Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwLJ_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_256_single
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     real *           vdwioffsetptr3;
95     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
96     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
97     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
98     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
99     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
100     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
102     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
103     real             *charge;
104     int              nvdwtype;
105     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
106     int              *vdwtype;
107     real             *vdwparam;
108     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
109     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
110     __m256           dummy_mask,cutoff_mask;
111     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
112     __m256           one     = _mm256_set1_ps(1.0);
113     __m256           two     = _mm256_set1_ps(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_ps(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
134     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
135     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
136     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144     j_coord_offsetE = 0;
145     j_coord_offsetF = 0;
146     j_coord_offsetG = 0;
147     j_coord_offsetH = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
174
175         fix0             = _mm256_setzero_ps();
176         fiy0             = _mm256_setzero_ps();
177         fiz0             = _mm256_setzero_ps();
178         fix1             = _mm256_setzero_ps();
179         fiy1             = _mm256_setzero_ps();
180         fiz1             = _mm256_setzero_ps();
181         fix2             = _mm256_setzero_ps();
182         fiy2             = _mm256_setzero_ps();
183         fiz2             = _mm256_setzero_ps();
184         fix3             = _mm256_setzero_ps();
185         fiy3             = _mm256_setzero_ps();
186         fiz3             = _mm256_setzero_ps();
187
188         /* Reset potential sums */
189         velecsum         = _mm256_setzero_ps();
190         vvdwsum          = _mm256_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             jnrE             = jjnr[jidx+4];
202             jnrF             = jjnr[jidx+5];
203             jnrG             = jjnr[jidx+6];
204             jnrH             = jjnr[jidx+7];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209             j_coord_offsetE  = DIM*jnrE;
210             j_coord_offsetF  = DIM*jnrF;
211             j_coord_offsetG  = DIM*jnrG;
212             j_coord_offsetH  = DIM*jnrH;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  x+j_coord_offsetE,x+j_coord_offsetF,
218                                                  x+j_coord_offsetG,x+j_coord_offsetH,
219                                                  &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm256_sub_ps(ix0,jx0);
223             dy00             = _mm256_sub_ps(iy0,jy0);
224             dz00             = _mm256_sub_ps(iz0,jz0);
225             dx10             = _mm256_sub_ps(ix1,jx0);
226             dy10             = _mm256_sub_ps(iy1,jy0);
227             dz10             = _mm256_sub_ps(iz1,jz0);
228             dx20             = _mm256_sub_ps(ix2,jx0);
229             dy20             = _mm256_sub_ps(iy2,jy0);
230             dz20             = _mm256_sub_ps(iz2,jz0);
231             dx30             = _mm256_sub_ps(ix3,jx0);
232             dy30             = _mm256_sub_ps(iy3,jy0);
233             dz30             = _mm256_sub_ps(iz3,jz0);
234
235             /* Calculate squared distance and things based on it */
236             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
237             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
238             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
239             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
240
241             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
242             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
243             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
244
245             rinvsq00         = gmx_mm256_inv_ps(rsq00);
246             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
247             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
248             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
249
250             /* Load parameters for j particles */
251             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
252                                                                  charge+jnrC+0,charge+jnrD+0,
253                                                                  charge+jnrE+0,charge+jnrF+0,
254                                                                  charge+jnrG+0,charge+jnrH+0);
255             vdwjidx0A        = 2*vdwtype[jnrA+0];
256             vdwjidx0B        = 2*vdwtype[jnrB+0];
257             vdwjidx0C        = 2*vdwtype[jnrC+0];
258             vdwjidx0D        = 2*vdwtype[jnrD+0];
259             vdwjidx0E        = 2*vdwtype[jnrE+0];
260             vdwjidx0F        = 2*vdwtype[jnrF+0];
261             vdwjidx0G        = 2*vdwtype[jnrG+0];
262             vdwjidx0H        = 2*vdwtype[jnrH+0];
263
264             fjx0             = _mm256_setzero_ps();
265             fjy0             = _mm256_setzero_ps();
266             fjz0             = _mm256_setzero_ps();
267
268             /**************************
269              * CALCULATE INTERACTIONS *
270              **************************/
271
272             /* Compute parameters for interactions between i and j atoms */
273             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
274                                             vdwioffsetptr0+vdwjidx0B,
275                                             vdwioffsetptr0+vdwjidx0C,
276                                             vdwioffsetptr0+vdwjidx0D,
277                                             vdwioffsetptr0+vdwjidx0E,
278                                             vdwioffsetptr0+vdwjidx0F,
