58f54e53cb6a6af758c972db5710c19878d4062b
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwLJ_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_256_single
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
107     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
108     __m256           dummy_mask,cutoff_mask;
109     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
110     __m256           one     = _mm256_set1_ps(1.0);
111     __m256           two     = _mm256_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
132     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
133     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
134     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142     j_coord_offsetE = 0;
143     j_coord_offsetF = 0;
144     j_coord_offsetG = 0;
145     j_coord_offsetH = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
172
173         fix0             = _mm256_setzero_ps();
174         fiy0             = _mm256_setzero_ps();
175         fiz0             = _mm256_setzero_ps();
176         fix1             = _mm256_setzero_ps();
177         fiy1             = _mm256_setzero_ps();
178         fiz1             = _mm256_setzero_ps();
179         fix2             = _mm256_setzero_ps();
180         fiy2             = _mm256_setzero_ps();
181         fiz2             = _mm256_setzero_ps();
182         fix3             = _mm256_setzero_ps();
183         fiy3             = _mm256_setzero_ps();
184         fiz3             = _mm256_setzero_ps();
185
186         /* Reset potential sums */
187         velecsum         = _mm256_setzero_ps();
188         vvdwsum          = _mm256_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             jnrE             = jjnr[jidx+4];
200             jnrF             = jjnr[jidx+5];
201             jnrG             = jjnr[jidx+6];
202             jnrH             = jjnr[jidx+7];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207             j_coord_offsetE  = DIM*jnrE;
208             j_coord_offsetF  = DIM*jnrF;
209             j_coord_offsetG  = DIM*jnrG;
210             j_coord_offsetH  = DIM*jnrH;
211
212             /* load j atom coordinates */
213             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214                                                  x+j_coord_offsetC,x+j_coord_offsetD,
215                                                  x+j_coord_offsetE,x+j_coord_offsetF,
216                                                  x+j_coord_offsetG,x+j_coord_offsetH,
217                                                  &jx0,&jy0,&jz0);
218
219             /* Calculate displacement vector */
220             dx00             = _mm256_sub_ps(ix0,jx0);
221             dy00             = _mm256_sub_ps(iy0,jy0);
222             dz00             = _mm256_sub_ps(iz0,jz0);
223             dx10             = _mm256_sub_ps(ix1,jx0);
224             dy10             = _mm256_sub_ps(iy1,jy0);
225             dz10             = _mm256_sub_ps(iz1,jz0);
226             dx20             = _mm256_sub_ps(ix2,jx0);
227             dy20             = _mm256_sub_ps(iy2,jy0);
228             dz20             = _mm256_sub_ps(iz2,jz0);
229             dx30             = _mm256_sub_ps(ix3,jx0);
230             dy30             = _mm256_sub_ps(iy3,jy0);
231             dz30             = _mm256_sub_ps(iz3,jz0);
232
233             /* Calculate squared distance and things based on it */
234             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
235             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
236             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
237             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
238
239             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
240             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
241             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
242
243             rinvsq00         = gmx_mm256_inv_ps(rsq00);
244             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
245             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
246             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
247
248             /* Load parameters for j particles */
249             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
250                                                                  charge+jnrC+0,charge+jnrD+0,
251                                                                  charge+jnrE+0,charge+jnrF+0,
252                                                                  charge+jnrG+0,charge+jnrH+0);
253             vdwjidx0A        = 2*vdwtype[jnrA+0];
254             vdwjidx0B        = 2*vdwtype[jnrB+0];
255             vdwjidx0C        = 2*vdwtype[jnrC+0];
256             vdwjidx0D        = 2*vdwtype[jnrD+0];
257             vdwjidx0E        = 2*vdwtype[jnrE+0];
258             vdwjidx0F        = 2*vdwtype[jnrF+0];
259             vdwjidx0G        = 2*vdwtype[jnrG+0];
260             vdwjidx0H        = 2*vdwtype[jnrH+0];
261
262             fjx0             = _mm256_setzero_ps();
263             fjy0             = _mm256_setzero_ps();
264             fjz0             = _mm256_setzero_ps();
265
266             /**************************
267              * CALCULATE INTERACTIONS *
268              **************************/
269
270             /* Compute parameters for interactions between i and j atoms */
271             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
272                                             vdwioffsetptr0+vdwjidx0B,
273                                             vdwioffsetptr0+vdwjidx0C,
274                                             vdwioffsetptr0+vdwjidx0D,
275                                             vdwioffsetptr0+vdwjidx0E,
276                                             vdwioffsetptr0+vdwjidx0F,
277                                             vdwioffsetptr0+vdwjidx0G,
