490             vdwjidx0C        = 2*vdwtype[jnrC+0];
491             vdwjidx0D        = 2*vdwtype[jnrD+0];
492             vdwjidx0E        = 2*vdwtype[jnrE+0];
493             vdwjidx0F        = 2*vdwtype[jnrF+0];
494             vdwjidx0G        = 2*vdwtype[jnrG+0];
495             vdwjidx0H        = 2*vdwtype[jnrH+0];
496
497             fjx0             = _mm256_setzero_ps();
498             fjy0             = _mm256_setzero_ps();
499             fjz0             = _mm256_setzero_ps();
500
501             /**************************
502              * CALCULATE INTERACTIONS *
503              **************************/
504
505             /* Compute parameters for interactions between i and j atoms */
506             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
507                                             vdwioffsetptr0+vdwjidx0B,
508                                             vdwioffsetptr0+vdwjidx0C,
509                                             vdwioffsetptr0+vdwjidx0D,
510                                             vdwioffsetptr0+vdwjidx0E,
511                                             vdwioffsetptr0+vdwjidx0F,
512                                             vdwioffsetptr0+vdwjidx0G,
513                                             vdwioffsetptr0+vdwjidx0H,
514                                             &c6_00,&c12_00);
515
516             /* LENNARD-JONES DISPERSION/REPULSION */
517
518             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
519             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
520             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
521             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
522             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
523
524             /* Update potential sum for this i atom from the interaction with this j atom. */
525             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
526             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
527
528             fscal            = fvdw;
529
530             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
531
532             /* Calculate temporary vectorial force */
533             tx               = _mm256_mul_ps(fscal,dx00);
534             ty               = _mm256_mul_ps(fscal,dy00);
535             tz               = _mm256_mul_ps(fscal,dz00);
536
537             /* Update vectorial force */
538             fix0             = _mm256_add_ps(fix0,tx);
539             fiy0             = _mm256_add_ps(fiy0,ty);
540             fiz0             = _mm256_add_ps(fiz0,tz);
541
542             fjx0             = _mm256_add_ps(fjx0,tx);
543             fjy0             = _mm256_add_ps(fjy0,ty);
544             fjz0             = _mm256_add_ps(fjz0,tz);
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq10             = _mm256_mul_ps(iq1,jq0);
552
553             /* COULOMB ELECTROSTATICS */
554             velec            = _mm256_mul_ps(qq10,rinv10);
555             felec            = _mm256_mul_ps(velec,rinvsq10);
556
557             /* Update potential sum for this i atom from the interaction with this j atom. */
558             velec            = _mm256_andnot_ps(dummy_mask,velec);
559             velecsum         = _mm256_add_ps(velecsum,velec);
560
561             fscal            = felec;
562
563             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
564
565             /* Calculate temporary vectorial force */
566             tx               = _mm256_mul_ps(fscal,dx10);
567             ty               = _mm256_mul_ps(fscal,dy10);
568             tz               = _mm256_mul_ps(fscal,dz10);
569
570             /* Update vectorial force */
571             fix1             = _mm256_add_ps(fix1,tx);
572             fiy1             = _mm256_add_ps(fiy1,ty);
573             fiz1             = _mm256_add_ps(fiz1,tz);
574
575             fjx0             = _mm256_add_ps(fjx0,tx);
576             fjy0             = _mm256_add_ps(fjy0,ty);
577             fjz0             = _mm256_add_ps(fjz0,tz);
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             /* Compute parameters for interactions between i and j atoms */
584             qq20             = _mm256_mul_ps(iq2,jq0);
585
586             /* COULOMB ELECTROSTATICS */
587             velec            = _mm256_mul_ps(qq20,rinv20);
588             felec            = _mm256_mul_ps(velec,rinvsq20);
589
590             /* Update potential sum for this i atom from the interaction with this j atom. */
591             velec            = _mm256_andnot_ps(dummy_mask,velec);
592             velecsum         = _mm256_add_ps(velecsum,velec);
593
594             fscal            = felec;
595
596             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
597
