Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwLJ_GeomW3P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_256_single
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
92     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
103     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
104     __m256           dummy_mask,cutoff_mask;
105     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
106     __m256           one     = _mm256_set1_ps(1.0);
107     __m256           two     = _mm256_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_ps(fr->ic->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     /* Setup water-specific parameters */
126     inr              = nlist->iinr[0];
127     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
128     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
129     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
130     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138     j_coord_offsetE = 0;
139     j_coord_offsetF = 0;
140     j_coord_offsetG = 0;
141     j_coord_offsetH = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
167                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
168
169         fix0             = _mm256_setzero_ps();
170         fiy0             = _mm256_setzero_ps();
171         fiz0             = _mm256_setzero_ps();
172         fix1             = _mm256_setzero_ps();
173         fiy1             = _mm256_setzero_ps();
174         fiz1             = _mm256_setzero_ps();
175         fix2             = _mm256_setzero_ps();
176         fiy2             = _mm256_setzero_ps();
177         fiz2             = _mm256_setzero_ps();
178
179         /* Reset potential sums */
180         velecsum         = _mm256_setzero_ps();
181         vvdwsum          = _mm256_setzero_ps();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             jnrC             = jjnr[jidx+2];
191             jnrD             = jjnr[jidx+3];
192             jnrE             = jjnr[jidx+4];
193             jnrF             = jjnr[jidx+5];
194             jnrG             = jjnr[jidx+6];
195             jnrH             = jjnr[jidx+7];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198             j_coord_offsetC  = DIM*jnrC;
199             j_coord_offsetD  = DIM*jnrD;
200             j_coord_offsetE  = DIM*jnrE;
201             j_coord_offsetF  = DIM*jnrF;
202             j_coord_offsetG  = DIM*jnrG;
203             j_coord_offsetH  = DIM*jnrH;
204
205             /* load j atom coordinates */
206             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
207                                                  x+j_coord_offsetC,x+j_coord_offsetD,
208                                                  x+j_coord_offsetE,x+j_coord_offsetF,
209                                                  x+j_coord_offsetG,x+j_coord_offsetH,
210                                                  &jx0,&jy0,&jz0);
211
212             /* Calculate displacement vector */
213             dx00             = _mm256_sub_ps(ix0,jx0);
214             dy00             = _mm256_sub_ps(iy0,jy0);
215             dz00             = _mm256_sub_ps(iz0,jz0);
216             dx10             = _mm256_sub_ps(ix1,jx0);
217             dy10             = _mm256_sub_ps(iy1,jy0);
218             dz10             = _mm256_sub_ps(iz1,jz0);
219             dx20             = _mm256_sub_ps(ix2,jx0);
220             dy20             = _mm256_sub_ps(iy2,jy0);
221             dz20             = _mm256_sub_ps(iz2,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
225             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
226             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
227
228             rinv00           = avx256_invsqrt_f(rsq00);
229             rinv10           = avx256_invsqrt_f(rsq10);
230             rinv20           = avx256_invsqrt_f(rsq20);
231
232             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
233             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
234             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
235
236             /* Load parameters for j particles */
237             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
238                                                                  charge+jnrC+0,charge+jnrD+0,
239                                                                  charge+jnrE+0,charge+jnrF+0,
240                                                                  charge+jnrG+0,charge+jnrH+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243             vdwjidx0C        = 2*vdwtype[jnrC+0];
244             vdwjidx0D        = 2*vdwtype[jnrD+0];
245             vdwjidx0E        = 2*vdwtype[jnrE+0];
246             vdwjidx0F        = 2*vdwtype[jnrF+0];
247             vdwjidx0G        = 2*vdwtype[jnrG+0];
248             vdwjidx0H        = 2*vdwtype[jnrH+0];
249
250             fjx0             = _mm256_setzero_ps();
251             fjy0             = _mm256_setzero_ps();
252             fjz0             = _mm256_setzero_ps();
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             /* Compute parameters for interactions between i and j atoms */
259             qq00             = _mm256_mul_ps(iq0,jq0);
260             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