278                                             vdwioffsetptr0+vdwjidx0H,
279                                             &c6_00,&c12_00);
280
281             /* LENNARD-JONES DISPERSION/REPULSION */
282
283             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
284             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
285             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
286             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
287             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
291
292             fscal            = fvdw;
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm256_mul_ps(fscal,dx00);
296             ty               = _mm256_mul_ps(fscal,dy00);
297             tz               = _mm256_mul_ps(fscal,dz00);
298
299             /* Update vectorial force */
300             fix0             = _mm256_add_ps(fix0,tx);
301             fiy0             = _mm256_add_ps(fiy0,ty);
302             fiz0             = _mm256_add_ps(fiz0,tz);
303
304             fjx0             = _mm256_add_ps(fjx0,tx);
305             fjy0             = _mm256_add_ps(fjy0,ty);
306             fjz0             = _mm256_add_ps(fjz0,tz);
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             /* Compute parameters for interactions between i and j atoms */
313             qq10             = _mm256_mul_ps(iq1,jq0);
314
315             /* COULOMB ELECTROSTATICS */
316             velec            = _mm256_mul_ps(qq10,rinv10);
317             felec            = _mm256_mul_ps(velec,rinvsq10);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velecsum         = _mm256_add_ps(velecsum,velec);
321
322             fscal            = felec;
323
324             /* Calculate temporary vectorial force */
325             tx               = _mm256_mul_ps(fscal,dx10);
326             ty               = _mm256_mul_ps(fscal,dy10);
327             tz               = _mm256_mul_ps(fscal,dz10);
328
329             /* Update vectorial force */
330             fix1             = _mm256_add_ps(fix1,tx);
331             fiy1             = _mm256_add_ps(fiy1,ty);
332             fiz1             = _mm256_add_ps(fiz1,tz);
333
334             fjx0             = _mm256_add_ps(fjx0,tx);
335             fjy0             = _mm256_add_ps(fjy0,ty);
336             fjz0             = _mm256_add_ps(fjz0,tz);
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq20             = _mm256_mul_ps(iq2,jq0);
344
345             /* COULOMB ELECTROSTATICS */
346             velec            = _mm256_mul_ps(qq20,rinv20);
347             felec            = _mm256_mul_ps(velec,rinvsq20);
348
349             /* Update potential sum for this i atom from the interaction with this j atom. */
350             velecsum         = _mm256_add_ps(velecsum,velec);
351
352             fscal            = felec;
353
354             /* Calculate temporary vectorial force */
355             tx               = _mm256_mul_ps(fscal,dx20);
356             ty               = _mm256_mul_ps(fscal,dy20);
357             tz               = _mm256_mul_ps(fscal,dz20);
358
359             /* Update vectorial force */
360             fix2             = _mm256_add_ps(fix2,tx);
361             fiy2             = _mm256_add_ps(fiy2,ty);
362             fiz2             = _mm256_add_ps(fiz2,tz);
363
364             fjx0             = _mm256_add_ps(fjx0,tx);
365             fjy0             = _mm256_add_ps(fjy0,ty);
366             fjz0             = _mm256_add_ps(fjz0,tz);
367
368             /**************************
369              * CALCULATE INTERACTIONS *
370              **************************/
371
372             /* Compute parameters for interactions between i and j atoms */
373             qq30             = _mm256_mul_ps(iq3,jq0);
374
375             /* COULOMB ELECTROSTATICS */
376             velec            = _mm256_mul_ps(qq30,rinv30);
377             felec            = _mm256_mul_ps(velec,rinvsq30);
378
379             /* Update potential sum for this i atom from the interaction with this j atom. */
380             velecsum         = _mm256_add_ps(velecsum,velec);
381
382             fscal            = felec;
383
384             /* Calculate temporary vectorial force */
385             tx               = _mm256_mul_ps(fscal,dx30);
386             ty               = _mm256_mul_ps(fscal,dy30);
387             tz               = _mm256_mul_ps(fscal,dz30);
388
389             /* Update vectorial force */
390             fix3             = _mm256_add_ps(fix3,tx);
391             fiy3             = _mm256_add_ps(fiy3,ty);
392             fiz3             = _mm256_add_ps(fiz3,tz);
393
394             fjx0             = _mm256_add_ps(fjx0,tx);
395             fjy0             = _mm256_add_ps(fjy0,ty);
396             fjz0             = _mm256_add_ps(fjz0,tz);
397
398             fjptrA             = f+j_coord_offsetA;
399             fjptrB             = f+j_coord_offsetB;
400             fjptrC             = f+j_coord_offsetC;
401             fjptrD             = f+j_coord_offsetD;
402             fjptrE             = f+j_coord_offsetE;
403             fjptrF             = f+j_coord_offsetF;
404             fjptrG             = f+j_coord_offsetG;
405             fjptrH             = f+j_coord_offsetH;
406
407             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
408
409             /* Inner loop uses 116 flops */
410         }
411
412         if(jidx<j_index_end)
413         {
414
415             /* Get j neighbor index, and coordinate index */
416             jnrlistA         = jjnr[jidx];
417             jnrlistB         = jjnr[jidx+1];
418             jnrlistC         = jjnr[jidx+2];
419             jnrlistD         = jjnr[jidx+3];
420             jnrlistE         = jjnr[jidx+4];
421             jnrlistF         = jjnr[jidx+5];
422             jnrlistG         = jjnr[jidx+6];
423             jnrlistH         = jjnr[jidx+7];
424             /* Sign of each element will be negative for non-real atoms.
