Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwLJ_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_256_single
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
93     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
104     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
105     __m256           dummy_mask,cutoff_mask;
106     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
107     __m256           one     = _mm256_set1_ps(1.0);
108     __m256           two     = _mm256_set1_ps(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm256_set1_ps(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
129     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
130     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
131     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139     j_coord_offsetE = 0;
140     j_coord_offsetF = 0;
141     j_coord_offsetG = 0;
142     j_coord_offsetH = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169
170         fix0             = _mm256_setzero_ps();
171         fiy0             = _mm256_setzero_ps();
172         fiz0             = _mm256_setzero_ps();
173         fix1             = _mm256_setzero_ps();
174         fiy1             = _mm256_setzero_ps();
175         fiz1             = _mm256_setzero_ps();
176         fix2             = _mm256_setzero_ps();
177         fiy2             = _mm256_setzero_ps();
178         fiz2             = _mm256_setzero_ps();
179
180         /* Reset potential sums */
181         velecsum         = _mm256_setzero_ps();
182         vvdwsum          = _mm256_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             jnrE             = jjnr[jidx+4];
194             jnrF             = jjnr[jidx+5];
195             jnrG             = jjnr[jidx+6];
196             jnrH             = jjnr[jidx+7];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201             j_coord_offsetE  = DIM*jnrE;
202             j_coord_offsetF  = DIM*jnrF;
203             j_coord_offsetG  = DIM*jnrG;
204             j_coord_offsetH  = DIM*jnrH;
205
206             /* load j atom coordinates */
207             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                                  x+j_coord_offsetC,x+j_coord_offsetD,
209                                                  x+j_coord_offsetE,x+j_coord_offsetF,
210                                                  x+j_coord_offsetG,x+j_coord_offsetH,
211                                                  &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm256_sub_ps(ix0,jx0);
215             dy00             = _mm256_sub_ps(iy0,jy0);
216             dz00             = _mm256_sub_ps(iz0,jz0);
217             dx10             = _mm256_sub_ps(ix1,jx0);
218             dy10             = _mm256_sub_ps(iy1,jy0);
219             dz10             = _mm256_sub_ps(iz1,jz0);
220             dx20             = _mm256_sub_ps(ix2,jx0);
221             dy20             = _mm256_sub_ps(iy2,jy0);
222             dz20             = _mm256_sub_ps(iz2,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
226             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
227             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
228
229             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
230             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
231             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
232
233             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
234             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
235             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
236
237             /* Load parameters for j particles */
238             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
239                                                                  charge+jnrC+0,charge+jnrD+0,
240                                                                  charge+jnrE+0,charge+jnrF+0,
241                                                                  charge+jnrG+0,charge+jnrH+0);
242             vdwjidx0A        = 2*vdwtype[jnrA+0];
243             vdwjidx0B        = 2*vdwtype[jnrB+0];
244             vdwjidx0C        = 2*vdwtype[jnrC+0];
245             vdwjidx0D        = 2*vdwtype[jnrD+0];
246             vdwjidx0E        = 2*vdwtype[jnrE+0];
247             vdwjidx0F        = 2*vdwtype[jnrF+0];
248             vdwjidx0G        = 2*vdwtype[jnrG+0];
249             vdwjidx0H        = 2*vdwtype[jnrH+0];
250
251             fjx0             = _mm256_setzero_ps();
252             fjy0             = _mm256_setzero_ps();
253             fjz0             = _mm256_setzero_ps();
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             /* Compute parameters for interactions between i and j atoms */
260             qq00             = _mm256_mul_ps(iq0,jq0);
261             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
262                                             vdwioffsetptr0+vdwjidx0B,
263                                             vdwioffsetptr0+vdwjidx0C,
264                                             vdwioffsetptr0+vdwjidx0D,