279                                             vdwioffsetptr0+vdwjidx0G,
280                                             vdwioffsetptr0+vdwjidx0H,
281                                             &c6_00,&c12_00);
282
283             /* LENNARD-JONES DISPERSION/REPULSION */
284
285             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
286             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
287             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
288             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
289             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
290
291             /* Update potential sum for this i atom from the interaction with this j atom. */
292             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
293
294             fscal            = fvdw;
295
296             /* Calculate temporary vectorial force */
297             tx               = _mm256_mul_ps(fscal,dx00);
298             ty               = _mm256_mul_ps(fscal,dy00);
299             tz               = _mm256_mul_ps(fscal,dz00);
300
301             /* Update vectorial force */
302             fix0             = _mm256_add_ps(fix0,tx);
303             fiy0             = _mm256_add_ps(fiy0,ty);
304             fiz0             = _mm256_add_ps(fiz0,tz);
305
306             fjx0             = _mm256_add_ps(fjx0,tx);
307             fjy0             = _mm256_add_ps(fjy0,ty);
308             fjz0             = _mm256_add_ps(fjz0,tz);
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq10             = _mm256_mul_ps(iq1,jq0);
316
317             /* COULOMB ELECTROSTATICS */
318             velec            = _mm256_mul_ps(qq10,rinv10);
319             felec            = _mm256_mul_ps(velec,rinvsq10);
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             velecsum         = _mm256_add_ps(velecsum,velec);
323
324             fscal            = felec;
325
326             /* Calculate temporary vectorial force */
327             tx               = _mm256_mul_ps(fscal,dx10);
328             ty               = _mm256_mul_ps(fscal,dy10);
329             tz               = _mm256_mul_ps(fscal,dz10);
330
331             /* Update vectorial force */
332             fix1             = _mm256_add_ps(fix1,tx);
333             fiy1             = _mm256_add_ps(fiy1,ty);
334             fiz1             = _mm256_add_ps(fiz1,tz);
335
336             fjx0             = _mm256_add_ps(fjx0,tx);
337             fjy0             = _mm256_add_ps(fjy0,ty);
338             fjz0             = _mm256_add_ps(fjz0,tz);
339
340             /**************************
341              * CALCULATE INTERACTIONS *
342              **************************/
343
344             /* Compute parameters for interactions between i and j atoms */
345             qq20             = _mm256_mul_ps(iq2,jq0);
346
347             /* COULOMB ELECTROSTATICS */
348             velec            = _mm256_mul_ps(qq20,rinv20);
349             felec            = _mm256_mul_ps(velec,rinvsq20);
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             velecsum         = _mm256_add_ps(velecsum,velec);
353
354             fscal            = felec;
355
356             /* Calculate temporary vectorial force */
357             tx               = _mm256_mul_ps(fscal,dx20);
358             ty               = _mm256_mul_ps(fscal,dy20);
359             tz               = _mm256_mul_ps(fscal,dz20);
360
361             /* Update vectorial force */
362             fix2             = _mm256_add_ps(fix2,tx);
363             fiy2             = _mm256_add_ps(fiy2,ty);
364             fiz2             = _mm256_add_ps(fiz2,tz);
365
366             fjx0             = _mm256_add_ps(fjx0,tx);
367             fjy0             = _mm256_add_ps(fjy0,ty);
368             fjz0             = _mm256_add_ps(fjz0,tz);
369
370             /**************************
371              * CALCULATE INTERACTIONS *
372              **************************/
373
374             /* Compute parameters for interactions between i and j atoms */
375             qq30             = _mm256_mul_ps(iq3,jq0);
376
377             /* COULOMB ELECTROSTATICS */
378             velec            = _mm256_mul_ps(qq30,rinv30);
379             felec            = _mm256_mul_ps(velec,rinvsq30);
380
381             /* Update potential sum for this i atom from the interaction with this j atom. */
382             velecsum         = _mm256_add_ps(velecsum,velec);
383
384             fscal            = felec;
385
386             /* Calculate temporary vectorial force */
387             tx               = _mm256_mul_ps(fscal,dx30);
388             ty               = _mm256_mul_ps(fscal,dy30);
389             tz               = _mm256_mul_ps(fscal,dz30);
390
391             /* Update vectorial force */
392             fix3             = _mm256_add_ps(fix3,tx);
393             fiy3             = _mm256_add_ps(fiy3,ty);
394             fiz3             = _mm256_add_ps(fiz3,tz);
395
396             fjx0             = _mm256_add_ps(fjx0,tx);
397             fjy0             = _mm256_add_ps(fjy0,ty);
398             fjz0             = _mm256_add_ps(fjz0,tz);
399
400             fjptrA             = f+j_coord_offsetA;
401             fjptrB             = f+j_coord_offsetB;
402             fjptrC             = f+j_coord_offsetC;
403             fjptrD             = f+j_coord_offsetD;
404             fjptrE             = f+j_coord_offsetE;
405             fjptrF             = f+j_coord_offsetF;
406             fjptrG             = f+j_coord_offsetG;
407             fjptrH             = f+j_coord_offsetH;
408
409             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
410
411             /* Inner loop uses 116 flops */
412         }
413
414         if(jidx<j_index_end)
415         {
416
417             /* Get j neighbor index, and coordinate index */
418             jnrlistA         = jjnr[jidx];
419             jnrlistB         = jjnr[jidx+1];
420             jnrlistC         = jjnr[jidx+2];
421             jnrlistD         = jjnr[jidx+3];
422             jnrlistE         = jjnr[jidx+4];
423             jnrlistF         = jjnr[jidx+5];
424             jnrlistG         = jjnr[jidx+6];
425             jnrlistH         = jjnr[jidx+7];
426             /* Sign of each element will be negative for non-real atoms.