425              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
426              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
427              */
428             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
429                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
430                                             
431             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
432             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
433             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
434             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
435             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
436             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
437             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
438             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
439             j_coord_offsetA  = DIM*jnrA;
440             j_coord_offsetB  = DIM*jnrB;
441             j_coord_offsetC  = DIM*jnrC;
442             j_coord_offsetD  = DIM*jnrD;
443             j_coord_offsetE  = DIM*jnrE;
444             j_coord_offsetF  = DIM*jnrF;
445             j_coord_offsetG  = DIM*jnrG;
446             j_coord_offsetH  = DIM*jnrH;
447
448             /* load j atom coordinates */
449             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
450                                                  x+j_coord_offsetC,x+j_coord_offsetD,
451                                                  x+j_coord_offsetE,x+j_coord_offsetF,
452                                                  x+j_coord_offsetG,x+j_coord_offsetH,
453                                                  &jx0,&jy0,&jz0);
454
455             /* Calculate displacement vector */
456             dx00             = _mm256_sub_ps(ix0,jx0);
457             dy00             = _mm256_sub_ps(iy0,jy0);
458             dz00             = _mm256_sub_ps(iz0,jz0);
459             dx10             = _mm256_sub_ps(ix1,jx0);
460             dy10             = _mm256_sub_ps(iy1,jy0);
461             dz10             = _mm256_sub_ps(iz1,jz0);
462             dx20             = _mm256_sub_ps(ix2,jx0);
463             dy20             = _mm256_sub_ps(iy2,jy0);
464             dz20             = _mm256_sub_ps(iz2,jz0);
465             dx30             = _mm256_sub_ps(ix3,jx0);
466             dy30             = _mm256_sub_ps(iy3,jy0);
467             dz30             = _mm256_sub_ps(iz3,jz0);
468
469             /* Calculate squared distance and things based on it */
470             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
471             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
472             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
473             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
474
475             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
476             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
477             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
478
479             rinvsq00         = gmx_mm256_inv_ps(rsq00);
480             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
481             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
482             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
483
484             /* Load parameters for j particles */
485             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
486                                                                  charge+jnrC+0,charge+jnrD+0,
487                                                                  charge+jnrE+0,charge+jnrF+0,
488                                                                  charge+jnrG+0,charge+jnrH+0);
489             vdwjidx0A        = 2*vdwtype[jnrA+0];
490             vdwjidx0B        = 2*vdwtype[jnrB+0];
491             vdwjidx0C        = 2*vdwtype[jnrC+0];
492             vdwjidx0D        = 2*vdwtype[jnrD+0];
493             vdwjidx0E        = 2*vdwtype[jnrE+0];
494             vdwjidx0F        = 2*vdwtype[jnrF+0];
495             vdwjidx0G        = 2*vdwtype[jnrG+0];
496             vdwjidx0H        = 2*vdwtype[jnrH+0];
497
498             fjx0             = _mm256_setzero_ps();
499             fjy0             = _mm256_setzero_ps();
500             fjz0             = _mm256_setzero_ps();
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             /* Compute parameters for interactions between i and j atoms */
507             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
508                                             vdwioffsetptr0+vdwjidx0B,
509                                             vdwioffsetptr0+vdwjidx0C,
510                                             vdwioffsetptr0+vdwjidx0D,
511                                             vdwioffsetptr0+vdwjidx0E,
512                                             vdwioffsetptr0+vdwjidx0F,
513                                             vdwioffsetptr0+vdwjidx0G,
514                                             vdwioffsetptr0+vdwjidx0H,
515                                             &c6_00,&c12_00);
516
517             /* LENNARD-JONES DISPERSION/REPULSION */
518
519             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
520             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
521             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
522             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
523             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
524
525             /* Update potential sum for this i atom from the interaction with this j atom. */
526             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
527             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
528
529             fscal            = fvdw;
530
531             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
532
533             /* Calculate temporary vectorial force */
534             tx               = _mm256_mul_ps(fscal,dx00);
535             ty               = _mm256_mul_ps(fscal,dy00);
536             tz               = _mm256_mul_ps(fscal,dz00);
537
538             /* Update vectorial force */
539             fix0             = _mm256_add_ps(fix0,tx);
540             fiy0             = _mm256_add_ps(fiy0,ty);
541             fiz0             = _mm256_add_ps(fiz0,tz);
542
543             fjx0             = _mm256_add_ps(fjx0,tx);
544             fjy0             = _mm256_add_ps(fjy0,ty);
545             fjz0             = _mm256_add_ps(fjz0,tz);
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             /* Compute parameters for interactions between i and j atoms */