261                                             vdwioffsetptr0+vdwjidx0B,
262                                             vdwioffsetptr0+vdwjidx0C,
263                                             vdwioffsetptr0+vdwjidx0D,
264                                             vdwioffsetptr0+vdwjidx0E,
265                                             vdwioffsetptr0+vdwjidx0F,
266                                             vdwioffsetptr0+vdwjidx0G,
267                                             vdwioffsetptr0+vdwjidx0H,
268                                             &c6_00,&c12_00);
269
270             /* COULOMB ELECTROSTATICS */
271             velec            = _mm256_mul_ps(qq00,rinv00);
272             felec            = _mm256_mul_ps(velec,rinvsq00);
273
274             /* LENNARD-JONES DISPERSION/REPULSION */
275
276             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
277             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
278             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
279             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
280             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velecsum         = _mm256_add_ps(velecsum,velec);
284             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
285
286             fscal            = _mm256_add_ps(felec,fvdw);
287
288             /* Calculate temporary vectorial force */
289             tx               = _mm256_mul_ps(fscal,dx00);
290             ty               = _mm256_mul_ps(fscal,dy00);
291             tz               = _mm256_mul_ps(fscal,dz00);
292
293             /* Update vectorial force */
294             fix0             = _mm256_add_ps(fix0,tx);
295             fiy0             = _mm256_add_ps(fiy0,ty);
296             fiz0             = _mm256_add_ps(fiz0,tz);
297
298             fjx0             = _mm256_add_ps(fjx0,tx);
299             fjy0             = _mm256_add_ps(fjy0,ty);
300             fjz0             = _mm256_add_ps(fjz0,tz);
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq10             = _mm256_mul_ps(iq1,jq0);
308
309             /* COULOMB ELECTROSTATICS */
310             velec            = _mm256_mul_ps(qq10,rinv10);
311             felec            = _mm256_mul_ps(velec,rinvsq10);
312
313             /* Update potential sum for this i atom from the interaction with this j atom. */
314             velecsum         = _mm256_add_ps(velecsum,velec);
315
316             fscal            = felec;
317
318             /* Calculate temporary vectorial force */
319             tx               = _mm256_mul_ps(fscal,dx10);
320             ty               = _mm256_mul_ps(fscal,dy10);
321             tz               = _mm256_mul_ps(fscal,dz10);
322
323             /* Update vectorial force */
324             fix1             = _mm256_add_ps(fix1,tx);
325             fiy1             = _mm256_add_ps(fiy1,ty);
326             fiz1             = _mm256_add_ps(fiz1,tz);
327
328             fjx0             = _mm256_add_ps(fjx0,tx);
329             fjy0             = _mm256_add_ps(fjy0,ty);
330             fjz0             = _mm256_add_ps(fjz0,tz);
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq20             = _mm256_mul_ps(iq2,jq0);
338
339             /* COULOMB ELECTROSTATICS */
340             velec            = _mm256_mul_ps(qq20,rinv20);
341             felec            = _mm256_mul_ps(velec,rinvsq20);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velecsum         = _mm256_add_ps(velecsum,velec);
345
346             fscal            = felec;
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm256_mul_ps(fscal,dx20);
350             ty               = _mm256_mul_ps(fscal,dy20);
351             tz               = _mm256_mul_ps(fscal,dz20);
352
353             /* Update vectorial force */
354             fix2             = _mm256_add_ps(fix2,tx);
355             fiy2             = _mm256_add_ps(fiy2,ty);
356             fiz2             = _mm256_add_ps(fiz2,tz);
357
358             fjx0             = _mm256_add_ps(fjx0,tx);
359             fjy0             = _mm256_add_ps(fjy0,ty);
360             fjz0             = _mm256_add_ps(fjz0,tz);
361
362             fjptrA             = f+j_coord_offsetA;
363             fjptrB             = f+j_coord_offsetB;
364             fjptrC             = f+j_coord_offsetC;
365             fjptrD             = f+j_coord_offsetD;
366             fjptrE             = f+j_coord_offsetE;
367             fjptrF             = f+j_coord_offsetF;
368             fjptrG             = f+j_coord_offsetG;
369             fjptrH             = f+j_coord_offsetH;
370
371             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
372
373             /* Inner loop uses 96 flops */
374         }
375
376         if(jidx<j_index_end)
377         {
378
379             /* Get j neighbor index, and coordinate index */
380             jnrlistA         = jjnr[jidx];
381             jnrlistB         = jjnr[jidx+1];
382             jnrlistC         = jjnr[jidx+2];
383             jnrlistD         = jjnr[jidx+3];
384             jnrlistE         = jjnr[jidx+4];
385             jnrlistF         = jjnr[jidx+5];
386             jnrlistG         = jjnr[jidx+6];
387             jnrlistH         = jjnr[jidx+7];
388             /* Sign of each element will be negative for non-real atoms.