427              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
428              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
429              */
430             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
431                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
432                                             
433             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
434             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
435             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
436             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
437             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
438             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
439             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
440             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
441             j_coord_offsetA  = DIM*jnrA;
442             j_coord_offsetB  = DIM*jnrB;
443             j_coord_offsetC  = DIM*jnrC;
444             j_coord_offsetD  = DIM*jnrD;
445             j_coord_offsetE  = DIM*jnrE;
446             j_coord_offsetF  = DIM*jnrF;
447             j_coord_offsetG  = DIM*jnrG;
448             j_coord_offsetH  = DIM*jnrH;
449
450             /* load j atom coordinates */
451             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
452                                                  x+j_coord_offsetC,x+j_coord_offsetD,
453                                                  x+j_coord_offsetE,x+j_coord_offsetF,
454                                                  x+j_coord_offsetG,x+j_coord_offsetH,
455                                                  &jx0,&jy0,&jz0);
456
457             /* Calculate displacement vector */
458             dx00             = _mm256_sub_ps(ix0,jx0);
459             dy00             = _mm256_sub_ps(iy0,jy0);
460             dz00             = _mm256_sub_ps(iz0,jz0);
461             dx10             = _mm256_sub_ps(ix1,jx0);
462             dy10             = _mm256_sub_ps(iy1,jy0);
463             dz10             = _mm256_sub_ps(iz1,jz0);
464             dx20             = _mm256_sub_ps(ix2,jx0);
465             dy20             = _mm256_sub_ps(iy2,jy0);
466             dz20             = _mm256_sub_ps(iz2,jz0);
467             dx30             = _mm256_sub_ps(ix3,jx0);
468             dy30             = _mm256_sub_ps(iy3,jy0);
469             dz30             = _mm256_sub_ps(iz3,jz0);
470
471             /* Calculate squared distance and things based on it */
472             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
473             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
474             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
475             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
476
477             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
478             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
479             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
480
481             rinvsq00         = gmx_mm256_inv_ps(rsq00);
482             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
483             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
484             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
485
486             /* Load parameters for j particles */
487             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
488                                                                  charge+jnrC+0,charge+jnrD+0,
489                                                                  charge+jnrE+0,charge+jnrF+0,
490                                                                  charge+jnrG+0,charge+jnrH+0);
491             vdwjidx0A        = 2*vdwtype[jnrA+0];
492             vdwjidx0B        = 2*vdwtype[jnrB+0];
493             vdwjidx0C        = 2*vdwtype[jnrC+0];
494             vdwjidx0D        = 2*vdwtype[jnrD+0];
495             vdwjidx0E        = 2*vdwtype[jnrE+0];
496             vdwjidx0F        = 2*vdwtype[jnrF+0];
497             vdwjidx0G        = 2*vdwtype[jnrG+0];
498             vdwjidx0H        = 2*vdwtype[jnrH+0];
499
500             fjx0             = _mm256_setzero_ps();
501             fjy0             = _mm256_setzero_ps();
502             fjz0             = _mm256_setzero_ps();
503
504             /**************************
505              * CALCULATE INTERACTIONS *
506              **************************/
507
508             /* Compute parameters for interactions between i and j atoms */
509             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
510                                             vdwioffsetptr0+vdwjidx0B,
511                                             vdwioffsetptr0+vdwjidx0C,
512                                             vdwioffsetptr0+vdwjidx0D,
513                                             vdwioffsetptr0+vdwjidx0E,
514                                             vdwioffsetptr0+vdwjidx0F,
515                                             vdwioffsetptr0+vdwjidx0G,
516                                             vdwioffsetptr0+vdwjidx0H,
517                                             &c6_00,&c12_00);
518
519             /* LENNARD-JONES DISPERSION/REPULSION */
520
521             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
522             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
523             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
524             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
525             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
526
527             /* Update potential sum for this i atom from the interaction with this j atom. */
528             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
529             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
530
531             fscal            = fvdw;
532
533             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
534
535             /* Calculate temporary vectorial force */
536             tx               = _mm256_mul_ps(fscal,dx00);
537             ty               = _mm256_mul_ps(fscal,dy00);
538             tz               = _mm256_mul_ps(fscal,dz00);
539
540             /* Update vectorial force */
541             fix0             = _mm256_add_ps(fix0,tx);
542             fiy0             = _mm256_add_ps(fiy0,ty);
543             fiz0             = _mm256_add_ps(fiz0,tz);
544
545             fjx0             = _mm256_add_ps(fjx0,tx);
546             fjy0             = _mm256_add_ps(fjy0,ty);
547             fjz0             = _mm256_add_ps(fjz0,tz);
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             /* Compute parameters for interactions between i and j atoms */
554             qq10             = _mm256_mul_ps(iq1,jq0);