598             /* Calculate temporary vectorial force */
599             tx               = _mm256_mul_ps(fscal,dx20);
600             ty               = _mm256_mul_ps(fscal,dy20);
601             tz               = _mm256_mul_ps(fscal,dz20);
602
603             /* Update vectorial force */
604             fix2             = _mm256_add_ps(fix2,tx);
605             fiy2             = _mm256_add_ps(fiy2,ty);
606             fiz2             = _mm256_add_ps(fiz2,tz);
607
608             fjx0             = _mm256_add_ps(fjx0,tx);
609             fjy0             = _mm256_add_ps(fjy0,ty);
610             fjz0             = _mm256_add_ps(fjz0,tz);
611
612             /**************************
613              * CALCULATE INTERACTIONS *
614              **************************/
615
616             /* Compute parameters for interactions between i and j atoms */
617             qq30             = _mm256_mul_ps(iq3,jq0);
618
619             /* COULOMB ELECTROSTATICS */
620             velec            = _mm256_mul_ps(qq30,rinv30);
621             felec            = _mm256_mul_ps(velec,rinvsq30);
622
623             /* Update potential sum for this i atom from the interaction with this j atom. */
624             velec            = _mm256_andnot_ps(dummy_mask,velec);
625             velecsum         = _mm256_add_ps(velecsum,velec);
626
627             fscal            = felec;
628
629             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
630
631             /* Calculate temporary vectorial force */
632             tx               = _mm256_mul_ps(fscal,dx30);
633             ty               = _mm256_mul_ps(fscal,dy30);
634             tz               = _mm256_mul_ps(fscal,dz30);
635
636             /* Update vectorial force */
637             fix3             = _mm256_add_ps(fix3,tx);
638             fiy3             = _mm256_add_ps(fiy3,ty);
639             fiz3             = _mm256_add_ps(fiz3,tz);
640
641             fjx0             = _mm256_add_ps(fjx0,tx);
642             fjy0             = _mm256_add_ps(fjy0,ty);
643             fjz0             = _mm256_add_ps(fjz0,tz);
644
645             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
646             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
647             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
648             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
649             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
650             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
651             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
652             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
653
654             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
655
656             /* Inner loop uses 116 flops */
657         }
658
659         /* End of innermost loop */
660
661         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
662                                                  f+i_coord_offset,fshift+i_shift_offset);
663
664         ggid                        = gid[iidx];
665         /* Update potential energies */
666         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
667         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
668
669         /* Increment number of inner iterations */
670         inneriter                  += j_index_end - j_index_start;
671
672         /* Outer loop uses 26 flops */
673     }
674
675     /* Increment number of outer iterations */
676     outeriter        += nri;
677
678     /* Update outer/inner flops */
679
680     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*116);
681 }
682 /*
683  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_256_single
684  * Electrostatics interaction: Coulomb
685  * VdW interaction:            LennardJones
686  * Geometry:                   Water4-Particle
687  * Calculate force/pot:        Force
688  */
689 void
690 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_256_single
691                     (t_nblist                    * gmx_restrict       nlist,
692                      rvec                        * gmx_restrict          xx,
693                      rvec                        * gmx_restrict          ff,
694                      struct t_forcerec           * gmx_restrict          fr,
695                      t_mdatoms                   * gmx_restrict     mdatoms,
696                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
697                      t_nrnb                      * gmx_restrict        nrnb)
698 {
699     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
700      * just 0 for non-waters.
701      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
702      * jnr indices corresponding to data put in the four positions in the SIMD register.