552             qq10             = _mm256_mul_ps(iq1,jq0);
553
554             /* COULOMB ELECTROSTATICS */
555             velec            = _mm256_mul_ps(qq10,rinv10);
556             felec            = _mm256_mul_ps(velec,rinvsq10);
557
558             /* Update potential sum for this i atom from the interaction with this j atom. */
559             velec            = _mm256_andnot_ps(dummy_mask,velec);
560             velecsum         = _mm256_add_ps(velecsum,velec);
561
562             fscal            = felec;
563
564             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
565
566             /* Calculate temporary vectorial force */
567             tx               = _mm256_mul_ps(fscal,dx10);
568             ty               = _mm256_mul_ps(fscal,dy10);
569             tz               = _mm256_mul_ps(fscal,dz10);
570
571             /* Update vectorial force */
572             fix1             = _mm256_add_ps(fix1,tx);
573             fiy1             = _mm256_add_ps(fiy1,ty);
574             fiz1             = _mm256_add_ps(fiz1,tz);
575
576             fjx0             = _mm256_add_ps(fjx0,tx);
577             fjy0             = _mm256_add_ps(fjy0,ty);
578             fjz0             = _mm256_add_ps(fjz0,tz);
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq20             = _mm256_mul_ps(iq2,jq0);
586
587             /* COULOMB ELECTROSTATICS */
588             velec            = _mm256_mul_ps(qq20,rinv20);
589             felec            = _mm256_mul_ps(velec,rinvsq20);
590
591             /* Update potential sum for this i atom from the interaction with this j atom. */
592             velec            = _mm256_andnot_ps(dummy_mask,velec);
593             velecsum         = _mm256_add_ps(velecsum,velec);
594
595             fscal            = felec;
596
597             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
598
599             /* Calculate temporary vectorial force */
600             tx               = _mm256_mul_ps(fscal,dx20);
601             ty               = _mm256_mul_ps(fscal,dy20);
602             tz               = _mm256_mul_ps(fscal,dz20);
603
604             /* Update vectorial force */
605             fix2             = _mm256_add_ps(fix2,tx);
606             fiy2             = _mm256_add_ps(fiy2,ty);
607             fiz2             = _mm256_add_ps(fiz2,tz);
608
609             fjx0             = _mm256_add_ps(fjx0,tx);
610             fjy0             = _mm256_add_ps(fjy0,ty);
611             fjz0             = _mm256_add_ps(fjz0,tz);
612
613             /**************************
614              * CALCULATE INTERACTIONS *
615              **************************/
616
617             /* Compute parameters for interactions between i and j atoms */
618             qq30             = _mm256_mul_ps(iq3,jq0);
619
620             /* COULOMB ELECTROSTATICS */
621             velec            = _mm256_mul_ps(qq30,rinv30);
622             felec            = _mm256_mul_ps(velec,rinvsq30);
623
624             /* Update potential sum for this i atom from the interaction with this j atom. */
625             velec            = _mm256_andnot_ps(dummy_mask,velec);
626             velecsum         = _mm256_add_ps(velecsum,velec);
627
628             fscal            = felec;
629
630             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
631
632             /* Calculate temporary vectorial force */
633             tx               = _mm256_mul_ps(fscal,dx30);
634             ty               = _mm256_mul_ps(fscal,dy30);
635             tz               = _mm256_mul_ps(fscal,dz30);
636
637             /* Update vectorial force */
638             fix3             = _mm256_add_ps(fix3,tx);
639             fiy3             = _mm256_add_ps(fiy3,ty);
640             fiz3             = _mm256_add_ps(fiz3,tz);
641
642             fjx0             = _mm256_add_ps(fjx0,tx);
643             fjy0             = _mm256_add_ps(fjy0,ty);
644             fjz0             = _mm256_add_ps(fjz0,tz);
645
646             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
647             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
648             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
649             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
650             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
651             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
652             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
653             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
654
655             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
656
657             /* Inner loop uses 116 flops */
658         }
659
660         /* End of innermost loop */
661
662         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
663                                                  f+i_coord_offset,fshift+i_shift_offset);
664
665         ggid                        = gid[iidx];
666         /* Update potential energies */
667         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
668         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
669
670         /* Increment number of inner iterations */
671         inneriter                  += j_index_end - j_index_start;
672
673         /* Outer loop uses 26 flops */
674     }
675
676     /* Increment number of outer iterations */
677     outeriter        += nri;
678
679     /* Update outer/inner flops */
680
681     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*116);
682 }
683 /*
684  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_256_single
685  * Electrostatics interaction: Coulomb
686  * VdW interaction:            LennardJones
687  * Geometry:                   Water4-Particle
688  * Calculate force/pot:        Force
689  */
690 void
691 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_256_single
692                     (t_nblist                    * gmx_restrict       nlist,
693                      rvec                        * gmx_restrict          xx,
694                      rvec                        * gmx_restrict          ff,
695                      t_forcerec                  * gmx_restrict          fr,
696                      t_mdatoms                   * gmx_restrict     mdatoms,
697                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
698                      t_nrnb                      * gmx_restrict        nrnb)
699 {
700     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
701      * just 0 for non-waters.
702      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
703      * jnr indices corresponding to data put in the four positions in the SIMD register.