265                                             vdwioffsetptr0+vdwjidx0E,
266                                             vdwioffsetptr0+vdwjidx0F,
267                                             vdwioffsetptr0+vdwjidx0G,
268                                             vdwioffsetptr0+vdwjidx0H,
269                                             &c6_00,&c12_00);
270
271             /* COULOMB ELECTROSTATICS */
272             velec            = _mm256_mul_ps(qq00,rinv00);
273             felec            = _mm256_mul_ps(velec,rinvsq00);
274
275             /* LENNARD-JONES DISPERSION/REPULSION */
276
277             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
278             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
279             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
280             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
281             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velecsum         = _mm256_add_ps(velecsum,velec);
285             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
286
287             fscal            = _mm256_add_ps(felec,fvdw);
288
289             /* Calculate temporary vectorial force */
290             tx               = _mm256_mul_ps(fscal,dx00);
291             ty               = _mm256_mul_ps(fscal,dy00);
292             tz               = _mm256_mul_ps(fscal,dz00);
293
294             /* Update vectorial force */
295             fix0             = _mm256_add_ps(fix0,tx);
296             fiy0             = _mm256_add_ps(fiy0,ty);
297             fiz0             = _mm256_add_ps(fiz0,tz);
298
299             fjx0             = _mm256_add_ps(fjx0,tx);
300             fjy0             = _mm256_add_ps(fjy0,ty);
301             fjz0             = _mm256_add_ps(fjz0,tz);
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq10             = _mm256_mul_ps(iq1,jq0);
309
310             /* COULOMB ELECTROSTATICS */
311             velec            = _mm256_mul_ps(qq10,rinv10);
312             felec            = _mm256_mul_ps(velec,rinvsq10);
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velecsum         = _mm256_add_ps(velecsum,velec);
316
317             fscal            = felec;
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm256_mul_ps(fscal,dx10);
321             ty               = _mm256_mul_ps(fscal,dy10);
322             tz               = _mm256_mul_ps(fscal,dz10);
323
324             /* Update vectorial force */
325             fix1             = _mm256_add_ps(fix1,tx);
326             fiy1             = _mm256_add_ps(fiy1,ty);
327             fiz1             = _mm256_add_ps(fiz1,tz);
328
329             fjx0             = _mm256_add_ps(fjx0,tx);
330             fjy0             = _mm256_add_ps(fjy0,ty);
331             fjz0             = _mm256_add_ps(fjz0,tz);
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             /* Compute parameters for interactions between i and j atoms */
338             qq20             = _mm256_mul_ps(iq2,jq0);
339
340             /* COULOMB ELECTROSTATICS */
341             velec            = _mm256_mul_ps(qq20,rinv20);
342             felec            = _mm256_mul_ps(velec,rinvsq20);
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm256_add_ps(velecsum,velec);
346
347             fscal            = felec;
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm256_mul_ps(fscal,dx20);
351             ty               = _mm256_mul_ps(fscal,dy20);
352             tz               = _mm256_mul_ps(fscal,dz20);
353
354             /* Update vectorial force */
355             fix2             = _mm256_add_ps(fix2,tx);
356             fiy2             = _mm256_add_ps(fiy2,ty);
357             fiz2             = _mm256_add_ps(fiz2,tz);
358
359             fjx0             = _mm256_add_ps(fjx0,tx);
360             fjy0             = _mm256_add_ps(fjy0,ty);
361             fjz0             = _mm256_add_ps(fjz0,tz);
362
363             fjptrA             = f+j_coord_offsetA;
364             fjptrB             = f+j_coord_offsetB;
365             fjptrC             = f+j_coord_offsetC;
366             fjptrD             = f+j_coord_offsetD;
367             fjptrE             = f+j_coord_offsetE;
368             fjptrF             = f+j_coord_offsetF;
369             fjptrG             = f+j_coord_offsetG;
370             fjptrH             = f+j_coord_offsetH;
371
372             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
373
374             /* Inner loop uses 96 flops */
375         }
376
377         if(jidx<j_index_end)
378         {
379
380             /* Get j neighbor index, and coordinate index */
381             jnrlistA         = jjnr[jidx];
382             jnrlistB         = jjnr[jidx+1];
383             jnrlistC         = jjnr[jidx+2];
384             jnrlistD         = jjnr[jidx+3];
385             jnrlistE         = jjnr[jidx+4];
386             jnrlistF         = jjnr[jidx+5];
387             jnrlistG         = jjnr[jidx+6];
388             jnrlistH         = jjnr[jidx+7];
389             /* Sign of each element will be negative for non-real atoms.