703      */
704     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
705     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
706     int              jnrA,jnrB,jnrC,jnrD;
707     int              jnrE,jnrF,jnrG,jnrH;
708     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
709     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
710     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
711     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
712     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
713     real             rcutoff_scalar;
714     real             *shiftvec,*fshift,*x,*f;
715     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
716     real             scratch[4*DIM];
717     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
718     real *           vdwioffsetptr0;
719     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
720     real *           vdwioffsetptr1;
721     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
722     real *           vdwioffsetptr2;
723     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
724     real *           vdwioffsetptr3;
725     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
726     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
727     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
728     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
729     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
730     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
731     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
732     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
733     real             *charge;
734     int              nvdwtype;
735     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
736     int              *vdwtype;
737     real             *vdwparam;
738     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
739     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
740     __m256           dummy_mask,cutoff_mask;
741     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
742     __m256           one     = _mm256_set1_ps(1.0);
743     __m256           two     = _mm256_set1_ps(2.0);
744     x                = xx[0];
745     f                = ff[0];
746
747     nri              = nlist->nri;
748     iinr             = nlist->iinr;
749     jindex           = nlist->jindex;
750     jjnr             = nlist->jjnr;
751     shiftidx         = nlist->shift;
752     gid              = nlist->gid;
753     shiftvec         = fr->shift_vec[0];
754     fshift           = fr->fshift[0];
755     facel            = _mm256_set1_ps(fr->ic->epsfac);
756     charge           = mdatoms->chargeA;
757     nvdwtype         = fr->ntype;
758     vdwparam         = fr->nbfp;
759     vdwtype          = mdatoms->typeA;
760
761     /* Setup water-specific parameters */
762     inr              = nlist->iinr[0];
763     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
764     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
765     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
766     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
767
768     /* Avoid stupid compiler warnings */
769     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
770     j_coord_offsetA = 0;
771     j_coord_offsetB = 0;
772     j_coord_offsetC = 0;
773     j_coord_offsetD = 0;
774     j_coord_offsetE = 0;
775     j_coord_offsetF = 0;
776     j_coord_offsetG = 0;
777     j_coord_offsetH = 0;
778
779     outeriter        = 0;
780     inneriter        = 0;
781
782     for(iidx=0;iidx<4*DIM;iidx++)
783     {
784         scratch[iidx] = 0.0;
785     }
786
787     /* Start outer loop over neighborlists */
788     for(iidx=0; iidx<nri; iidx++)
789     {
790         /* Load shift vector for this list */
791         i_shift_offset   = DIM*shiftidx[iidx];
792
793         /* Load limits for loop over neighbors */
794         j_index_start    = jindex[iidx];
795         j_index_end      = jindex[iidx+1];
796
797         /* Get outer coordinate index */
798         inr              = iinr[iidx];
799         i_coord_offset   = DIM*inr;
800
801         /* Load i particle coords and add shift vector */
802         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
803                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
804
805         fix0             = _mm256_setzero_ps();
806         fiy0             = _mm256_setzero_ps();
807         fiz0             = _mm256_setzero_ps();
808         fix1             = _mm256_setzero_ps();
809         fiy1             = _mm256_setzero_ps();
810         fiz1             = _mm256_setzero_ps();
811         fix2             = _mm256_setzero_ps();
812         fiy2             = _mm256_setzero_ps();
813         fiz2             = _mm256_setzero_ps();
814         fix3             = _mm256_setzero_ps();
815         fiy3             = _mm256_setzero_ps();
816         fiz3             = _mm256_setzero_ps();
817
818         /* Start inner kernel loop */
819         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
820         {
821