704      */
705     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
706     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
707     int              jnrA,jnrB,jnrC,jnrD;
708     int              jnrE,jnrF,jnrG,jnrH;
709     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
710     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
711     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
712     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
713     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
714     real             rcutoff_scalar;
715     real             *shiftvec,*fshift,*x,*f;
716     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
717     real             scratch[4*DIM];
718     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
719     real *           vdwioffsetptr0;
720     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
721     real *           vdwioffsetptr1;
722     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
723     real *           vdwioffsetptr2;
724     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
725     real *           vdwioffsetptr3;
726     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
727     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
728     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
729     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
730     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
731     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
732     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
733     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
734     real             *charge;
735     int              nvdwtype;
736     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
737     int              *vdwtype;
738     real             *vdwparam;
739     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
740     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
741     __m256           dummy_mask,cutoff_mask;
742     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
743     __m256           one     = _mm256_set1_ps(1.0);
744     __m256           two     = _mm256_set1_ps(2.0);
745     x                = xx[0];
746     f                = ff[0];
747
748     nri              = nlist->nri;
749     iinr             = nlist->iinr;
750     jindex           = nlist->jindex;
751     jjnr             = nlist->jjnr;
752     shiftidx         = nlist->shift;
753     gid              = nlist->gid;
754     shiftvec         = fr->shift_vec[0];
755     fshift           = fr->fshift[0];
756     facel            = _mm256_set1_ps(fr->epsfac);
757     charge           = mdatoms->chargeA;
758     nvdwtype         = fr->ntype;
759     vdwparam         = fr->nbfp;
760     vdwtype          = mdatoms->typeA;
761
762     /* Setup water-specific parameters */
763     inr              = nlist->iinr[0];
764     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
765     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
766     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
767     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
768
769     /* Avoid stupid compiler warnings */
770     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
771     j_coord_offsetA = 0;
772     j_coord_offsetB = 0;
773     j_coord_offsetC = 0;
774     j_coord_offsetD = 0;
775     j_coord_offsetE = 0;
776     j_coord_offsetF = 0;
777     j_coord_offsetG = 0;
778     j_coord_offsetH = 0;
779
780     outeriter        = 0;
781     inneriter        = 0;
782
783     for(iidx=0;iidx<4*DIM;iidx++)
784     {
785         scratch[iidx] = 0.0;
786     }
787
788     /* Start outer loop over neighborlists */
789     for(iidx=0; iidx<nri; iidx++)
790     {
791         /* Load shift vector for this list */
792         i_shift_offset   = DIM*shiftidx[iidx];
793
794         /* Load limits for loop over neighbors */
795         j_index_start    = jindex[iidx];
796         j_index_end      = jindex[iidx+1];
797
798         /* Get outer coordinate index */
799         inr              = iinr[iidx];
800         i_coord_offset   = DIM*inr;
801
802         /* Load i particle coords and add shift vector */
803         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
804                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
805
806         fix0             = _mm256_setzero_ps();
807         fiy0             = _mm256_setzero_ps();
808         fiz0             = _mm256_setzero_ps();
809         fix1             = _mm256_setzero_ps();
810         fiy1             = _mm256_setzero_ps();
811         fiz1             = _mm256_setzero_ps();
812         fix2             = _mm256_setzero_ps();
813         fiy2             = _mm256_setzero_ps();
814         fiz2             = _mm256_setzero_ps();
815         fix3             = _mm256_setzero_ps();
816         fiy3             = _mm256_setzero_ps();
817         fiz3             = _mm256_setzero_ps();
818
819         /* Start inner kernel loop */
820         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
821         {
822
823             /* Get j neighbor index, and coordinate index */
824             jnrA             = jjnr[jidx];
825             jnrB             = jjnr[jidx+1];
826             jnrC             = jjnr[jidx+2];
827             jnrD             = jjnr[jidx+3];
828             jnrE             = jjnr[jidx+4];
829             jnrF             = jjnr[jidx+5];
830             jnrG             = jjnr[jidx+6];
831             jnrH             = jjnr[jidx+7];
832             j_coord_offsetA  = DIM*jnrA;
833             j_coord_offsetB  = DIM*jnrB;
834             j_coord_offsetC  = DIM*jnrC;
835             j_coord_offsetD  = DIM*jnrD;
836             j_coord_offsetE  = DIM*jnrE;
837             j_coord_offsetF  = DIM*jnrF;
838             j_coord_offsetG  = DIM*jnrG;
839             j_coord_offsetH  = DIM*jnrH;
840
841             /* load j atom coordinates */
842             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
843                                                  x+j_coord_offsetC,x+j_coord_offsetD,
844                                                  x+j_coord_offsetE,x+j_coord_offsetF,
845                                                  x+j_coord_offsetG,x+j_coord_offsetH,
846                                                  &jx0,&jy0,&jz0);
847
848             /* Calculate displacement vector */
849             dx00             = _mm256_sub_ps(ix0,jx0);
850             dy00             = _mm256_sub_ps(iy0,jy0);
851             dz00             = _mm256_sub_ps(iz0,jz0);
852             dx10             = _mm256_sub_ps(ix1,jx0);
853             dy10             = _mm256_sub_ps(iy1,jy0);