555
556             /* COULOMB ELECTROSTATICS */
557             velec            = _mm256_mul_ps(qq10,rinv10);
558             felec            = _mm256_mul_ps(velec,rinvsq10);
559
560             /* Update potential sum for this i atom from the interaction with this j atom. */
561             velec            = _mm256_andnot_ps(dummy_mask,velec);
562             velecsum         = _mm256_add_ps(velecsum,velec);
563
564             fscal            = felec;
565
566             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
567
568             /* Calculate temporary vectorial force */
569             tx               = _mm256_mul_ps(fscal,dx10);
570             ty               = _mm256_mul_ps(fscal,dy10);
571             tz               = _mm256_mul_ps(fscal,dz10);
572
573             /* Update vectorial force */
574             fix1             = _mm256_add_ps(fix1,tx);
575             fiy1             = _mm256_add_ps(fiy1,ty);
576             fiz1             = _mm256_add_ps(fiz1,tz);
577
578             fjx0             = _mm256_add_ps(fjx0,tx);
579             fjy0             = _mm256_add_ps(fjy0,ty);
580             fjz0             = _mm256_add_ps(fjz0,tz);
581
582             /**************************
583              * CALCULATE INTERACTIONS *
584              **************************/
585
586             /* Compute parameters for interactions between i and j atoms */
587             qq20             = _mm256_mul_ps(iq2,jq0);
588
589             /* COULOMB ELECTROSTATICS */
590             velec            = _mm256_mul_ps(qq20,rinv20);
591             felec            = _mm256_mul_ps(velec,rinvsq20);
592
593             /* Update potential sum for this i atom from the interaction with this j atom. */
594             velec            = _mm256_andnot_ps(dummy_mask,velec);
595             velecsum         = _mm256_add_ps(velecsum,velec);
596
597             fscal            = felec;
598
599             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
600
601             /* Calculate temporary vectorial force */
602             tx               = _mm256_mul_ps(fscal,dx20);
603             ty               = _mm256_mul_ps(fscal,dy20);
604             tz               = _mm256_mul_ps(fscal,dz20);
605
606             /* Update vectorial force */
607             fix2             = _mm256_add_ps(fix2,tx);
608             fiy2             = _mm256_add_ps(fiy2,ty);
609             fiz2             = _mm256_add_ps(fiz2,tz);
610
611             fjx0             = _mm256_add_ps(fjx0,tx);
612             fjy0             = _mm256_add_ps(fjy0,ty);
613             fjz0             = _mm256_add_ps(fjz0,tz);
614
615             /**************************
616              * CALCULATE INTERACTIONS *
617              **************************/
618
619             /* Compute parameters for interactions between i and j atoms */
620             qq30             = _mm256_mul_ps(iq3,jq0);
621
622             /* COULOMB ELECTROSTATICS */
623             velec            = _mm256_mul_ps(qq30,rinv30);
624             felec            = _mm256_mul_ps(velec,rinvsq30);
625
626             /* Update potential sum for this i atom from the interaction with this j atom. */
627             velec            = _mm256_andnot_ps(dummy_mask,velec);
628             velecsum         = _mm256_add_ps(velecsum,velec);
629
630             fscal            = felec;
631
632             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
633
634             /* Calculate temporary vectorial force */
635             tx               = _mm256_mul_ps(fscal,dx30);
636             ty               = _mm256_mul_ps(fscal,dy30);
637             tz               = _mm256_mul_ps(fscal,dz30);
638
639             /* Update vectorial force */
640             fix3             = _mm256_add_ps(fix3,tx);
641             fiy3             = _mm256_add_ps(fiy3,ty);
642             fiz3             = _mm256_add_ps(fiz3,tz);
643
644             fjx0             = _mm256_add_ps(fjx0,tx);
645             fjy0             = _mm256_add_ps(fjy0,ty);
646             fjz0             = _mm256_add_ps(fjz0,tz);
647
648             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
649             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
650             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
651             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
652             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
653             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
654             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
655             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
656
657             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
658
659             /* Inner loop uses 116 flops */
660         }
661
662         /* End of innermost loop */
663
664         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
665                                                  f+i_coord_offset,fshift+i_shift_offset);
666
667         ggid                        = gid[iidx];
668         /* Update potential energies */
669         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
670         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
671
672         /* Increment number of inner iterations */
673         inneriter                  += j_index_end - j_index_start;
674
675         /* Outer loop uses 26 flops */
676     }
677
678     /* Increment number of outer iterations */
679     outeriter        += nri;
680
681     /* Update outer/inner flops */
682
683     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*116);
684 }
685 /*
686  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_256_single
687  * Electrostatics interaction: Coulomb
688  * VdW interaction:            LennardJones
689  * Geometry:                   Water4-Particle
690  * Calculate force/pot:        Force
691  */
692 void
693 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_256_single
694                     (t_nblist                    * gmx_restrict       nlist,
695                      rvec                        * gmx_restrict          xx,
696                      rvec                        * gmx_restrict          ff,
697                      t_forcerec                  * gmx_restrict          fr,
698                      t_mdatoms                   * gmx_restrict     mdatoms,
699                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
700                      t_nrnb                      * gmx_restrict        nrnb)
701 {
702     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
703      * just 0 for non-waters.
704      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
705      * jnr indices corresponding to data put in the four positions in the SIMD register.