822             /* Get j neighbor index, and coordinate index */
823             jnrA             = jjnr[jidx];
824             jnrB             = jjnr[jidx+1];
825             jnrC             = jjnr[jidx+2];
826             jnrD             = jjnr[jidx+3];
827             jnrE             = jjnr[jidx+4];
828             jnrF             = jjnr[jidx+5];
829             jnrG             = jjnr[jidx+6];
830             jnrH             = jjnr[jidx+7];
831             j_coord_offsetA  = DIM*jnrA;
832             j_coord_offsetB  = DIM*jnrB;
833             j_coord_offsetC  = DIM*jnrC;
834             j_coord_offsetD  = DIM*jnrD;
835             j_coord_offsetE  = DIM*jnrE;
836             j_coord_offsetF  = DIM*jnrF;
837             j_coord_offsetG  = DIM*jnrG;
838             j_coord_offsetH  = DIM*jnrH;
839
840             /* load j atom coordinates */
841             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
842                                                  x+j_coord_offsetC,x+j_coord_offsetD,
843                                                  x+j_coord_offsetE,x+j_coord_offsetF,
844                                                  x+j_coord_offsetG,x+j_coord_offsetH,
845                                                  &jx0,&jy0,&jz0);
846
847             /* Calculate displacement vector */
848             dx00             = _mm256_sub_ps(ix0,jx0);
849             dy00             = _mm256_sub_ps(iy0,jy0);
850             dz00             = _mm256_sub_ps(iz0,jz0);
851             dx10             = _mm256_sub_ps(ix1,jx0);
852             dy10             = _mm256_sub_ps(iy1,jy0);
853             dz10             = _mm256_sub_ps(iz1,jz0);
854             dx20             = _mm256_sub_ps(ix2,jx0);
855             dy20             = _mm256_sub_ps(iy2,jy0);
856             dz20             = _mm256_sub_ps(iz2,jz0);
857             dx30             = _mm256_sub_ps(ix3,jx0);
858             dy30             = _mm256_sub_ps(iy3,jy0);
859             dz30             = _mm256_sub_ps(iz3,jz0);
860
861             /* Calculate squared distance and things based on it */
862             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
863             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
864             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
865             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
866
867             rinv10           = avx256_invsqrt_f(rsq10);
868             rinv20           = avx256_invsqrt_f(rsq20);
869             rinv30           = avx256_invsqrt_f(rsq30);
870
871             rinvsq00         = avx256_inv_f(rsq00);
872             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
873             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
874             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
875
876             /* Load parameters for j particles */
877             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
878                                                                  charge+jnrC+0,charge+jnrD+0,
879                                                                  charge+jnrE+0,charge+jnrF+0,
880                                                                  charge+jnrG+0,charge+jnrH+0);
881             vdwjidx0A        = 2*vdwtype[jnrA+0];
882             vdwjidx0B        = 2*vdwtype[jnrB+0];
883             vdwjidx0C        = 2*vdwtype[jnrC+0];
884             vdwjidx0D        = 2*vdwtype[jnrD+0];
885             vdwjidx0E        = 2*vdwtype[jnrE+0];
886             vdwjidx0F        = 2*vdwtype[jnrF+0];
887             vdwjidx0G        = 2*vdwtype[jnrG+0];
888             vdwjidx0H        = 2*vdwtype[jnrH+0];
889
890             fjx0             = _mm256_setzero_ps();
891             fjy0             = _mm256_setzero_ps();
892             fjz0             = _mm256_setzero_ps();
893
894             /**************************
895              * CALCULATE INTERACTIONS *
896              **************************/
897
898             /* Compute parameters for interactions between i and j atoms */
899             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
900                                             vdwioffsetptr0+vdwjidx0B,
901                                             vdwioffsetptr0+vdwjidx0C,
902                                             vdwioffsetptr0+vdwjidx0D,
903                                             vdwioffsetptr0+vdwjidx0E,
904                                             vdwioffsetptr0+vdwjidx0F,
905                                             vdwioffsetptr0+vdwjidx0G,
906                                             vdwioffsetptr0+vdwjidx0H,
907                                             &c6_00,&c12_00);
908
909             /* LENNARD-JONES DISPERSION/REPULSION */
910
911             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
912             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
913
914             fscal            = fvdw;
915
916             /* Calculate temporary vectorial force */
917             tx               = _mm256_mul_ps(fscal,dx00);