389              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
390              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
391              */
392             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
393                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
394                                             
395             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
396             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
397             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
398             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
399             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
400             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
401             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
402             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
403             j_coord_offsetA  = DIM*jnrA;
404             j_coord_offsetB  = DIM*jnrB;
405             j_coord_offsetC  = DIM*jnrC;
406             j_coord_offsetD  = DIM*jnrD;
407             j_coord_offsetE  = DIM*jnrE;
408             j_coord_offsetF  = DIM*jnrF;
409             j_coord_offsetG  = DIM*jnrG;
410             j_coord_offsetH  = DIM*jnrH;
411
412             /* load j atom coordinates */
413             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
414                                                  x+j_coord_offsetC,x+j_coord_offsetD,
415                                                  x+j_coord_offsetE,x+j_coord_offsetF,
416                                                  x+j_coord_offsetG,x+j_coord_offsetH,
417                                                  &jx0,&jy0,&jz0);
418
419             /* Calculate displacement vector */
420             dx00             = _mm256_sub_ps(ix0,jx0);
421             dy00             = _mm256_sub_ps(iy0,jy0);
422             dz00             = _mm256_sub_ps(iz0,jz0);
423             dx10             = _mm256_sub_ps(ix1,jx0);
424             dy10             = _mm256_sub_ps(iy1,jy0);
425             dz10             = _mm256_sub_ps(iz1,jz0);
426             dx20             = _mm256_sub_ps(ix2,jx0);
427             dy20             = _mm256_sub_ps(iy2,jy0);
428             dz20             = _mm256_sub_ps(iz2,jz0);
429
430             /* Calculate squared distance and things based on it */
431             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
432             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
433             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
434
435             rinv00           = avx256_invsqrt_f(rsq00);
436             rinv10           = avx256_invsqrt_f(rsq10);
437             rinv20           = avx256_invsqrt_f(rsq20);
438
439             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
440             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
441             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
442
443             /* Load parameters for j particles */
444             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
445                                                                  charge+jnrC+0,charge+jnrD+0,
446                                                                  charge+jnrE+0,charge+jnrF+0,
447                                                                  charge+jnrG+0,charge+jnrH+0);
448             vdwjidx0A        = 2*vdwtype[jnrA+0];
449             vdwjidx0B        = 2*vdwtype[jnrB+0];
450             vdwjidx0C        = 2*vdwtype[jnrC+0];
451             vdwjidx0D        = 2*vdwtype[jnrD+0];
452             vdwjidx0E        = 2*vdwtype[jnrE+0];
453             vdwjidx0F        = 2*vdwtype[jnrF+0];
454             vdwjidx0G        = 2*vdwtype[jnrG+0];
455             vdwjidx0H        = 2*vdwtype[jnrH+0];
456
457             fjx0             = _mm256_setzero_ps();
458             fjy0             = _mm256_setzero_ps();
459             fjz0             = _mm256_setzero_ps();
460
461             /**************************
462              * CALCULATE INTERACTIONS *
463              **************************/
464
465             /* Compute parameters for interactions between i and j atoms */
466             qq00             = _mm256_mul_ps(iq0,jq0);
467             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
468                                             vdwioffsetptr0+vdwjidx0B,
469                                             vdwioffsetptr0+vdwjidx0C,
470                                             vdwioffsetptr0+vdwjidx0D,
471                                             vdwioffsetptr0+vdwjidx0E,
472                                             vdwioffsetptr0+vdwjidx0F,
473                                             vdwioffsetptr0+vdwjidx0G,
474                                             vdwioffsetptr0+vdwjidx0H,
475                                             &c6_00,&c12_00);
476
477             /* COULOMB ELECTROSTATICS */
478             velec            = _mm256_mul_ps(qq00,rinv00);
479             felec            = _mm256_mul_ps(velec,rinvsq00);
480
481             /* LENNARD-JONES DISPERSION/REPULSION */
482
483             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
484             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
485             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
486             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
487             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
488
489             /* Update potential sum for this i atom from the interaction with this j atom. */
490             velec            = _mm256_andnot_ps(dummy_mask,velec);
491             velecsum         = _mm256_add_ps(velecsum,velec);
492             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
493             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
494
495             fscal            = _mm256_add_ps(felec,fvdw);
496
497             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
498