390              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
391              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
392              */
393             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
394                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
395                                             
396             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
397             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
398             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
399             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
400             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
401             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
402             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
403             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
404             j_coord_offsetA  = DIM*jnrA;
405             j_coord_offsetB  = DIM*jnrB;
406             j_coord_offsetC  = DIM*jnrC;
407             j_coord_offsetD  = DIM*jnrD;
408             j_coord_offsetE  = DIM*jnrE;
409             j_coord_offsetF  = DIM*jnrF;
410             j_coord_offsetG  = DIM*jnrG;
411             j_coord_offsetH  = DIM*jnrH;
412
413             /* load j atom coordinates */
414             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
415                                                  x+j_coord_offsetC,x+j_coord_offsetD,
416                                                  x+j_coord_offsetE,x+j_coord_offsetF,
417                                                  x+j_coord_offsetG,x+j_coord_offsetH,
418                                                  &jx0,&jy0,&jz0);
419
420             /* Calculate displacement vector */
421             dx00             = _mm256_sub_ps(ix0,jx0);
422             dy00             = _mm256_sub_ps(iy0,jy0);
423             dz00             = _mm256_sub_ps(iz0,jz0);
424             dx10             = _mm256_sub_ps(ix1,jx0);
425             dy10             = _mm256_sub_ps(iy1,jy0);
426             dz10             = _mm256_sub_ps(iz1,jz0);
427             dx20             = _mm256_sub_ps(ix2,jx0);
428             dy20             = _mm256_sub_ps(iy2,jy0);
429             dz20             = _mm256_sub_ps(iz2,jz0);
430
431             /* Calculate squared distance and things based on it */
432             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
433             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
434             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
435
436             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
437             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
438             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
439
440             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
441             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
442             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
443
444             /* Load parameters for j particles */
445             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
446                                                                  charge+jnrC+0,charge+jnrD+0,
447                                                                  charge+jnrE+0,charge+jnrF+0,
448                                                                  charge+jnrG+0,charge+jnrH+0);
449             vdwjidx0A        = 2*vdwtype[jnrA+0];
450             vdwjidx0B        = 2*vdwtype[jnrB+0];
451             vdwjidx0C        = 2*vdwtype[jnrC+0];
452             vdwjidx0D        = 2*vdwtype[jnrD+0];
453             vdwjidx0E        = 2*vdwtype[jnrE+0];
454             vdwjidx0F        = 2*vdwtype[jnrF+0];
455             vdwjidx0G        = 2*vdwtype[jnrG+0];
456             vdwjidx0H        = 2*vdwtype[jnrH+0];
457
458             fjx0             = _mm256_setzero_ps();
459             fjy0             = _mm256_setzero_ps();
460             fjz0             = _mm256_setzero_ps();
461
462             /**************************
463              * CALCULATE INTERACTIONS *
464              **************************/
465
466             /* Compute parameters for interactions between i and j atoms */
467             qq00             = _mm256_mul_ps(iq0,jq0);
468             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
469                                             vdwioffsetptr0+vdwjidx0B,
470                                             vdwioffsetptr0+vdwjidx0C,
471                                             vdwioffsetptr0+vdwjidx0D,
472                                             vdwioffsetptr0+vdwjidx0E,
473                                             vdwioffsetptr0+vdwjidx0F,
474                                             vdwioffsetptr0+vdwjidx0G,
475                                             vdwioffsetptr0+vdwjidx0H,
476                                             &c6_00,&c12_00);
477
478             /* COULOMB ELECTROSTATICS */
479             velec            = _mm256_mul_ps(qq00,rinv00);
480             felec            = _mm256_mul_ps(velec,rinvsq00);
481
482             /* LENNARD-JONES DISPERSION/REPULSION */
483
484             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
485             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
486             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
487             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
488             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
489
490             /* Update potential sum for this i atom from the interaction with this j atom. */
491             velec            = _mm256_andnot_ps(dummy_mask,velec);
492             velecsum         = _mm256_add_ps(velecsum,velec);
493             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
494             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
495
496             fscal            = _mm256_add_ps(felec,fvdw);
497
498             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
499
500             /* Calculate temporary vectorial force */