918             ty               = _mm256_mul_ps(fscal,dy00);
919             tz               = _mm256_mul_ps(fscal,dz00);
920
921             /* Update vectorial force */
922             fix0             = _mm256_add_ps(fix0,tx);
923             fiy0             = _mm256_add_ps(fiy0,ty);
924             fiz0             = _mm256_add_ps(fiz0,tz);
925
926             fjx0             = _mm256_add_ps(fjx0,tx);
927             fjy0             = _mm256_add_ps(fjy0,ty);
928             fjz0             = _mm256_add_ps(fjz0,tz);
929
930             /**************************
931              * CALCULATE INTERACTIONS *
932              **************************/
933
934             /* Compute parameters for interactions between i and j atoms */
935             qq10             = _mm256_mul_ps(iq1,jq0);
936
937             /* COULOMB ELECTROSTATICS */
938             velec            = _mm256_mul_ps(qq10,rinv10);
939             felec            = _mm256_mul_ps(velec,rinvsq10);
940
941             fscal            = felec;
942
943             /* Calculate temporary vectorial force */
944             tx               = _mm256_mul_ps(fscal,dx10);
945             ty               = _mm256_mul_ps(fscal,dy10);
946             tz               = _mm256_mul_ps(fscal,dz10);
947
948             /* Update vectorial force */
949             fix1             = _mm256_add_ps(fix1,tx);
950             fiy1             = _mm256_add_ps(fiy1,ty);
951             fiz1             = _mm256_add_ps(fiz1,tz);
952
953             fjx0             = _mm256_add_ps(fjx0,tx);
954             fjy0             = _mm256_add_ps(fjy0,ty);
955             fjz0             = _mm256_add_ps(fjz0,tz);
956
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             /* Compute parameters for interactions between i and j atoms */
962             qq20             = _mm256_mul_ps(iq2,jq0);
963
964             /* COULOMB ELECTROSTATICS */
965             velec            = _mm256_mul_ps(qq20,rinv20);
966             felec            = _mm256_mul_ps(velec,rinvsq20);
967
968             fscal            = felec;
969
970             /* Calculate temporary vectorial force */
971             tx               = _mm256_mul_ps(fscal,dx20);
972             ty               = _mm256_mul_ps(fscal,dy20);
973             tz               = _mm256_mul_ps(fscal,dz20);
974
975             /* Update vectorial force */
976             fix2             = _mm256_add_ps(fix2,tx);
977             fiy2             = _mm256_add_ps(fiy2,ty);
978             fiz2             = _mm256_add_ps(fiz2,tz);
979
980             fjx0             = _mm256_add_ps(fjx0,tx);
981             fjy0             = _mm256_add_ps(fjy0,ty);
982             fjz0             = _mm256_add_ps(fjz0,tz);
983
984             /**************************
985              * CALCULATE INTERACTIONS *
986              **************************/
987
988             /* Compute parameters for interactions between i and j atoms */
989             qq30             = _mm256_mul_ps(iq3,jq0);
990
991             /* COULOMB ELECTROSTATICS */
992             velec            = _mm256_mul_ps(qq30,rinv30);
993             felec            = _mm256_mul_ps(velec,rinvsq30);
994
995             fscal            = felec;
996
997             /* Calculate temporary vectorial force */
998             tx               = _mm256_mul_ps(fscal,dx30);
999             ty               = _mm256_mul_ps(fscal,dy30);
1000             tz               = _mm256_mul_ps(fscal,dz30);
1001
1002             /* Update vectorial force */
1003             fix3             = _mm256_add_ps(fix3,tx);
1004             fiy3             = _mm256_add_ps(fiy3,ty);
1005             fiz3             = _mm256_add_ps(fiz3,tz);
1006
1007             fjx0             = _mm256_add_ps(fjx0,tx);
1008             fjy0             = _mm256_add_ps(fjy0,ty);
1009             fjz0             = _mm256_add_ps(fjz0,tz);
1010
1011             fjptrA             = f+j_coord_offsetA;
1012             fjptrB             = f+j_coord_offsetB;
1013             fjptrC             = f+j_coord_offsetC;
1014             fjptrD             = f+j_coord_offsetD;
1015             fjptrE             = f+j_coord_offsetE;
1016             fjptrF             = f+j_coord_offsetF;
1017             fjptrG             = f+j_coord_offsetG;
1018             fjptrH             = f+j_coord_offsetH;
1019
1020             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1021
1022             /* Inner loop uses 108 flops */
1023         }
1024
1025         if(jidx<j_index_end)
1026         {
1027
1028             /* Get j neighbor index, and coordinate index */
1029             jnrlistA         = jjnr[jidx];
1030             jnrlistB         = jjnr[jidx+1];
1031             jnrlistC         = jjnr[jidx+2];
1032             jnrlistD         = jjnr[jidx+3];
1033             jnrlistE         = jjnr[jidx+4];
1034             jnrlistF         = jjnr[jidx+5];
1035             jnrlistG         = jjnr[jidx+6];
1036             jnrlistH         = jjnr[jidx+7];
1037             /* Sign of each element will be negative for non-real atoms.
