Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwLJ_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_256_single
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256           dummy_mask,cutoff_mask;
108     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
109     __m256           one     = _mm256_set1_ps(1.0);
110     __m256           two     = _mm256_set1_ps(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm256_set1_ps(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
131     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
132     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
133     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141     j_coord_offsetE = 0;
142     j_coord_offsetF = 0;
143     j_coord_offsetG = 0;
144     j_coord_offsetH = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _mm256_setzero_ps();
173         fiy0             = _mm256_setzero_ps();
174         fiz0             = _mm256_setzero_ps();
175         fix1             = _mm256_setzero_ps();
176         fiy1             = _mm256_setzero_ps();
177         fiz1             = _mm256_setzero_ps();
178         fix2             = _mm256_setzero_ps();
179         fiy2             = _mm256_setzero_ps();
180         fiz2             = _mm256_setzero_ps();
181
182         /* Reset potential sums */
183         velecsum         = _mm256_setzero_ps();
184         vvdwsum          = _mm256_setzero_ps();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             jnrE             = jjnr[jidx+4];
196             jnrF             = jjnr[jidx+5];
197             jnrG             = jjnr[jidx+6];
198             jnrH             = jjnr[jidx+7];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203             j_coord_offsetE  = DIM*jnrE;
204             j_coord_offsetF  = DIM*jnrF;
205             j_coord_offsetG  = DIM*jnrG;
206             j_coord_offsetH  = DIM*jnrH;
207
208             /* load j atom coordinates */
209             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
210                                                  x+j_coord_offsetC,x+j_coord_offsetD,
211                                                  x+j_coord_offsetE,x+j_coord_offsetF,
212                                                  x+j_coord_offsetG,x+j_coord_offsetH,
213                                                  &jx0,&jy0,&jz0);
214
215             /* Calculate displacement vector */
216             dx00             = _mm256_sub_ps(ix0,jx0);
217             dy00             = _mm256_sub_ps(iy0,jy0);
218             dz00             = _mm256_sub_ps(iz0,jz0);
219             dx10             = _mm256_sub_ps(ix1,jx0);
220             dy10             = _mm256_sub_ps(iy1,jy0);
221             dz10             = _mm256_sub_ps(iz1,jz0);
222             dx20             = _mm256_sub_ps(ix2,jx0);
223             dy20             = _mm256_sub_ps(iy2,jy0);
224             dz20             = _mm256_sub_ps(iz2,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
228             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
229             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
230
231             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
232             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
233             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
234
235             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
236             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
237             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
241                                                                  charge+jnrC+0,charge+jnrD+0,
242                                                                  charge+jnrE+0,charge+jnrF+0,
243                                                                  charge+jnrG+0,charge+jnrH+0);
244             vdwjidx0A        = 2*vdwtype[jnrA+0];
245             vdwjidx0B        = 2*vdwtype[jnrB+0];
246             vdwjidx0C        = 2*vdwtype[jnrC+0];
247             vdwjidx0D        = 2*vdwtype[jnrD+0];
248             vdwjidx0E        = 2*vdwtype[jnrE+0];
249             vdwjidx0F        = 2*vdwtype[jnrF+0];
250             vdwjidx0G        = 2*vdwtype[jnrG+0];
251             vdwjidx0H        = 2*vdwtype[jnrH+0];
252
253             fjx0             = _mm256_setzero_ps();
254             fjy0             = _mm256_setzero_ps();
255             fjz0             = _mm256_setzero_ps();
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             /* Compute parameters for interactions between i and j atoms */
262             qq00             = _mm256_mul_ps(iq0,jq0);
263             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
264                                             vdwioffsetptr0+vdwjidx0B,
265                                             vdwioffsetptr0+vdwjidx0C,
266                                             vdwioffsetptr0+vdwjidx0D,