706      */
707     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
708     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
709     int              jnrA,jnrB,jnrC,jnrD;
710     int              jnrE,jnrF,jnrG,jnrH;
711     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
712     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
713     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
714     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
715     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
716     real             rcutoff_scalar;
717     real             *shiftvec,*fshift,*x,*f;
718     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
719     real             scratch[4*DIM];
720     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
721     real *           vdwioffsetptr0;
722     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
723     real *           vdwioffsetptr1;
724     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
725     real *           vdwioffsetptr2;
726     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
727     real *           vdwioffsetptr3;
728     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
729     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
730     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
731     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
732     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
733     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
734     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
735     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
736     real             *charge;
737     int              nvdwtype;
738     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
739     int              *vdwtype;
740     real             *vdwparam;
741     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
742     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
743     __m256           dummy_mask,cutoff_mask;
744     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
745     __m256           one     = _mm256_set1_ps(1.0);
746     __m256           two     = _mm256_set1_ps(2.0);
747     x                = xx[0];
748     f                = ff[0];
749
750     nri              = nlist->nri;
751     iinr             = nlist->iinr;
752     jindex           = nlist->jindex;
753     jjnr             = nlist->jjnr;
754     shiftidx         = nlist->shift;
755     gid              = nlist->gid;
756     shiftvec         = fr->shift_vec[0];
757     fshift           = fr->fshift[0];
758     facel            = _mm256_set1_ps(fr->epsfac);
759     charge           = mdatoms->chargeA;
760     nvdwtype         = fr->ntype;
761     vdwparam         = fr->nbfp;
762     vdwtype          = mdatoms->typeA;
763
764     /* Setup water-specific parameters */
765     inr              = nlist->iinr[0];
766     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
767     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
768     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
769     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
770
771     /* Avoid stupid compiler warnings */
772     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
773     j_coord_offsetA = 0;
774     j_coord_offsetB = 0;
775     j_coord_offsetC = 0;
776     j_coord_offsetD = 0;
777     j_coord_offsetE = 0;
778     j_coord_offsetF = 0;
779     j_coord_offsetG = 0;
780     j_coord_offsetH = 0;
781
782     outeriter        = 0;
783     inneriter        = 0;
784
785     for(iidx=0;iidx<4*DIM;iidx++)
786     {
787         scratch[iidx] = 0.0;
788     }
789
790     /* Start outer loop over neighborlists */
791     for(iidx=0; iidx<nri; iidx++)
792     {
793         /* Load shift vector for this list */
794         i_shift_offset   = DIM*shiftidx[iidx];
795
796         /* Load limits for loop over neighbors */
797         j_index_start    = jindex[iidx];
798         j_index_end      = jindex[iidx+1];
799
800         /* Get outer coordinate index */
801         inr              = iinr[iidx];
802         i_coord_offset   = DIM*inr;
803
804         /* Load i particle coords and add shift vector */
805         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
806                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
807
808         fix0             = _mm256_setzero_ps();
809         fiy0             = _mm256_setzero_ps();
810         fiz0             = _mm256_setzero_ps();
811         fix1             = _mm256_setzero_ps();
812         fiy1             = _mm256_setzero_ps();
813         fiz1             = _mm256_setzero_ps();
814         fix2             = _mm256_setzero_ps();
815         fiy2             = _mm256_setzero_ps();
816         fiz2             = _mm256_setzero_ps();
817         fix3             = _mm256_setzero_ps();
818         fiy3             = _mm256_setzero_ps();
819         fiz3             = _mm256_setzero_ps();
820
821         /* Start inner kernel loop */
822         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
823         {
824
825             /* Get j neighbor index, and coordinate index */
826             jnrA             = jjnr[jidx];
827             jnrB             = jjnr[jidx+1];
828             jnrC             = jjnr[jidx+2];
829             jnrD             = jjnr[jidx+3];
830             jnrE             = jjnr[jidx+4];
831             jnrF             = jjnr[jidx+5];
832             jnrG             = jjnr[jidx+6];
833             jnrH             = jjnr[jidx+7];
834             j_coord_offsetA  = DIM*jnrA;
835             j_coord_offsetB  = DIM*jnrB;
836             j_coord_offsetC  = DIM*jnrC;
837             j_coord_offsetD  = DIM*jnrD;
838             j_coord_offsetE  = DIM*jnrE;
839             j_coord_offsetF  = DIM*jnrF;
840             j_coord_offsetG  = DIM*jnrG;
841             j_coord_offsetH  = DIM*jnrH;
842
843             /* load j atom coordinates */
844             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
845                                                  x+j_coord_offsetC,x+j_coord_offsetD,
846                                                  x+j_coord_offsetE,x+j_coord_offsetF,
847                                                  x+j_coord_offsetG,x+j_coord_offsetH,
848                                                  &jx0,&jy0,&jz0);
849
850             /* Calculate displacement vector */
851             dx00             = _mm256_sub_ps(ix0,jx0);
852             dy00             = _mm256_sub_ps(iy0,jy0);
853             dz00             = _mm256_sub_ps(iz0,jz0);
854             dx10             = _mm256_sub_ps(ix1,jx0);