854             dz10             = _mm256_sub_ps(iz1,jz0);
855             dx20             = _mm256_sub_ps(ix2,jx0);
856             dy20             = _mm256_sub_ps(iy2,jy0);
857             dz20             = _mm256_sub_ps(iz2,jz0);
858             dx30             = _mm256_sub_ps(ix3,jx0);
859             dy30             = _mm256_sub_ps(iy3,jy0);
860             dz30             = _mm256_sub_ps(iz3,jz0);
861
862             /* Calculate squared distance and things based on it */
863             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
864             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
865             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
866             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
867
868             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
869             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
870             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
871
872             rinvsq00         = gmx_mm256_inv_ps(rsq00);
873             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
874             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
875             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
876
877             /* Load parameters for j particles */
878             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
879                                                                  charge+jnrC+0,charge+jnrD+0,
880                                                                  charge+jnrE+0,charge+jnrF+0,
881                                                                  charge+jnrG+0,charge+jnrH+0);
882             vdwjidx0A        = 2*vdwtype[jnrA+0];
883             vdwjidx0B        = 2*vdwtype[jnrB+0];
884             vdwjidx0C        = 2*vdwtype[jnrC+0];
885             vdwjidx0D        = 2*vdwtype[jnrD+0];
886             vdwjidx0E        = 2*vdwtype[jnrE+0];
887             vdwjidx0F        = 2*vdwtype[jnrF+0];
888             vdwjidx0G        = 2*vdwtype[jnrG+0];
889             vdwjidx0H        = 2*vdwtype[jnrH+0];
890
891             fjx0             = _mm256_setzero_ps();
892             fjy0             = _mm256_setzero_ps();
893             fjz0             = _mm256_setzero_ps();
894
895             /**************************
896              * CALCULATE INTERACTIONS *
897              **************************/
898
899             /* Compute parameters for interactions between i and j atoms */
900             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
901                                             vdwioffsetptr0+vdwjidx0B,
902                                             vdwioffsetptr0+vdwjidx0C,
903                                             vdwioffsetptr0+vdwjidx0D,
904                                             vdwioffsetptr0+vdwjidx0E,
905                                             vdwioffsetptr0+vdwjidx0F,
906                                             vdwioffsetptr0+vdwjidx0G,
907                                             vdwioffsetptr0+vdwjidx0H,
908                                             &c6_00,&c12_00);
909
910             /* LENNARD-JONES DISPERSION/REPULSION */
911
912             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
913             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
914
915             fscal            = fvdw;
916
917             /* Calculate temporary vectorial force */
918             tx               = _mm256_mul_ps(fscal,dx00);
919             ty               = _mm256_mul_ps(fscal,dy00);
920             tz               = _mm256_mul_ps(fscal,dz00);
921
922             /* Update vectorial force */
923             fix0             = _mm256_add_ps(fix0,tx);
924             fiy0             = _mm256_add_ps(fiy0,ty);
925             fiz0             = _mm256_add_ps(fiz0,tz);
926
927             fjx0             = _mm256_add_ps(fjx0,tx);
928             fjy0             = _mm256_add_ps(fjy0,ty);
929             fjz0             = _mm256_add_ps(fjz0,tz);
930
931             /**************************
932              * CALCULATE INTERACTIONS *
933              **************************/
934
935             /* Compute parameters for interactions between i and j atoms */
936             qq10             = _mm256_mul_ps(iq1,jq0);
937
938             /* COULOMB ELECTROSTATICS */
939             velec            = _mm256_mul_ps(qq10,rinv10);
940             felec            = _mm256_mul_ps(velec,rinvsq10);
941
942             fscal            = felec;
943
944             /* Calculate temporary vectorial force */
945             tx               = _mm256_mul_ps(fscal,dx10);
946             ty               = _mm256_mul_ps(fscal,dy10);
947             tz               = _mm256_mul_ps(fscal,dz10);
948
949             /* Update vectorial force */
950             fix1             = _mm256_add_ps(fix1,tx);
951             fiy1             = _mm256_add_ps(fiy1,ty);
952             fiz1             = _mm256_add_ps(fiz1,tz);
953
954             fjx0             = _mm256_add_ps(fjx0,tx);
955             fjy0             = _mm256_add_ps(fjy0,ty);
956             fjz0             = _mm256_add_ps(fjz0,tz);
957
958             /**************************
959              * CALCULATE INTERACTIONS *
960              **************************/
961
962             /* Compute parameters for interactions between i and j atoms */
963             qq20             = _mm256_mul_ps(iq2,jq0);
964
965             /* COULOMB ELECTROSTATICS */
966             velec            = _mm256_mul_ps(qq20,rinv20);
967             felec            = _mm256_mul_ps(velec,rinvsq20);
968
969             fscal            = felec;
970
971             /* Calculate temporary vectorial force */
972             tx               = _mm256_mul_ps(fscal,dx20);
973             ty               = _mm256_mul_ps(fscal,dy20);
974             tz               = _mm256_mul_ps(fscal,dz20);
975
976             /* Update vectorial force */
977             fix2             = _mm256_add_ps(fix2,tx);
978             fiy2             = _mm256_add_ps(fiy2,ty);
979             fiz2             = _mm256_add_ps(fiz2,tz);
980
981             fjx0             = _mm256_add_ps(fjx0,tx);
982             fjy0             = _mm256_add_ps(fjy0,ty);
983             fjz0             = _mm256_add_ps(fjz0,tz);
984
985             /**************************
986              * CALCULATE INTERACTIONS *
987              **************************/
988
989             /* Compute parameters for interactions between i and j atoms */
990             qq30             = _mm256_mul_ps(iq3,jq0);
991
992             /* COULOMB ELECTROSTATICS */