499             /* Calculate temporary vectorial force */
500             tx               = _mm256_mul_ps(fscal,dx00);
501             ty               = _mm256_mul_ps(fscal,dy00);
502             tz               = _mm256_mul_ps(fscal,dz00);
503
504             /* Update vectorial force */
505             fix0             = _mm256_add_ps(fix0,tx);
506             fiy0             = _mm256_add_ps(fiy0,ty);
507             fiz0             = _mm256_add_ps(fiz0,tz);
508
509             fjx0             = _mm256_add_ps(fjx0,tx);
510             fjy0             = _mm256_add_ps(fjy0,ty);
511             fjz0             = _mm256_add_ps(fjz0,tz);
512
513             /**************************
514              * CALCULATE INTERACTIONS *
515              **************************/
516
517             /* Compute parameters for interactions between i and j atoms */
518             qq10             = _mm256_mul_ps(iq1,jq0);
519
520             /* COULOMB ELECTROSTATICS */
521             velec            = _mm256_mul_ps(qq10,rinv10);
522             felec            = _mm256_mul_ps(velec,rinvsq10);
523
524             /* Update potential sum for this i atom from the interaction with this j atom. */
525             velec            = _mm256_andnot_ps(dummy_mask,velec);
526             velecsum         = _mm256_add_ps(velecsum,velec);
527
528             fscal            = felec;
529
530             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
531
532             /* Calculate temporary vectorial force */
533             tx               = _mm256_mul_ps(fscal,dx10);
534             ty               = _mm256_mul_ps(fscal,dy10);
535             tz               = _mm256_mul_ps(fscal,dz10);
536
537             /* Update vectorial force */
538             fix1             = _mm256_add_ps(fix1,tx);
539             fiy1             = _mm256_add_ps(fiy1,ty);
540             fiz1             = _mm256_add_ps(fiz1,tz);
541
542             fjx0             = _mm256_add_ps(fjx0,tx);
543             fjy0             = _mm256_add_ps(fjy0,ty);
544             fjz0             = _mm256_add_ps(fjz0,tz);
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq20             = _mm256_mul_ps(iq2,jq0);
552
553             /* COULOMB ELECTROSTATICS */
554             velec            = _mm256_mul_ps(qq20,rinv20);
555             felec            = _mm256_mul_ps(velec,rinvsq20);
556
557             /* Update potential sum for this i atom from the interaction with this j atom. */
558             velec            = _mm256_andnot_ps(dummy_mask,velec);
559             velecsum         = _mm256_add_ps(velecsum,velec);
560
561             fscal            = felec;
562
563             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
564
565             /* Calculate temporary vectorial force */
566             tx               = _mm256_mul_ps(fscal,dx20);
567             ty               = _mm256_mul_ps(fscal,dy20);
568             tz               = _mm256_mul_ps(fscal,dz20);
569
570             /* Update vectorial force */
571             fix2             = _mm256_add_ps(fix2,tx);
572             fiy2             = _mm256_add_ps(fiy2,ty);
573             fiz2             = _mm256_add_ps(fiz2,tz);
574
575             fjx0             = _mm256_add_ps(fjx0,tx);
576             fjy0             = _mm256_add_ps(fjy0,ty);
577             fjz0             = _mm256_add_ps(fjz0,tz);
578
579             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
580             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
581             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
582             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
583             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
584             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
585             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
586             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
587
588             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
589
590             /* Inner loop uses 96 flops */
591         }
592
593         /* End of innermost loop */
594
595         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
596                                                  f+i_coord_offset,fshift+i_shift_offset);
597
598         ggid                        = gid[iidx];
599         /* Update potential energies */
600         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
601         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
602
603         /* Increment number of inner iterations */
604         inneriter                  += j_index_end - j_index_start;
605
606         /* Outer loop uses 20 flops */
607     }
608
609     /* Increment number of outer iterations */
610     outeriter        += nri;
611
612     /* Update outer/inner flops */
613
614     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*96);
615 }
616 /*
617  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_256_single
618  * Electrostatics interaction: Coulomb
619  * VdW interaction:            LennardJones
620  * Geometry:                   Water3-Particle
621  * Calculate force/pot:        Force
622  */
623 void
624 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_256_single
625                     (t_nblist                    * gmx_restrict       nlist,
626                      rvec                        * gmx_restrict          xx,
627                      rvec                        * gmx_restrict          ff,
628                      struct t_forcerec           * gmx_restrict          fr,
629                      t_mdatoms                   * gmx_restrict     mdatoms,
630                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
631                      t_nrnb                      * gmx_restrict        nrnb)
632 {
633     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
634      * just 0 for non-waters.
635      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
636      * jnr indices corresponding to data put in the four positions in the SIMD register.