855             dy10             = _mm256_sub_ps(iy1,jy0);
856             dz10             = _mm256_sub_ps(iz1,jz0);
857             dx20             = _mm256_sub_ps(ix2,jx0);
858             dy20             = _mm256_sub_ps(iy2,jy0);
859             dz20             = _mm256_sub_ps(iz2,jz0);
860             dx30             = _mm256_sub_ps(ix3,jx0);
861             dy30             = _mm256_sub_ps(iy3,jy0);
862             dz30             = _mm256_sub_ps(iz3,jz0);
863
864             /* Calculate squared distance and things based on it */
865             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
866             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
867             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
868             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
869
870             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
871             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
872             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
873
874             rinvsq00         = gmx_mm256_inv_ps(rsq00);
875             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
876             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
877             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
878
879             /* Load parameters for j particles */
880             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
881                                                                  charge+jnrC+0,charge+jnrD+0,
882                                                                  charge+jnrE+0,charge+jnrF+0,
883                                                                  charge+jnrG+0,charge+jnrH+0);
884             vdwjidx0A        = 2*vdwtype[jnrA+0];
885             vdwjidx0B        = 2*vdwtype[jnrB+0];
886             vdwjidx0C        = 2*vdwtype[jnrC+0];
887             vdwjidx0D        = 2*vdwtype[jnrD+0];
888             vdwjidx0E        = 2*vdwtype[jnrE+0];
889             vdwjidx0F        = 2*vdwtype[jnrF+0];
890             vdwjidx0G        = 2*vdwtype[jnrG+0];
891             vdwjidx0H        = 2*vdwtype[jnrH+0];
892
893             fjx0             = _mm256_setzero_ps();
894             fjy0             = _mm256_setzero_ps();
895             fjz0             = _mm256_setzero_ps();
896
897             /**************************
898              * CALCULATE INTERACTIONS *
899              **************************/
900
901             /* Compute parameters for interactions between i and j atoms */
902             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
903                                             vdwioffsetptr0+vdwjidx0B,
904                                             vdwioffsetptr0+vdwjidx0C,
905                                             vdwioffsetptr0+vdwjidx0D,
906                                             vdwioffsetptr0+vdwjidx0E,
907                                             vdwioffsetptr0+vdwjidx0F,
908                                             vdwioffsetptr0+vdwjidx0G,
909                                             vdwioffsetptr0+vdwjidx0H,
910                                             &c6_00,&c12_00);
911
912             /* LENNARD-JONES DISPERSION/REPULSION */
913
914             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
915             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
916
917             fscal            = fvdw;
918
919             /* Calculate temporary vectorial force */
920             tx               = _mm256_mul_ps(fscal,dx00);
921             ty               = _mm256_mul_ps(fscal,dy00);
922             tz               = _mm256_mul_ps(fscal,dz00);
923
924             /* Update vectorial force */
925             fix0             = _mm256_add_ps(fix0,tx);
926             fiy0             = _mm256_add_ps(fiy0,ty);
927             fiz0             = _mm256_add_ps(fiz0,tz);
928
929             fjx0             = _mm256_add_ps(fjx0,tx);
930             fjy0             = _mm256_add_ps(fjy0,ty);
931             fjz0             = _mm256_add_ps(fjz0,tz);
932
933             /**************************
934              * CALCULATE INTERACTIONS *
935              **************************/
936
937             /* Compute parameters for interactions between i and j atoms */
938             qq10             = _mm256_mul_ps(iq1,jq0);
939
940             /* COULOMB ELECTROSTATICS */
941             velec            = _mm256_mul_ps(qq10,rinv10);
942             felec            = _mm256_mul_ps(velec,rinvsq10);
943
944             fscal            = felec;
945
946             /* Calculate temporary vectorial force */
947             tx               = _mm256_mul_ps(fscal,dx10);
948             ty               = _mm256_mul_ps(fscal,dy10);
949             tz               = _mm256_mul_ps(fscal,dz10);
950
951             /* Update vectorial force */
952             fix1             = _mm256_add_ps(fix1,tx);
953             fiy1             = _mm256_add_ps(fiy1,ty);
954             fiz1             = _mm256_add_ps(fiz1,tz);
955
956             fjx0             = _mm256_add_ps(fjx0,tx);
957             fjy0             = _mm256_add_ps(fjy0,ty);
958             fjz0             = _mm256_add_ps(fjz0,tz);
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             /* Compute parameters for interactions between i and j atoms */
965             qq20             = _mm256_mul_ps(iq2,jq0);
966
967             /* COULOMB ELECTROSTATICS */
968             velec            = _mm256_mul_ps(qq20,rinv20);
969             felec            = _mm256_mul_ps(velec,rinvsq20);
970
971             fscal            = felec;
972
973             /* Calculate temporary vectorial force */
974             tx               = _mm256_mul_ps(fscal,dx20);
975             ty               = _mm256_mul_ps(fscal,dy20);
976             tz               = _mm256_mul_ps(fscal,dz20);
977
978             /* Update vectorial force */
979             fix2             = _mm256_add_ps(fix2,tx);
980             fiy2             = _mm256_add_ps(fiy2,ty);
981             fiz2             = _mm256_add_ps(fiz2,tz);
982
983             fjx0             = _mm256_add_ps(fjx0,tx);
984             fjy0             = _mm256_add_ps(fjy0,ty);
985             fjz0             = _mm256_add_ps(fjz0,tz);
986
987             /**************************
988              * CALCULATE INTERACTIONS *
989              **************************/
990
991             /* Compute parameters for interactions between i and j atoms */
992             qq30             = _mm256_mul_ps(iq3,jq0);
993
994             /* COULOMB ELECTROSTATICS */
995             velec            = _mm256_mul_ps(qq30,rinv30);