501             tx               = _mm256_mul_ps(fscal,dx00);
502             ty               = _mm256_mul_ps(fscal,dy00);
503             tz               = _mm256_mul_ps(fscal,dz00);
504
505             /* Update vectorial force */
506             fix0             = _mm256_add_ps(fix0,tx);
507             fiy0             = _mm256_add_ps(fiy0,ty);
508             fiz0             = _mm256_add_ps(fiz0,tz);
509
510             fjx0             = _mm256_add_ps(fjx0,tx);
511             fjy0             = _mm256_add_ps(fjy0,ty);
512             fjz0             = _mm256_add_ps(fjz0,tz);
513
514             /**************************
515              * CALCULATE INTERACTIONS *
516              **************************/
517
518             /* Compute parameters for interactions between i and j atoms */
519             qq10             = _mm256_mul_ps(iq1,jq0);
520
521             /* COULOMB ELECTROSTATICS */
522             velec            = _mm256_mul_ps(qq10,rinv10);
523             felec            = _mm256_mul_ps(velec,rinvsq10);
524
525             /* Update potential sum for this i atom from the interaction with this j atom. */
526             velec            = _mm256_andnot_ps(dummy_mask,velec);
527             velecsum         = _mm256_add_ps(velecsum,velec);
528
529             fscal            = felec;
530
531             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
532
533             /* Calculate temporary vectorial force */
534             tx               = _mm256_mul_ps(fscal,dx10);
535             ty               = _mm256_mul_ps(fscal,dy10);
536             tz               = _mm256_mul_ps(fscal,dz10);
537
538             /* Update vectorial force */
539             fix1             = _mm256_add_ps(fix1,tx);
540             fiy1             = _mm256_add_ps(fiy1,ty);
541             fiz1             = _mm256_add_ps(fiz1,tz);
542
543             fjx0             = _mm256_add_ps(fjx0,tx);
544             fjy0             = _mm256_add_ps(fjy0,ty);
545             fjz0             = _mm256_add_ps(fjz0,tz);
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             /* Compute parameters for interactions between i and j atoms */
552             qq20             = _mm256_mul_ps(iq2,jq0);
553
554             /* COULOMB ELECTROSTATICS */
555             velec            = _mm256_mul_ps(qq20,rinv20);
556             felec            = _mm256_mul_ps(velec,rinvsq20);
557
558             /* Update potential sum for this i atom from the interaction with this j atom. */
559             velec            = _mm256_andnot_ps(dummy_mask,velec);
560             velecsum         = _mm256_add_ps(velecsum,velec);
561
562             fscal            = felec;
563
564             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
565
566             /* Calculate temporary vectorial force */
567             tx               = _mm256_mul_ps(fscal,dx20);
568             ty               = _mm256_mul_ps(fscal,dy20);
569             tz               = _mm256_mul_ps(fscal,dz20);
570
571             /* Update vectorial force */
572             fix2             = _mm256_add_ps(fix2,tx);
573             fiy2             = _mm256_add_ps(fiy2,ty);
574             fiz2             = _mm256_add_ps(fiz2,tz);
575
576             fjx0             = _mm256_add_ps(fjx0,tx);
577             fjy0             = _mm256_add_ps(fjy0,ty);
578             fjz0             = _mm256_add_ps(fjz0,tz);
579
580             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
581             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
582             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
583             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
584             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
585             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
586             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
587             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
588
589             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
590
591             /* Inner loop uses 96 flops */
592         }
593
594         /* End of innermost loop */
595
596         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
597                                                  f+i_coord_offset,fshift+i_shift_offset);
598
599         ggid                        = gid[iidx];
600         /* Update potential energies */
601         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
602         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
603
604         /* Increment number of inner iterations */
605         inneriter                  += j_index_end - j_index_start;
606
607         /* Outer loop uses 20 flops */
608     }
609
610     /* Increment number of outer iterations */
611     outeriter        += nri;
612
613     /* Update outer/inner flops */
614
615     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*96);
616 }
617 /*
618  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_256_single
619  * Electrostatics interaction: Coulomb
620  * VdW interaction:            LennardJones
621  * Geometry:                   Water3-Particle
622  * Calculate force/pot:        Force
623  */
624 void
625 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_256_single
626                     (t_nblist                    * gmx_restrict       nlist,
627                      rvec                        * gmx_restrict          xx,
628                      rvec                        * gmx_restrict          ff,
629                      t_forcerec                  * gmx_restrict          fr,
630                      t_mdatoms                   * gmx_restrict     mdatoms,
631                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
632                      t_nrnb                      * gmx_restrict        nrnb)
633 {
634     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
635      * just 0 for non-waters.
636      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
637      * jnr indices corresponding to data put in the four positions in the SIMD register.