637      */
638     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
639     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
640     int              jnrA,jnrB,jnrC,jnrD;
641     int              jnrE,jnrF,jnrG,jnrH;
642     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
643     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
644     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
645     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
646     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
647     real             rcutoff_scalar;
648     real             *shiftvec,*fshift,*x,*f;
649     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
650     real             scratch[4*DIM];
651     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
652     real *           vdwioffsetptr0;
653     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
654     real *           vdwioffsetptr1;
655     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
656     real *           vdwioffsetptr2;
657     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
658     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
659     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
660     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
661     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
662     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
663     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
664     real             *charge;
665     int              nvdwtype;
666     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
667     int              *vdwtype;
668     real             *vdwparam;
669     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
670     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
671     __m256           dummy_mask,cutoff_mask;
672     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
673     __m256           one     = _mm256_set1_ps(1.0);
674     __m256           two     = _mm256_set1_ps(2.0);
675     x                = xx[0];
676     f                = ff[0];
677
678     nri              = nlist->nri;
679     iinr             = nlist->iinr;
680     jindex           = nlist->jindex;
681     jjnr             = nlist->jjnr;
682     shiftidx         = nlist->shift;
683     gid              = nlist->gid;
684     shiftvec         = fr->shift_vec[0];
685     fshift           = fr->fshift[0];
686     facel            = _mm256_set1_ps(fr->ic->epsfac);
687     charge           = mdatoms->chargeA;
688     nvdwtype         = fr->ntype;
689     vdwparam         = fr->nbfp;
690     vdwtype          = mdatoms->typeA;
691
692     /* Setup water-specific parameters */
693     inr              = nlist->iinr[0];
694     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
695     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
696     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
697     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
698
699     /* Avoid stupid compiler warnings */
700     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
701     j_coord_offsetA = 0;
702     j_coord_offsetB = 0;
703     j_coord_offsetC = 0;
704     j_coord_offsetD = 0;
705     j_coord_offsetE = 0;
706     j_coord_offsetF = 0;
707     j_coord_offsetG = 0;
708     j_coord_offsetH = 0;
709
710     outeriter        = 0;
711     inneriter        = 0;
712
713     for(iidx=0;iidx<4*DIM;iidx++)
714     {
715         scratch[iidx] = 0.0;
716     }
717
718     /* Start outer loop over neighborlists */
719     for(iidx=0; iidx<nri; iidx++)
720     {
721         /* Load shift vector for this list */
722         i_shift_offset   = DIM*shiftidx[iidx];
723
724         /* Load limits for loop over neighbors */
725         j_index_start    = jindex[iidx];
726         j_index_end      = jindex[iidx+1];
727
728         /* Get outer coordinate index */
729         inr              = iinr[iidx];
730         i_coord_offset   = DIM*inr;
731
732         /* Load i particle coords and add shift vector */
733         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
734                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
735
736         fix0             = _mm256_setzero_ps();
737         fiy0             = _mm256_setzero_ps();
738         fiz0             = _mm256_setzero_ps();
739         fix1             = _mm256_setzero_ps();
740         fiy1             = _mm256_setzero_ps();
741         fiz1             = _mm256_setzero_ps();
742         fix2             = _mm256_setzero_ps();
743         fiy2             = _mm256_setzero_ps();
744         fiz2             = _mm256_setzero_ps();
745
746         /* Start inner kernel loop */
747         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
748         {
749
750             /* Get j neighbor index, and coordinate index */
751             jnrA             = jjnr[jidx];
752             jnrB             = jjnr[jidx+1];
753             jnrC             = jjnr[jidx+2];
754             jnrD             = jjnr[jidx+3];
755             jnrE             = jjnr[jidx+4];
756             jnrF             = jjnr[jidx+5];
757             jnrG             = jjnr[jidx+6];
758             jnrH             = jjnr[jidx+7];
759             j_coord_offsetA  = DIM*jnrA;
760             j_coord_offsetB  = DIM*jnrB;
761             j_coord_offsetC  = DIM*jnrC;
762             j_coord_offsetD  = DIM*jnrD;
763             j_coord_offsetE  = DIM*jnrE;
764             j_coord_offsetF  = DIM*jnrF;
765             j_coord_offsetG  = DIM*jnrG;
766             j_coord_offsetH  = DIM*jnrH;
767
768             /* load j atom coordinates */
769             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
770                                                  x+j_coord_offsetC,x+j_coord_offsetD,
771                                                  x+j_coord_offsetE,x+j_coord_offsetF,
772                                                  x+j_coord_offsetG,x+j_coord_offsetH,