996             felec            = _mm256_mul_ps(velec,rinvsq30);
997
998             fscal            = felec;
999
1000             /* Calculate temporary vectorial force */
1001             tx               = _mm256_mul_ps(fscal,dx30);
1002             ty               = _mm256_mul_ps(fscal,dy30);
1003             tz               = _mm256_mul_ps(fscal,dz30);
1004
1005             /* Update vectorial force */
1006             fix3             = _mm256_add_ps(fix3,tx);
1007             fiy3             = _mm256_add_ps(fiy3,ty);
1008             fiz3             = _mm256_add_ps(fiz3,tz);
1009
1010             fjx0             = _mm256_add_ps(fjx0,tx);
1011             fjy0             = _mm256_add_ps(fjy0,ty);
1012             fjz0             = _mm256_add_ps(fjz0,tz);
1013
1014             fjptrA             = f+j_coord_offsetA;
1015             fjptrB             = f+j_coord_offsetB;
1016             fjptrC             = f+j_coord_offsetC;
1017             fjptrD             = f+j_coord_offsetD;
1018             fjptrE             = f+j_coord_offsetE;
1019             fjptrF             = f+j_coord_offsetF;
1020             fjptrG             = f+j_coord_offsetG;
1021             fjptrH             = f+j_coord_offsetH;
1022
1023             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1024
1025             /* Inner loop uses 108 flops */
1026         }
1027
1028         if(jidx<j_index_end)
1029         {
1030
1031             /* Get j neighbor index, and coordinate index */
1032             jnrlistA         = jjnr[jidx];
1033             jnrlistB         = jjnr[jidx+1];
1034             jnrlistC         = jjnr[jidx+2];
1035             jnrlistD         = jjnr[jidx+3];
1036             jnrlistE         = jjnr[jidx+4];
1037             jnrlistF         = jjnr[jidx+5];
1038             jnrlistG         = jjnr[jidx+6];
1039             jnrlistH         = jjnr[jidx+7];
1040             /* Sign of each element will be negative for non-real atoms.
1041              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1042              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1043              */
1044             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1045                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1046                                             
1047             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1048             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1049             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1050             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1051             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1052             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1053             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1054             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1055             j_coord_offsetA  = DIM*jnrA;
1056             j_coord_offsetB  = DIM*jnrB;
1057             j_coord_offsetC  = DIM*jnrC;
1058             j_coord_offsetD  = DIM*jnrD;
1059             j_coord_offsetE  = DIM*jnrE;
1060             j_coord_offsetF  = DIM*jnrF;
1061             j_coord_offsetG  = DIM*jnrG;
1062             j_coord_offsetH  = DIM*jnrH;
1063
1064             /* load j atom coordinates */
1065             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1066                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1067                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1068                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1069                                                  &jx0,&jy0,&jz0);
1070
1071             /* Calculate displacement vector */
1072             dx00             = _mm256_sub_ps(ix0,jx0);
1073             dy00             = _mm256_sub_ps(iy0,jy0);
1074             dz00             = _mm256_sub_ps(iz0,jz0);
1075             dx10             = _mm256_sub_ps(ix1,jx0);
1076             dy10             = _mm256_sub_ps(iy1,jy0);
1077             dz10             = _mm256_sub_ps(iz1,jz0);
1078             dx20             = _mm256_sub_ps(ix2,jx0);
1079             dy20             = _mm256_sub_ps(iy2,jy0);
1080             dz20             = _mm256_sub_ps(iz2,jz0);
1081             dx30             = _mm256_sub_ps(ix3,jx0);
1082             dy30             = _mm256_sub_ps(iy3,jy0);
1083             dz30             = _mm256_sub_ps(iz3,jz0);
1084
1085             /* Calculate squared distance and things based on it */
1086             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1087             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1088             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1089             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1090
1091             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1092             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1093             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1094
1095             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1096             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1097             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1098             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1099
1100             /* Load parameters for j particles */
1101             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1102                                                                  charge+jnrC+0,charge+jnrD+0,
1103                                                                  charge+jnrE+0,charge+jnrF+0,
1104                                                                  charge+jnrG+0,charge+jnrH+0);
1105             vdwjidx0A        = 2*vdwtype[jnrA+0];
1106             vdwjidx0B        = 2*vdwtype[jnrB+0];
1107             vdwjidx0C        = 2*vdwtype[jnrC+0];
1108             vdwjidx0D        = 2*vdwtype[jnrD+0];
1109             vdwjidx0E        = 2*vdwtype[jnrE+0];
1110             vdwjidx0F        = 2*vdwtype[jnrF+0];
1111             vdwjidx0G        = 2*vdwtype[jnrG+0];
1112             vdwjidx0H        = 2*vdwtype[jnrH+0];
1113
1114             fjx0             = _mm256_setzero_ps();
1115             fjy0             = _mm256_setzero_ps();
1116             fjz0             = _mm256_setzero_ps();
1117
1118             /**************************
1119              * CALCULATE INTERACTIONS *
1120              **************************/
1121
1122             /* Compute parameters for interactions between i and j atoms */
1123             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1124                                             vdwioffsetptr0+vdwjidx0B,