993             velec            = _mm256_mul_ps(qq30,rinv30);
994             felec            = _mm256_mul_ps(velec,rinvsq30);
995
996             fscal            = felec;
997
998             /* Calculate temporary vectorial force */
999             tx               = _mm256_mul_ps(fscal,dx30);
1000             ty               = _mm256_mul_ps(fscal,dy30);
1001             tz               = _mm256_mul_ps(fscal,dz30);
1002
1003             /* Update vectorial force */
1004             fix3             = _mm256_add_ps(fix3,tx);
1005             fiy3             = _mm256_add_ps(fiy3,ty);
1006             fiz3             = _mm256_add_ps(fiz3,tz);
1007
1008             fjx0             = _mm256_add_ps(fjx0,tx);
1009             fjy0             = _mm256_add_ps(fjy0,ty);
1010             fjz0             = _mm256_add_ps(fjz0,tz);
1011
1012             fjptrA             = f+j_coord_offsetA;
1013             fjptrB             = f+j_coord_offsetB;
1014             fjptrC             = f+j_coord_offsetC;
1015             fjptrD             = f+j_coord_offsetD;
1016             fjptrE             = f+j_coord_offsetE;
1017             fjptrF             = f+j_coord_offsetF;
1018             fjptrG             = f+j_coord_offsetG;
1019             fjptrH             = f+j_coord_offsetH;
1020
1021             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1022
1023             /* Inner loop uses 108 flops */
1024         }
1025
1026         if(jidx<j_index_end)
1027         {
1028
1029             /* Get j neighbor index, and coordinate index */
1030             jnrlistA         = jjnr[jidx];
1031             jnrlistB         = jjnr[jidx+1];
1032             jnrlistC         = jjnr[jidx+2];
1033             jnrlistD         = jjnr[jidx+3];
1034             jnrlistE         = jjnr[jidx+4];
1035             jnrlistF         = jjnr[jidx+5];
1036             jnrlistG         = jjnr[jidx+6];
1037             jnrlistH         = jjnr[jidx+7];
1038             /* Sign of each element will be negative for non-real atoms.
1039              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1040              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1041              */
1042             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1043                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1044                                             
1045             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1046             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1047             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1048             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1049             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1050             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1051             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1052             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1053             j_coord_offsetA  = DIM*jnrA;
1054             j_coord_offsetB  = DIM*jnrB;
1055             j_coord_offsetC  = DIM*jnrC;
1056             j_coord_offsetD  = DIM*jnrD;
1057             j_coord_offsetE  = DIM*jnrE;
1058             j_coord_offsetF  = DIM*jnrF;
1059             j_coord_offsetG  = DIM*jnrG;
1060             j_coord_offsetH  = DIM*jnrH;
1061
1062             /* load j atom coordinates */
1063             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1064                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1065                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1066                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1067                                                  &jx0,&jy0,&jz0);
1068
1069             /* Calculate displacement vector */
1070             dx00             = _mm256_sub_ps(ix0,jx0);
1071             dy00             = _mm256_sub_ps(iy0,jy0);
1072             dz00             = _mm256_sub_ps(iz0,jz0);
1073             dx10             = _mm256_sub_ps(ix1,jx0);
1074             dy10             = _mm256_sub_ps(iy1,jy0);
1075             dz10             = _mm256_sub_ps(iz1,jz0);
1076             dx20             = _mm256_sub_ps(ix2,jx0);
1077             dy20             = _mm256_sub_ps(iy2,jy0);
1078             dz20             = _mm256_sub_ps(iz2,jz0);
1079             dx30             = _mm256_sub_ps(ix3,jx0);
1080             dy30             = _mm256_sub_ps(iy3,jy0);
1081             dz30             = _mm256_sub_ps(iz3,jz0);
1082
1083             /* Calculate squared distance and things based on it */
1084             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1085             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1086             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1087             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1088
1089             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1090             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1091             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1092
1093             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1094             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1095             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1096             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1097
1098             /* Load parameters for j particles */
1099             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1100                                                                  charge+jnrC+0,charge+jnrD+0,
1101                                                                  charge+jnrE+0,charge+jnrF+0,
1102                                                                  charge+jnrG+0,charge+jnrH+0);
1103             vdwjidx0A        = 2*vdwtype[jnrA+0];
1104             vdwjidx0B        = 2*vdwtype[jnrB+0];
1105             vdwjidx0C        = 2*vdwtype[jnrC+0];
1106             vdwjidx0D        = 2*vdwtype[jnrD+0];
1107             vdwjidx0E        = 2*vdwtype[jnrE+0];
1108             vdwjidx0F        = 2*vdwtype[jnrF+0];
1109             vdwjidx0G        = 2*vdwtype[jnrG+0];
1110             vdwjidx0H        = 2*vdwtype[jnrH+0];
1111
1112             fjx0             = _mm256_setzero_ps();
1113             fjy0             = _mm256_setzero_ps();
1114             fjz0             = _mm256_setzero_ps();
1115
1116             /**************************
1117              * CALCULATE INTERACTIONS *
1118              **************************/
1119
1120             /* Compute parameters for interactions between i and j atoms */