773                                                  &jx0,&jy0,&jz0);
774
775             /* Calculate displacement vector */
776             dx00             = _mm256_sub_ps(ix0,jx0);
777             dy00             = _mm256_sub_ps(iy0,jy0);
778             dz00             = _mm256_sub_ps(iz0,jz0);
779             dx10             = _mm256_sub_ps(ix1,jx0);
780             dy10             = _mm256_sub_ps(iy1,jy0);
781             dz10             = _mm256_sub_ps(iz1,jz0);
782             dx20             = _mm256_sub_ps(ix2,jx0);
783             dy20             = _mm256_sub_ps(iy2,jy0);
784             dz20             = _mm256_sub_ps(iz2,jz0);
785
786             /* Calculate squared distance and things based on it */
787             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
788             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
789             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
790
791             rinv00           = avx256_invsqrt_f(rsq00);
792             rinv10           = avx256_invsqrt_f(rsq10);
793             rinv20           = avx256_invsqrt_f(rsq20);
794
795             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
796             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
797             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
798
799             /* Load parameters for j particles */
800             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
801                                                                  charge+jnrC+0,charge+jnrD+0,
802                                                                  charge+jnrE+0,charge+jnrF+0,
803                                                                  charge+jnrG+0,charge+jnrH+0);
804             vdwjidx0A        = 2*vdwtype[jnrA+0];
805             vdwjidx0B        = 2*vdwtype[jnrB+0];
806             vdwjidx0C        = 2*vdwtype[jnrC+0];
807             vdwjidx0D        = 2*vdwtype[jnrD+0];
808             vdwjidx0E        = 2*vdwtype[jnrE+0];
809             vdwjidx0F        = 2*vdwtype[jnrF+0];
810             vdwjidx0G        = 2*vdwtype[jnrG+0];
811             vdwjidx0H        = 2*vdwtype[jnrH+0];
812
813             fjx0             = _mm256_setzero_ps();
814             fjy0             = _mm256_setzero_ps();
815             fjz0             = _mm256_setzero_ps();
816
817             /**************************
818              * CALCULATE INTERACTIONS *
819              **************************/
820
821             /* Compute parameters for interactions between i and j atoms */
822             qq00             = _mm256_mul_ps(iq0,jq0);
823             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
824                                             vdwioffsetptr0+vdwjidx0B,
825                                             vdwioffsetptr0+vdwjidx0C,
826                                             vdwioffsetptr0+vdwjidx0D,
827                                             vdwioffsetptr0+vdwjidx0E,
828                                             vdwioffsetptr0+vdwjidx0F,
829                                             vdwioffsetptr0+vdwjidx0G,
830                                             vdwioffsetptr0+vdwjidx0H,
831                                             &c6_00,&c12_00);
832
833             /* COULOMB ELECTROSTATICS */
834             velec            = _mm256_mul_ps(qq00,rinv00);
835             felec            = _mm256_mul_ps(velec,rinvsq00);
836
837             /* LENNARD-JONES DISPERSION/REPULSION */
838
839             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
840             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
841
842             fscal            = _mm256_add_ps(felec,fvdw);
843
844             /* Calculate temporary vectorial force */
845             tx               = _mm256_mul_ps(fscal,dx00);
846             ty               = _mm256_mul_ps(fscal,dy00);
847             tz               = _mm256_mul_ps(fscal,dz00);
848
849             /* Update vectorial force */
850             fix0             = _mm256_add_ps(fix0,tx);
851             fiy0             = _mm256_add_ps(fiy0,ty);
852             fiz0             = _mm256_add_ps(fiz0,tz);
853
854             fjx0             = _mm256_add_ps(fjx0,tx);
855             fjy0             = _mm256_add_ps(fjy0,ty);
856             fjz0             = _mm256_add_ps(fjz0,tz);
857
858             /**************************
859              * CALCULATE INTERACTIONS *
860              **************************/
861
862             /* Compute parameters for interactions between i and j atoms */
863             qq10             = _mm256_mul_ps(iq1,jq0);
864
865             /* COULOMB ELECTROSTATICS */
866             velec            = _mm256_mul_ps(qq10,rinv10);
867             felec            = _mm256_mul_ps(velec,rinvsq10);
868
869             fscal            = felec;
870
871             /* Calculate temporary vectorial force */
872             tx               = _mm256_mul_ps(fscal,dx10);
873             ty               = _mm256_mul_ps(fscal,dy10);
874             tz               = _mm256_mul_ps(fscal,dz10);
875
876             /* Update vectorial force */
877             fix1             = _mm256_add_ps(fix1,tx);
878             fiy1             = _mm256_add_ps(fiy1,ty);
879             fiz1             = _mm256_add_ps(fiz1,tz);
880
881             fjx0             = _mm256_add_ps(fjx0,tx);
882             fjy0             = _mm256_add_ps(fjy0,ty);
883             fjz0             = _mm256_add_ps(fjz0,tz);
884
885             /**************************
886              * CALCULATE INTERACTIONS *
887              **************************/
888
889             /* Compute parameters for interactions between i and j atoms */
890             qq20             = _mm256_mul_ps(iq2,jq0);
891
892             /* COULOMB ELECTROSTATICS */
893             velec            = _mm256_mul_ps(qq20,rinv20);