638      */
639     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
640     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
641     int              jnrA,jnrB,jnrC,jnrD;
642     int              jnrE,jnrF,jnrG,jnrH;
643     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
644     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
645     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
646     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
647     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
648     real             rcutoff_scalar;
649     real             *shiftvec,*fshift,*x,*f;
650     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
651     real             scratch[4*DIM];
652     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
653     real *           vdwioffsetptr0;
654     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
655     real *           vdwioffsetptr1;
656     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
657     real *           vdwioffsetptr2;
658     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
659     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
660     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
661     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
662     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
663     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
664     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
665     real             *charge;
666     int              nvdwtype;
667     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
668     int              *vdwtype;
669     real             *vdwparam;
670     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
671     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
672     __m256           dummy_mask,cutoff_mask;
673     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
674     __m256           one     = _mm256_set1_ps(1.0);
675     __m256           two     = _mm256_set1_ps(2.0);
676     x                = xx[0];
677     f                = ff[0];
678
679     nri              = nlist->nri;
680     iinr             = nlist->iinr;
681     jindex           = nlist->jindex;
682     jjnr             = nlist->jjnr;
683     shiftidx         = nlist->shift;
684     gid              = nlist->gid;
685     shiftvec         = fr->shift_vec[0];
686     fshift           = fr->fshift[0];
687     facel            = _mm256_set1_ps(fr->epsfac);
688     charge           = mdatoms->chargeA;
689     nvdwtype         = fr->ntype;
690     vdwparam         = fr->nbfp;
691     vdwtype          = mdatoms->typeA;
692
693     /* Setup water-specific parameters */
694     inr              = nlist->iinr[0];
695     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
696     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
697     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
698     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
699
700     /* Avoid stupid compiler warnings */
701     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
702     j_coord_offsetA = 0;
703     j_coord_offsetB = 0;
704     j_coord_offsetC = 0;
705     j_coord_offsetD = 0;
706     j_coord_offsetE = 0;
707     j_coord_offsetF = 0;
708     j_coord_offsetG = 0;
709     j_coord_offsetH = 0;
710
711     outeriter        = 0;
712     inneriter        = 0;
713
714     for(iidx=0;iidx<4*DIM;iidx++)
715     {
716         scratch[iidx] = 0.0;
717     }
718
719     /* Start outer loop over neighborlists */
720     for(iidx=0; iidx<nri; iidx++)
721     {
722         /* Load shift vector for this list */
723         i_shift_offset   = DIM*shiftidx[iidx];
724
725         /* Load limits for loop over neighbors */
726         j_index_start    = jindex[iidx];
727         j_index_end      = jindex[iidx+1];
728
729         /* Get outer coordinate index */
730         inr              = iinr[iidx];
731         i_coord_offset   = DIM*inr;
732
733         /* Load i particle coords and add shift vector */
734         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
735                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
736
737         fix0             = _mm256_setzero_ps();
738         fiy0             = _mm256_setzero_ps();
739         fiz0             = _mm256_setzero_ps();
740         fix1             = _mm256_setzero_ps();
741         fiy1             = _mm256_setzero_ps();
742         fiz1             = _mm256_setzero_ps();
743         fix2             = _mm256_setzero_ps();
744         fiy2             = _mm256_setzero_ps();
745         fiz2             = _mm256_setzero_ps();
746
747         /* Start inner kernel loop */
748         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
749         {
750
751             /* Get j neighbor index, and coordinate index */
752             jnrA             = jjnr[jidx];
753             jnrB             = jjnr[jidx+1];
754             jnrC             = jjnr[jidx+2];
755             jnrD             = jjnr[jidx+3];
756             jnrE             = jjnr[jidx+4];
757             jnrF             = jjnr[jidx+5];
758             jnrG             = jjnr[jidx+6];
759             jnrH             = jjnr[jidx+7];
760             j_coord_offsetA  = DIM*jnrA;
761             j_coord_offsetB  = DIM*jnrB;
762             j_coord_offsetC  = DIM*jnrC;
763             j_coord_offsetD  = DIM*jnrD;
764             j_coord_offsetE  = DIM*jnrE;
765             j_coord_offsetF  = DIM*jnrF;
766             j_coord_offsetG  = DIM*jnrG;
767             j_coord_offsetH  = DIM*jnrH;
768
769             /* load j atom coordinates */
770             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
771                                                  x+j_coord_offsetC,x+j_coord_offsetD,
772                                                  x+j_coord_offsetE,x+j_coord_offsetF,
773                                                  x+j_coord_offsetG,x+j_coord_offsetH,