1121             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1122                                             vdwioffsetptr0+vdwjidx0B,
1123                                             vdwioffsetptr0+vdwjidx0C,
1124                                             vdwioffsetptr0+vdwjidx0D,
1125                                             vdwioffsetptr0+vdwjidx0E,
1126                                             vdwioffsetptr0+vdwjidx0F,
1127                                             vdwioffsetptr0+vdwjidx0G,
1128                                             vdwioffsetptr0+vdwjidx0H,
1129                                             &c6_00,&c12_00);
1130
1131             /* LENNARD-JONES DISPERSION/REPULSION */
1132
1133             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1134             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1135
1136             fscal            = fvdw;
1137
1138             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1139
1140             /* Calculate temporary vectorial force */
1141             tx               = _mm256_mul_ps(fscal,dx00);
1142             ty               = _mm256_mul_ps(fscal,dy00);
1143             tz               = _mm256_mul_ps(fscal,dz00);
1144
1145             /* Update vectorial force */
1146             fix0             = _mm256_add_ps(fix0,tx);
1147             fiy0             = _mm256_add_ps(fiy0,ty);
1148             fiz0             = _mm256_add_ps(fiz0,tz);
1149
1150             fjx0             = _mm256_add_ps(fjx0,tx);
1151             fjy0             = _mm256_add_ps(fjy0,ty);
1152             fjz0             = _mm256_add_ps(fjz0,tz);
1153
1154             /**************************
1155              * CALCULATE INTERACTIONS *
1156              **************************/
1157
1158             /* Compute parameters for interactions between i and j atoms */
1159             qq10             = _mm256_mul_ps(iq1,jq0);
1160
1161             /* COULOMB ELECTROSTATICS */
1162             velec            = _mm256_mul_ps(qq10,rinv10);
1163             felec            = _mm256_mul_ps(velec,rinvsq10);
1164
1165             fscal            = felec;
1166
1167             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1168
1169             /* Calculate temporary vectorial force */
1170             tx               = _mm256_mul_ps(fscal,dx10);
1171             ty               = _mm256_mul_ps(fscal,dy10);
1172             tz               = _mm256_mul_ps(fscal,dz10);
1173
1174             /* Update vectorial force */
1175             fix1             = _mm256_add_ps(fix1,tx);
1176             fiy1             = _mm256_add_ps(fiy1,ty);
1177             fiz1             = _mm256_add_ps(fiz1,tz);
1178
1179             fjx0             = _mm256_add_ps(fjx0,tx);
1180             fjy0             = _mm256_add_ps(fjy0,ty);
1181             fjz0             = _mm256_add_ps(fjz0,tz);
1182
1183             /**************************
1184              * CALCULATE INTERACTIONS *
1185              **************************/
1186
1187             /* Compute parameters for interactions between i and j atoms */
1188             qq20             = _mm256_mul_ps(iq2,jq0);
1189
1190             /* COULOMB ELECTROSTATICS */
1191             velec            = _mm256_mul_ps(qq20,rinv20);
1192             felec            = _mm256_mul_ps(velec,rinvsq20);
1193
1194             fscal            = felec;
1195
1196             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1197
1198             /* Calculate temporary vectorial force */
1199             tx               = _mm256_mul_ps(fscal,dx20);
1200             ty               = _mm256_mul_ps(fscal,dy20);
1201             tz               = _mm256_mul_ps(fscal,dz20);
1202
1203             /* Update vectorial force */
1204             fix2             = _mm256_add_ps(fix2,tx);
1205             fiy2             = _mm256_add_ps(fiy2,ty);
1206             fiz2             = _mm256_add_ps(fiz2,tz);
1207
1208             fjx0             = _mm256_add_ps(fjx0,tx);
1209             fjy0             = _mm256_add_ps(fjy0,ty);
1210             fjz0             = _mm256_add_ps(fjz0,tz);
1211
1212             /**************************
1213              * CALCULATE INTERACTIONS *
1214              **************************/
1215
1216             /* Compute parameters for interactions between i and j atoms */
1217             qq30             = _mm256_mul_ps(iq3,jq0);
1218
1219             /* COULOMB ELECTROSTATICS */
1220             velec            = _mm256_mul_ps(qq30,rinv30);
1221             felec            = _mm256_mul_ps(velec,rinvsq30);
1222
1223             fscal            = felec;
1224
1225             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1226
1227             /* Calculate temporary vectorial force */
1228             tx               = _mm256_mul_ps(fscal,dx30);
1229             ty               = _mm256_mul_ps(fscal,dy30);
1230             tz               = _mm256_mul_ps(fscal,dz30);
1231
1232             /* Update vectorial force */
1233             fix3             = _mm256_add_ps(fix3,tx);
1234             fiy3             = _mm256_add_ps(fiy3,ty);
1235             fiz3             = _mm256_add_ps(fiz3,tz);
1236
1237             fjx0             = _mm256_add_ps(fjx0,tx);
1238             fjy0             = _mm256_add_ps(fjy0,ty);
1239             fjz0             = _mm256_add_ps(fjz0,tz);
1240
1241             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1242             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1243             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1244             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1245             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1246             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1247             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1248             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1249
1250             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1251
1252             /* Inner loop uses 108 flops */
1253         }
1254
1255         /* End of innermost loop */
1256
1257         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1258                                                  f+i_coord_offset,fshift+i_shift_offset);
1259
1260         /* Increment number of inner iterations */
1261         inneriter                  += j_index_end - j_index_start;
1262
1263         /* Outer loop uses 24 flops */
1264     }
1265
1266     /* Increment number of outer iterations */
1267     outeriter        += nri;
1268
1269     /* Update outer/inner flops */
1270
1271     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*108);
1272 }