894             felec            = _mm256_mul_ps(velec,rinvsq20);
895
896             fscal            = felec;
897
898             /* Calculate temporary vectorial force */
899             tx               = _mm256_mul_ps(fscal,dx20);
900             ty               = _mm256_mul_ps(fscal,dy20);
901             tz               = _mm256_mul_ps(fscal,dz20);
902
903             /* Update vectorial force */
904             fix2             = _mm256_add_ps(fix2,tx);
905             fiy2             = _mm256_add_ps(fiy2,ty);
906             fiz2             = _mm256_add_ps(fiz2,tz);
907
908             fjx0             = _mm256_add_ps(fjx0,tx);
909             fjy0             = _mm256_add_ps(fjy0,ty);
910             fjz0             = _mm256_add_ps(fjz0,tz);
911
912             fjptrA             = f+j_coord_offsetA;
913             fjptrB             = f+j_coord_offsetB;
914             fjptrC             = f+j_coord_offsetC;
915             fjptrD             = f+j_coord_offsetD;
916             fjptrE             = f+j_coord_offsetE;
917             fjptrF             = f+j_coord_offsetF;
918             fjptrG             = f+j_coord_offsetG;
919             fjptrH             = f+j_coord_offsetH;
920
921             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
922
923             /* Inner loop uses 88 flops */
924         }
925
926         if(jidx<j_index_end)
927         {
928
929             /* Get j neighbor index, and coordinate index */
930             jnrlistA         = jjnr[jidx];
931             jnrlistB         = jjnr[jidx+1];
932             jnrlistC         = jjnr[jidx+2];
933             jnrlistD         = jjnr[jidx+3];
934             jnrlistE         = jjnr[jidx+4];
935             jnrlistF         = jjnr[jidx+5];
936             jnrlistG         = jjnr[jidx+6];
937             jnrlistH         = jjnr[jidx+7];
938             /* Sign of each element will be negative for non-real atoms.
939              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
940              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
941              */
942             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
943                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
944                                             
945             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
946             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
947             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
948             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
949             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
950             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
951             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
952             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
953             j_coord_offsetA  = DIM*jnrA;
954             j_coord_offsetB  = DIM*jnrB;
955             j_coord_offsetC  = DIM*jnrC;
956             j_coord_offsetD  = DIM*jnrD;
957             j_coord_offsetE  = DIM*jnrE;
958             j_coord_offsetF  = DIM*jnrF;
959             j_coord_offsetG  = DIM*jnrG;
960             j_coord_offsetH  = DIM*jnrH;
961
962             /* load j atom coordinates */
963             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
964                                                  x+j_coord_offsetC,x+j_coord_offsetD,
965                                                  x+j_coord_offsetE,x+j_coord_offsetF,
966                                                  x+j_coord_offsetG,x+j_coord_offsetH,
967                                                  &jx0,&jy0,&jz0);
968
969             /* Calculate displacement vector */
970             dx00             = _mm256_sub_ps(ix0,jx0);
971             dy00             = _mm256_sub_ps(iy0,jy0);
972             dz00             = _mm256_sub_ps(iz0,jz0);
973             dx10             = _mm256_sub_ps(ix1,jx0);
974             dy10             = _mm256_sub_ps(iy1,jy0);
975             dz10             = _mm256_sub_ps(iz1,jz0);
976             dx20             = _mm256_sub_ps(ix2,jx0);
977             dy20             = _mm256_sub_ps(iy2,jy0);
978             dz20             = _mm256_sub_ps(iz2,jz0);
979
980             /* Calculate squared distance and things based on it */
981             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
982             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
983             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
984
985             rinv00           = avx256_invsqrt_f(rsq00);
986             rinv10           = avx256_invsqrt_f(rsq10);
987             rinv20           = avx256_invsqrt_f(rsq20);
988
989             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
990             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
991             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
992
993             /* Load parameters for j particles */
994             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
995                                                                  charge+jnrC+0,charge+jnrD+0,
996                                                                  charge+jnrE+0,charge+jnrF+0,
997                                                                  charge+jnrG+0,charge+jnrH+0);
998             vdwjidx0A        = 2*vdwtype[jnrA+0];
999             vdwjidx0B        = 2*vdwtype[jnrB+0];
1000             vdwjidx0C        = 2*vdwtype[jnrC+0];
1001             vdwjidx0D        = 2*vdwtype[jnrD+0];
1002             vdwjidx0E        = 2*vdwtype[jnrE+0];
1003             vdwjidx0F        = 2*vdwtype[jnrF+0];
1004             vdwjidx0G        = 2*vdwtype[jnrG+0];
1005             vdwjidx0H        = 2*vdwtype[jnrH+0];
1006
1007             fjx0             = _mm256_setzero_ps();
1008             fjy0             = _mm256_setzero_ps();