774                                                  &jx0,&jy0,&jz0);
775
776             /* Calculate displacement vector */
777             dx00             = _mm256_sub_ps(ix0,jx0);
778             dy00             = _mm256_sub_ps(iy0,jy0);
779             dz00             = _mm256_sub_ps(iz0,jz0);
780             dx10             = _mm256_sub_ps(ix1,jx0);
781             dy10             = _mm256_sub_ps(iy1,jy0);
782             dz10             = _mm256_sub_ps(iz1,jz0);
783             dx20             = _mm256_sub_ps(ix2,jx0);
784             dy20             = _mm256_sub_ps(iy2,jy0);
785             dz20             = _mm256_sub_ps(iz2,jz0);
786
787             /* Calculate squared distance and things based on it */
788             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
789             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
790             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
791
792             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
793             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
794             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
795
796             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
797             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
798             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
799
800             /* Load parameters for j particles */
801             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
802                                                                  charge+jnrC+0,charge+jnrD+0,
803                                                                  charge+jnrE+0,charge+jnrF+0,
804                                                                  charge+jnrG+0,charge+jnrH+0);
805             vdwjidx0A        = 2*vdwtype[jnrA+0];
806             vdwjidx0B        = 2*vdwtype[jnrB+0];
807             vdwjidx0C        = 2*vdwtype[jnrC+0];
808             vdwjidx0D        = 2*vdwtype[jnrD+0];
809             vdwjidx0E        = 2*vdwtype[jnrE+0];
810             vdwjidx0F        = 2*vdwtype[jnrF+0];
811             vdwjidx0G        = 2*vdwtype[jnrG+0];
812             vdwjidx0H        = 2*vdwtype[jnrH+0];
813
814             fjx0             = _mm256_setzero_ps();
815             fjy0             = _mm256_setzero_ps();
816             fjz0             = _mm256_setzero_ps();
817
818             /**************************
819              * CALCULATE INTERACTIONS *
820              **************************/
821
822             /* Compute parameters for interactions between i and j atoms */
823             qq00             = _mm256_mul_ps(iq0,jq0);
824             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
825                                             vdwioffsetptr0+vdwjidx0B,
826                                             vdwioffsetptr0+vdwjidx0C,
827                                             vdwioffsetptr0+vdwjidx0D,
828                                             vdwioffsetptr0+vdwjidx0E,
829                                             vdwioffsetptr0+vdwjidx0F,
830                                             vdwioffsetptr0+vdwjidx0G,
831                                             vdwioffsetptr0+vdwjidx0H,
832                                             &c6_00,&c12_00);
833
834             /* COULOMB ELECTROSTATICS */
835             velec            = _mm256_mul_ps(qq00,rinv00);
836             felec            = _mm256_mul_ps(velec,rinvsq00);
837
838             /* LENNARD-JONES DISPERSION/REPULSION */
839
840             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
841             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
842
843             fscal            = _mm256_add_ps(felec,fvdw);
844
845             /* Calculate temporary vectorial force */
846             tx               = _mm256_mul_ps(fscal,dx00);
847             ty               = _mm256_mul_ps(fscal,dy00);
848             tz               = _mm256_mul_ps(fscal,dz00);
849
850             /* Update vectorial force */
851             fix0             = _mm256_add_ps(fix0,tx);
852             fiy0             = _mm256_add_ps(fiy0,ty);
853             fiz0             = _mm256_add_ps(fiz0,tz);
854
855             fjx0             = _mm256_add_ps(fjx0,tx);
856             fjy0             = _mm256_add_ps(fjy0,ty);
857             fjz0             = _mm256_add_ps(fjz0,tz);
858
859             /**************************
860              * CALCULATE INTERACTIONS *
861              **************************/
862
863             /* Compute parameters for interactions between i and j atoms */
864             qq10             = _mm256_mul_ps(iq1,jq0);
865
866             /* COULOMB ELECTROSTATICS */
867             velec            = _mm256_mul_ps(qq10,rinv10);
868             felec            = _mm256_mul_ps(velec,rinvsq10);
869
870             fscal            = felec;
871
872             /* Calculate temporary vectorial force */
873             tx               = _mm256_mul_ps(fscal,dx10);
874             ty               = _mm256_mul_ps(fscal,dy10);
875             tz               = _mm256_mul_ps(fscal,dz10);
876
877             /* Update vectorial force */
878             fix1             = _mm256_add_ps(fix1,tx);
879             fiy1             = _mm256_add_ps(fiy1,ty);
880             fiz1             = _mm256_add_ps(fiz1,tz);
881
882             fjx0             = _mm256_add_ps(fjx0,tx);
883             fjy0             = _mm256_add_ps(fjy0,ty);
884             fjz0             = _mm256_add_ps(fjz0,tz);
885
886             /**************************
887              * CALCULATE INTERACTIONS *
888              **************************/
889
890             /* Compute parameters for interactions between i and j atoms */
891             qq20             = _mm256_mul_ps(iq2,jq0);
892
893             /* COULOMB ELECTROSTATICS */
894             velec            = _mm256_mul_ps(qq20,rinv20);