1125                                             vdwioffsetptr0+vdwjidx0C,
1126                                             vdwioffsetptr0+vdwjidx0D,
1127                                             vdwioffsetptr0+vdwjidx0E,
1128                                             vdwioffsetptr0+vdwjidx0F,
1129                                             vdwioffsetptr0+vdwjidx0G,
1130                                             vdwioffsetptr0+vdwjidx0H,
1131                                             &c6_00,&c12_00);
1132
1133             /* LENNARD-JONES DISPERSION/REPULSION */
1134
1135             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1136             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1137
1138             fscal            = fvdw;
1139
1140             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1141
1142             /* Calculate temporary vectorial force */
1143             tx               = _mm256_mul_ps(fscal,dx00);
1144             ty               = _mm256_mul_ps(fscal,dy00);
1145             tz               = _mm256_mul_ps(fscal,dz00);
1146
1147             /* Update vectorial force */
1148             fix0             = _mm256_add_ps(fix0,tx);
1149             fiy0             = _mm256_add_ps(fiy0,ty);
1150             fiz0             = _mm256_add_ps(fiz0,tz);
1151
1152             fjx0             = _mm256_add_ps(fjx0,tx);
1153             fjy0             = _mm256_add_ps(fjy0,ty);
1154             fjz0             = _mm256_add_ps(fjz0,tz);
1155
1156             /**************************
1157              * CALCULATE INTERACTIONS *
1158              **************************/
1159
1160             /* Compute parameters for interactions between i and j atoms */
1161             qq10             = _mm256_mul_ps(iq1,jq0);
1162
1163             /* COULOMB ELECTROSTATICS */
1164             velec            = _mm256_mul_ps(qq10,rinv10);
1165             felec            = _mm256_mul_ps(velec,rinvsq10);
1166
1167             fscal            = felec;
1168
1169             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1170
1171             /* Calculate temporary vectorial force */
1172             tx               = _mm256_mul_ps(fscal,dx10);
1173             ty               = _mm256_mul_ps(fscal,dy10);
1174             tz               = _mm256_mul_ps(fscal,dz10);
1175
1176             /* Update vectorial force */
1177             fix1             = _mm256_add_ps(fix1,tx);
1178             fiy1             = _mm256_add_ps(fiy1,ty);
1179             fiz1             = _mm256_add_ps(fiz1,tz);
1180
1181             fjx0             = _mm256_add_ps(fjx0,tx);
1182             fjy0             = _mm256_add_ps(fjy0,ty);
1183             fjz0             = _mm256_add_ps(fjz0,tz);
1184
1185             /**************************
1186              * CALCULATE INTERACTIONS *
1187              **************************/
1188
1189             /* Compute parameters for interactions between i and j atoms */
1190             qq20             = _mm256_mul_ps(iq2,jq0);
1191
1192             /* COULOMB ELECTROSTATICS */
1193             velec            = _mm256_mul_ps(qq20,rinv20);
1194             felec            = _mm256_mul_ps(velec,rinvsq20);
1195
1196             fscal            = felec;
1197
1198             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1199
1200             /* Calculate temporary vectorial force */
1201             tx               = _mm256_mul_ps(fscal,dx20);
1202             ty               = _mm256_mul_ps(fscal,dy20);
1203             tz               = _mm256_mul_ps(fscal,dz20);
1204
1205             /* Update vectorial force */
1206             fix2             = _mm256_add_ps(fix2,tx);
1207             fiy2             = _mm256_add_ps(fiy2,ty);
1208             fiz2             = _mm256_add_ps(fiz2,tz);
1209
1210             fjx0             = _mm256_add_ps(fjx0,tx);
1211             fjy0             = _mm256_add_ps(fjy0,ty);
1212             fjz0             = _mm256_add_ps(fjz0,tz);
1213
1214             /**************************
1215              * CALCULATE INTERACTIONS *
1216              **************************/
1217
1218             /* Compute parameters for interactions between i and j atoms */
1219             qq30             = _mm256_mul_ps(iq3,jq0);
1220
1221             /* COULOMB ELECTROSTATICS */
1222             velec            = _mm256_mul_ps(qq30,rinv30);
1223             felec            = _mm256_mul_ps(velec,rinvsq30);
1224
1225             fscal            = felec;
1226
1227             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1228
1229             /* Calculate temporary vectorial force */
1230             tx               = _mm256_mul_ps(fscal,dx30);
1231             ty               = _mm256_mul_ps(fscal,dy30);
1232             tz               = _mm256_mul_ps(fscal,dz30);
1233
1234             /* Update vectorial force */
1235             fix3             = _mm256_add_ps(fix3,tx);
1236             fiy3             = _mm256_add_ps(fiy3,ty);
1237             fiz3             = _mm256_add_ps(fiz3,tz);
1238
1239             fjx0             = _mm256_add_ps(fjx0,tx);
1240             fjy0             = _mm256_add_ps(fjy0,ty);
1241             fjz0             = _mm256_add_ps(fjz0,tz);
1242
1243             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1244             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1245             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1246             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1247             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1248             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1249             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1250             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1251
1252             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1253
1254             /* Inner loop uses 108 flops */
1255         }
1256
1257         /* End of innermost loop */
1258
1259         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1260                                                  f+i_coord_offset,fshift+i_shift_offset);
1261
1262         /* Increment number of inner iterations */
1263         inneriter                  += j_index_end - j_index_start;
1264
1265         /* Outer loop uses 24 flops */
1266     }
1267
1268     /* Increment number of outer iterations */
1269     outeriter        += nri;
1270
1271     /* Update outer/inner flops */
1272
1273     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*108);
1274 }