1009             fjz0             = _mm256_setzero_ps();
1010
1011             /**************************
1012              * CALCULATE INTERACTIONS *
1013              **************************/
1014
1015             /* Compute parameters for interactions between i and j atoms */
1016             qq00             = _mm256_mul_ps(iq0,jq0);
1017             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1018                                             vdwioffsetptr0+vdwjidx0B,
1019                                             vdwioffsetptr0+vdwjidx0C,
1020                                             vdwioffsetptr0+vdwjidx0D,
1021                                             vdwioffsetptr0+vdwjidx0E,
1022                                             vdwioffsetptr0+vdwjidx0F,
1023                                             vdwioffsetptr0+vdwjidx0G,
1024                                             vdwioffsetptr0+vdwjidx0H,
1025                                             &c6_00,&c12_00);
1026
1027             /* COULOMB ELECTROSTATICS */
1028             velec            = _mm256_mul_ps(qq00,rinv00);
1029             felec            = _mm256_mul_ps(velec,rinvsq00);
1030
1031             /* LENNARD-JONES DISPERSION/REPULSION */
1032
1033             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1034             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1035
1036             fscal            = _mm256_add_ps(felec,fvdw);
1037
1038             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1039
1040             /* Calculate temporary vectorial force */
1041             tx               = _mm256_mul_ps(fscal,dx00);
1042             ty               = _mm256_mul_ps(fscal,dy00);
1043             tz               = _mm256_mul_ps(fscal,dz00);
1044
1045             /* Update vectorial force */
1046             fix0             = _mm256_add_ps(fix0,tx);
1047             fiy0             = _mm256_add_ps(fiy0,ty);
1048             fiz0             = _mm256_add_ps(fiz0,tz);
1049
1050             fjx0             = _mm256_add_ps(fjx0,tx);
1051             fjy0             = _mm256_add_ps(fjy0,ty);
1052             fjz0             = _mm256_add_ps(fjz0,tz);
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             /* Compute parameters for interactions between i and j atoms */
1059             qq10             = _mm256_mul_ps(iq1,jq0);
1060
1061             /* COULOMB ELECTROSTATICS */
1062             velec            = _mm256_mul_ps(qq10,rinv10);
1063             felec            = _mm256_mul_ps(velec,rinvsq10);
1064
1065             fscal            = felec;
1066
1067             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1068
1069             /* Calculate temporary vectorial force */
1070             tx               = _mm256_mul_ps(fscal,dx10);
1071             ty               = _mm256_mul_ps(fscal,dy10);
1072             tz               = _mm256_mul_ps(fscal,dz10);
1073
1074             /* Update vectorial force */
1075             fix1             = _mm256_add_ps(fix1,tx);
1076             fiy1             = _mm256_add_ps(fiy1,ty);
1077             fiz1             = _mm256_add_ps(fiz1,tz);
1078
1079             fjx0             = _mm256_add_ps(fjx0,tx);
1080             fjy0             = _mm256_add_ps(fjy0,ty);
1081             fjz0             = _mm256_add_ps(fjz0,tz);
1082
1083             /**************************
1084              * CALCULATE INTERACTIONS *
1085              **************************/
1086
1087             /* Compute parameters for interactions between i and j atoms */
1088             qq20             = _mm256_mul_ps(iq2,jq0);
1089
1090             /* COULOMB ELECTROSTATICS */
1091             velec            = _mm256_mul_ps(qq20,rinv20);
1092             felec            = _mm256_mul_ps(velec,rinvsq20);
1093
1094             fscal            = felec;
1095
1096             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1097
1098             /* Calculate temporary vectorial force */
1099             tx               = _mm256_mul_ps(fscal,dx20);
1100             ty               = _mm256_mul_ps(fscal,dy20);
1101             tz               = _mm256_mul_ps(fscal,dz20);
1102
1103             /* Update vectorial force */
1104             fix2             = _mm256_add_ps(fix2,tx);
1105             fiy2             = _mm256_add_ps(fiy2,ty);
1106             fiz2             = _mm256_add_ps(fiz2,tz);
1107
1108             fjx0             = _mm256_add_ps(fjx0,tx);
1109             fjy0             = _mm256_add_ps(fjy0,ty);
1110             fjz0             = _mm256_add_ps(fjz0,tz);
1111
1112             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1113             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1114             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1115             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1116             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1117             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1118             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1119             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1120
1121             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1122
1123             /* Inner loop uses 88 flops */
1124         }
1125
1126         /* End of innermost loop */
1127
1128         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1129                                                  f+i_coord_offset,fshift+i_shift_offset);
1130
1131         /* Increment number of inner iterations */
1132         inneriter                  += j_index_end - j_index_start;
1133
1134         /* Outer loop uses 18 flops */
1135     }
1136
1137     /* Increment number of outer iterations */
1138     outeriter        += nri;
1139
1140     /* Update outer/inner flops */
1141
1142     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*88);
1143 }