895             felec            = _mm256_mul_ps(velec,rinvsq20);
896
897             fscal            = felec;
898
899             /* Calculate temporary vectorial force */
900             tx               = _mm256_mul_ps(fscal,dx20);
901             ty               = _mm256_mul_ps(fscal,dy20);
902             tz               = _mm256_mul_ps(fscal,dz20);
903
904             /* Update vectorial force */
905             fix2             = _mm256_add_ps(fix2,tx);
906             fiy2             = _mm256_add_ps(fiy2,ty);
907             fiz2             = _mm256_add_ps(fiz2,tz);
908
909             fjx0             = _mm256_add_ps(fjx0,tx);
910             fjy0             = _mm256_add_ps(fjy0,ty);
911             fjz0             = _mm256_add_ps(fjz0,tz);
912
913             fjptrA             = f+j_coord_offsetA;
914             fjptrB             = f+j_coord_offsetB;
915             fjptrC             = f+j_coord_offsetC;
916             fjptrD             = f+j_coord_offsetD;
917             fjptrE             = f+j_coord_offsetE;
918             fjptrF             = f+j_coord_offsetF;
919             fjptrG             = f+j_coord_offsetG;
920             fjptrH             = f+j_coord_offsetH;
921
922             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
923
924             /* Inner loop uses 88 flops */
925         }
926
927         if(jidx<j_index_end)
928         {
929
930             /* Get j neighbor index, and coordinate index */
931             jnrlistA         = jjnr[jidx];
932             jnrlistB         = jjnr[jidx+1];
933             jnrlistC         = jjnr[jidx+2];
934             jnrlistD         = jjnr[jidx+3];
935             jnrlistE         = jjnr[jidx+4];
936             jnrlistF         = jjnr[jidx+5];
937             jnrlistG         = jjnr[jidx+6];
938             jnrlistH         = jjnr[jidx+7];
939             /* Sign of each element will be negative for non-real atoms.
940              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
941              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
942              */
943             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
944                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
945                                             
946             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
947             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
948             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
949             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
950             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
951             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
952             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
953             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
954             j_coord_offsetA  = DIM*jnrA;
955             j_coord_offsetB  = DIM*jnrB;
956             j_coord_offsetC  = DIM*jnrC;
957             j_coord_offsetD  = DIM*jnrD;
958             j_coord_offsetE  = DIM*jnrE;
959             j_coord_offsetF  = DIM*jnrF;
960             j_coord_offsetG  = DIM*jnrG;
961             j_coord_offsetH  = DIM*jnrH;
962
963             /* load j atom coordinates */
964             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
965                                                  x+j_coord_offsetC,x+j_coord_offsetD,
966                                                  x+j_coord_offsetE,x+j_coord_offsetF,
967                                                  x+j_coord_offsetG,x+j_coord_offsetH,
968                                                  &jx0,&jy0,&jz0);
969
970             /* Calculate displacement vector */
971             dx00             = _mm256_sub_ps(ix0,jx0);
972             dy00             = _mm256_sub_ps(iy0,jy0);
973             dz00             = _mm256_sub_ps(iz0,jz0);
974             dx10             = _mm256_sub_ps(ix1,jx0);
975             dy10             = _mm256_sub_ps(iy1,jy0);
976             dz10             = _mm256_sub_ps(iz1,jz0);
977             dx20             = _mm256_sub_ps(ix2,jx0);
978             dy20             = _mm256_sub_ps(iy2,jy0);
979             dz20             = _mm256_sub_ps(iz2,jz0);
980
981             /* Calculate squared distance and things based on it */
982             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
983             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
984             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
985
986             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
987             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
988             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
989
990             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
991             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
992             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
993
994             /* Load parameters for j particles */
995             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
996                                                                  charge+jnrC+0,charge+jnrD+0,
997                                                                  charge+jnrE+0,charge+jnrF+0,
998                                                                  charge+jnrG+0,charge+jnrH+0);
999             vdwjidx0A        = 2*vdwtype[jnrA+0];
1000             vdwjidx0B        = 2*vdwtype[jnrB+0];
1001             vdwjidx0C        = 2*vdwtype[jnrC+0];
1002             vdwjidx0D        = 2*vdwtype[jnrD+0];
1003             vdwjidx0E        = 2*vdwtype[jnrE+0];
1004             vdwjidx0F        = 2*vdwtype[jnrF+0];
1005             vdwjidx0G        = 2*vdwtype[jnrG+0];
1006             vdwjidx0H        = 2*vdwtype[jnrH+0];
1007
1008             fjx0             = _mm256_setzero_ps();
1009             fjy0             = _mm256_setzero_ps();