1038              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1039              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1040              */
1041             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1042                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1043                                             
1044             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1045             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1046             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1047             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1048             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1049             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1050             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1051             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1052             j_coord_offsetA  = DIM*jnrA;
1053             j_coord_offsetB  = DIM*jnrB;
1054             j_coord_offsetC  = DIM*jnrC;
1055             j_coord_offsetD  = DIM*jnrD;
1056             j_coord_offsetE  = DIM*jnrE;
1057             j_coord_offsetF  = DIM*jnrF;
1058             j_coord_offsetG  = DIM*jnrG;
1059             j_coord_offsetH  = DIM*jnrH;
1060
1061             /* load j atom coordinates */
1062             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1063                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1064                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1065                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1066                                                  &jx0,&jy0,&jz0);
1067
1068             /* Calculate displacement vector */
1069             dx00             = _mm256_sub_ps(ix0,jx0);
1070             dy00             = _mm256_sub_ps(iy0,jy0);
1071             dz00             = _mm256_sub_ps(iz0,jz0);
1072             dx10             = _mm256_sub_ps(ix1,jx0);
1073             dy10             = _mm256_sub_ps(iy1,jy0);
1074             dz10             = _mm256_sub_ps(iz1,jz0);
1075             dx20             = _mm256_sub_ps(ix2,jx0);
1076             dy20             = _mm256_sub_ps(iy2,jy0);
1077             dz20             = _mm256_sub_ps(iz2,jz0);
1078             dx30             = _mm256_sub_ps(ix3,jx0);
1079             dy30             = _mm256_sub_ps(iy3,jy0);
1080             dz30             = _mm256_sub_ps(iz3,jz0);
1081
1082             /* Calculate squared distance and things based on it */
1083             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1084             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1085             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1086             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1087
1088             rinv10           = avx256_invsqrt_f(rsq10);
1089             rinv20           = avx256_invsqrt_f(rsq20);
1090             rinv30           = avx256_invsqrt_f(rsq30);
1091
1092             rinvsq00         = avx256_inv_f(rsq00);
1093             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1094             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1095             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1096
1097             /* Load parameters for j particles */
1098             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1099                                                                  charge+jnrC+0,charge+jnrD+0,
1100                                                                  charge+jnrE+0,charge+jnrF+0,
1101                                                                  charge+jnrG+0,charge+jnrH+0);
1102             vdwjidx0A        = 2*vdwtype[jnrA+0];
1103             vdwjidx0B        = 2*vdwtype[jnrB+0];
1104             vdwjidx0C        = 2*vdwtype[jnrC+0];
1105             vdwjidx0D        = 2*vdwtype[jnrD+0];
1106             vdwjidx0E        = 2*vdwtype[jnrE+0];
1107             vdwjidx0F        = 2*vdwtype[jnrF+0];
1108             vdwjidx0G        = 2*vdwtype[jnrG+0];
1109             vdwjidx0H        = 2*vdwtype[jnrH+0];
1110
1111             fjx0             = _mm256_setzero_ps();
1112             fjy0             = _mm256_setzero_ps();
1113             fjz0             = _mm256_setzero_ps();
1114
1115             /**************************
1116              * CALCULATE INTERACTIONS *
1117              **************************/
1118
1119             /* Compute parameters for interactions between i and j atoms */
1120             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1121                                             vdwioffsetptr0+vdwjidx0B,
1122                                             vdwioffsetptr0+vdwjidx0C,
1123                                             vdwioffsetptr0+vdwjidx0D,
1124                                             vdwioffsetptr0+vdwjidx0E,
1125                                             vdwioffsetptr0+vdwjidx0F,
1126                                             vdwioffsetptr0+vdwjidx0G,
1127                                             vdwioffsetptr0+vdwjidx0H,
1128                                             &c6_00,&c12_00);
1129
1130             /* LENNARD-JONES DISPERSION/REPULSION */
1131
1132             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1133             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1134
1135             fscal            = fvdw;
1136
1137             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1138
1139             /* Calculate temporary vectorial force */
1140             tx               = _mm256_mul_ps(fscal,dx00);