1010             fjz0             = _mm256_setzero_ps();
1011
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             /* Compute parameters for interactions between i and j atoms */
1017             qq00             = _mm256_mul_ps(iq0,jq0);
1018             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1019                                             vdwioffsetptr0+vdwjidx0B,
1020                                             vdwioffsetptr0+vdwjidx0C,
1021                                             vdwioffsetptr0+vdwjidx0D,
1022                                             vdwioffsetptr0+vdwjidx0E,
1023                                             vdwioffsetptr0+vdwjidx0F,
1024                                             vdwioffsetptr0+vdwjidx0G,
1025                                             vdwioffsetptr0+vdwjidx0H,
1026                                             &c6_00,&c12_00);
1027
1028             /* COULOMB ELECTROSTATICS */
1029             velec            = _mm256_mul_ps(qq00,rinv00);
1030             felec            = _mm256_mul_ps(velec,rinvsq00);
1031
1032             /* LENNARD-JONES DISPERSION/REPULSION */
1033
1034             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1035             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1036
1037             fscal            = _mm256_add_ps(felec,fvdw);
1038
1039             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1040
1041             /* Calculate temporary vectorial force */
1042             tx               = _mm256_mul_ps(fscal,dx00);
1043             ty               = _mm256_mul_ps(fscal,dy00);
1044             tz               = _mm256_mul_ps(fscal,dz00);
1045
1046             /* Update vectorial force */
1047             fix0             = _mm256_add_ps(fix0,tx);
1048             fiy0             = _mm256_add_ps(fiy0,ty);
1049             fiz0             = _mm256_add_ps(fiz0,tz);
1050
1051             fjx0             = _mm256_add_ps(fjx0,tx);
1052             fjy0             = _mm256_add_ps(fjy0,ty);
1053             fjz0             = _mm256_add_ps(fjz0,tz);
1054
1055             /**************************
1056              * CALCULATE INTERACTIONS *
1057              **************************/
1058
1059             /* Compute parameters for interactions between i and j atoms */
1060             qq10             = _mm256_mul_ps(iq1,jq0);
1061
1062             /* COULOMB ELECTROSTATICS */
1063             velec            = _mm256_mul_ps(qq10,rinv10);
1064             felec            = _mm256_mul_ps(velec,rinvsq10);
1065
1066             fscal            = felec;
1067
1068             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1069
1070             /* Calculate temporary vectorial force */
1071             tx               = _mm256_mul_ps(fscal,dx10);
1072             ty               = _mm256_mul_ps(fscal,dy10);
1073             tz               = _mm256_mul_ps(fscal,dz10);
1074
1075             /* Update vectorial force */
1076             fix1             = _mm256_add_ps(fix1,tx);
1077             fiy1             = _mm256_add_ps(fiy1,ty);
1078             fiz1             = _mm256_add_ps(fiz1,tz);
1079
1080             fjx0             = _mm256_add_ps(fjx0,tx);
1081             fjy0             = _mm256_add_ps(fjy0,ty);
1082             fjz0             = _mm256_add_ps(fjz0,tz);
1083
1084             /**************************
1085              * CALCULATE INTERACTIONS *
1086              **************************/
1087
1088             /* Compute parameters for interactions between i and j atoms */
1089             qq20             = _mm256_mul_ps(iq2,jq0);
1090
1091             /* COULOMB ELECTROSTATICS */
1092             velec            = _mm256_mul_ps(qq20,rinv20);
1093             felec            = _mm256_mul_ps(velec,rinvsq20);
1094
1095             fscal            = felec;
1096
1097             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1098
1099             /* Calculate temporary vectorial force */
1100             tx               = _mm256_mul_ps(fscal,dx20);
1101             ty               = _mm256_mul_ps(fscal,dy20);
1102             tz               = _mm256_mul_ps(fscal,dz20);
1103
1104             /* Update vectorial force */
1105             fix2             = _mm256_add_ps(fix2,tx);
1106             fiy2             = _mm256_add_ps(fiy2,ty);
1107             fiz2             = _mm256_add_ps(fiz2,tz);
1108
1109             fjx0             = _mm256_add_ps(fjx0,tx);
1110             fjy0             = _mm256_add_ps(fjy0,ty);
1111             fjz0             = _mm256_add_ps(fjz0,tz);
1112
1113             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1114             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1115             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1116             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1117             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1118             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1119             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1120             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1121
1122             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1123
1124             /* Inner loop uses 88 flops */
1125         }
1126
1127         /* End of innermost loop */
1128
1129         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1130                                                  f+i_coord_offset,fshift+i_shift_offset);
1131
1132         /* Increment number of inner iterations */
1133         inneriter                  += j_index_end - j_index_start;
1134
1135         /* Outer loop uses 18 flops */
1136     }
1137
1138     /* Increment number of outer iterations */
1139     outeriter        += nri;
1140
1141     /* Update outer/inner flops */
1142
1143     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*88);
1144 }