1141             ty               = _mm256_mul_ps(fscal,dy00);
1142             tz               = _mm256_mul_ps(fscal,dz00);
1143
1144             /* Update vectorial force */
1145             fix0             = _mm256_add_ps(fix0,tx);
1146             fiy0             = _mm256_add_ps(fiy0,ty);
1147             fiz0             = _mm256_add_ps(fiz0,tz);
1148
1149             fjx0             = _mm256_add_ps(fjx0,tx);
1150             fjy0             = _mm256_add_ps(fjy0,ty);
1151             fjz0             = _mm256_add_ps(fjz0,tz);
1152
1153             /**************************
1154              * CALCULATE INTERACTIONS *
1155              **************************/
1156
1157             /* Compute parameters for interactions between i and j atoms */
1158             qq10             = _mm256_mul_ps(iq1,jq0);
1159
1160             /* COULOMB ELECTROSTATICS */
1161             velec            = _mm256_mul_ps(qq10,rinv10);
1162             felec            = _mm256_mul_ps(velec,rinvsq10);
1163
1164             fscal            = felec;
1165
1166             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1167
1168             /* Calculate temporary vectorial force */
1169             tx               = _mm256_mul_ps(fscal,dx10);
1170             ty               = _mm256_mul_ps(fscal,dy10);
1171             tz               = _mm256_mul_ps(fscal,dz10);
1172
1173             /* Update vectorial force */
1174             fix1             = _mm256_add_ps(fix1,tx);
1175             fiy1             = _mm256_add_ps(fiy1,ty);
1176             fiz1             = _mm256_add_ps(fiz1,tz);
1177
1178             fjx0             = _mm256_add_ps(fjx0,tx);
1179             fjy0             = _mm256_add_ps(fjy0,ty);
1180             fjz0             = _mm256_add_ps(fjz0,tz);
1181
1182             /**************************
1183              * CALCULATE INTERACTIONS *
1184              **************************/
1185
1186             /* Compute parameters for interactions between i and j atoms */
1187             qq20             = _mm256_mul_ps(iq2,jq0);
1188
1189             /* COULOMB ELECTROSTATICS */
1190             velec            = _mm256_mul_ps(qq20,rinv20);
1191             felec            = _mm256_mul_ps(velec,rinvsq20);
1192
1193             fscal            = felec;
1194
1195             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1196
1197             /* Calculate temporary vectorial force */
1198             tx               = _mm256_mul_ps(fscal,dx20);
1199             ty               = _mm256_mul_ps(fscal,dy20);
1200             tz               = _mm256_mul_ps(fscal,dz20);
1201
1202             /* Update vectorial force */
1203             fix2             = _mm256_add_ps(fix2,tx);
1204             fiy2             = _mm256_add_ps(fiy2,ty);
1205             fiz2             = _mm256_add_ps(fiz2,tz);
1206
1207             fjx0             = _mm256_add_ps(fjx0,tx);
1208             fjy0             = _mm256_add_ps(fjy0,ty);
1209             fjz0             = _mm256_add_ps(fjz0,tz);
1210
1211             /**************************
1212              * CALCULATE INTERACTIONS *
1213              **************************/
1214
1215             /* Compute parameters for interactions between i and j atoms */
1216             qq30             = _mm256_mul_ps(iq3,jq0);
1217
1218             /* COULOMB ELECTROSTATICS */
1219             velec            = _mm256_mul_ps(qq30,rinv30);
1220             felec            = _mm256_mul_ps(velec,rinvsq30);
1221
1222             fscal            = felec;
1223
1224             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1225
1226             /* Calculate temporary vectorial force */
1227             tx               = _mm256_mul_ps(fscal,dx30);
1228             ty               = _mm256_mul_ps(fscal,dy30);
1229             tz               = _mm256_mul_ps(fscal,dz30);
1230
1231             /* Update vectorial force */
1232             fix3             = _mm256_add_ps(fix3,tx);
1233             fiy3             = _mm256_add_ps(fiy3,ty);
1234             fiz3             = _mm256_add_ps(fiz3,tz);
1235
1236             fjx0             = _mm256_add_ps(fjx0,tx);
1237             fjy0             = _mm256_add_ps(fjy0,ty);
1238             fjz0             = _mm256_add_ps(fjz0,tz);
1239
1240             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1241             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1242             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1243             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1244             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1245             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1246             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1247             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1248
1249             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1250
1251             /* Inner loop uses 108 flops */
1252         }
1253
1254         /* End of innermost loop */
1255
1256         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1257                                                  f+i_coord_offset,fshift+i_shift_offset);
1258
1259         /* Increment number of inner iterations */
1260         inneriter                  += j_index_end - j_index_start;
1261
1262         /* Outer loop uses 24 flops */
1263     }
1264
1265     /* Increment number of outer iterations */
1266     outeriter        += nri;
1267
1268     /* Update outer/inner flops */
1269
1270     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*108);
1271 }