267                                             vdwioffsetptr0+vdwjidx0E,
268                                             vdwioffsetptr0+vdwjidx0F,
269                                             vdwioffsetptr0+vdwjidx0G,
270                                             vdwioffsetptr0+vdwjidx0H,
271                                             &c6_00,&c12_00);
272
273             /* COULOMB ELECTROSTATICS */
274             velec            = _mm256_mul_ps(qq00,rinv00);
275             felec            = _mm256_mul_ps(velec,rinvsq00);
276
277             /* LENNARD-JONES DISPERSION/REPULSION */
278
279             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
280             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
281             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
282             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
283             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
284
285             /* Update potential sum for this i atom from the interaction with this j atom. */
286             velecsum         = _mm256_add_ps(velecsum,velec);
287             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
288
289             fscal            = _mm256_add_ps(felec,fvdw);
290
291             /* Calculate temporary vectorial force */
292             tx               = _mm256_mul_ps(fscal,dx00);
293             ty               = _mm256_mul_ps(fscal,dy00);
294             tz               = _mm256_mul_ps(fscal,dz00);
295
296             /* Update vectorial force */
297             fix0             = _mm256_add_ps(fix0,tx);
298             fiy0             = _mm256_add_ps(fiy0,ty);
299             fiz0             = _mm256_add_ps(fiz0,tz);
300
301             fjx0             = _mm256_add_ps(fjx0,tx);
302             fjy0             = _mm256_add_ps(fjy0,ty);
303             fjz0             = _mm256_add_ps(fjz0,tz);
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             /* Compute parameters for interactions between i and j atoms */
310             qq10             = _mm256_mul_ps(iq1,jq0);
311
312             /* COULOMB ELECTROSTATICS */
313             velec            = _mm256_mul_ps(qq10,rinv10);
314             felec            = _mm256_mul_ps(velec,rinvsq10);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velecsum         = _mm256_add_ps(velecsum,velec);
318
319             fscal            = felec;
320
321             /* Calculate temporary vectorial force */
322             tx               = _mm256_mul_ps(fscal,dx10);
323             ty               = _mm256_mul_ps(fscal,dy10);
324             tz               = _mm256_mul_ps(fscal,dz10);
325
326             /* Update vectorial force */
327             fix1             = _mm256_add_ps(fix1,tx);
328             fiy1             = _mm256_add_ps(fiy1,ty);
329             fiz1             = _mm256_add_ps(fiz1,tz);
330
331             fjx0             = _mm256_add_ps(fjx0,tx);
332             fjy0             = _mm256_add_ps(fjy0,ty);
333             fjz0             = _mm256_add_ps(fjz0,tz);
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             /* Compute parameters for interactions between i and j atoms */
340             qq20             = _mm256_mul_ps(iq2,jq0);
341
342             /* COULOMB ELECTROSTATICS */
343             velec            = _mm256_mul_ps(qq20,rinv20);
344             felec            = _mm256_mul_ps(velec,rinvsq20);
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm256_add_ps(velecsum,velec);
348
349             fscal            = felec;
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm256_mul_ps(fscal,dx20);
353             ty               = _mm256_mul_ps(fscal,dy20);
354             tz               = _mm256_mul_ps(fscal,dz20);
355
356             /* Update vectorial force */
357             fix2             = _mm256_add_ps(fix2,tx);
358             fiy2             = _mm256_add_ps(fiy2,ty);
359             fiz2             = _mm256_add_ps(fiz2,tz);
360
361             fjx0             = _mm256_add_ps(fjx0,tx);
362             fjy0             = _mm256_add_ps(fjy0,ty);
363             fjz0             = _mm256_add_ps(fjz0,tz);
364
365             fjptrA             = f+j_coord_offsetA;
366             fjptrB             = f+j_coord_offsetB;
367             fjptrC             = f+j_coord_offsetC;
368             fjptrD             = f+j_coord_offsetD;
369             fjptrE             = f+j_coord_offsetE;
370             fjptrF             = f+j_coord_offsetF;
371             fjptrG             = f+j_coord_offsetG;
372             fjptrH             = f+j_coord_offsetH;
373
374             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
375
376             /* Inner loop uses 96 flops */
377         }
378
379         if(jidx<j_index_end)
380         {
381
382             /* Get j neighbor index, and coordinate index */
383             jnrlistA         = jjnr[jidx];
384             jnrlistB         = jjnr[jidx+1];
385             jnrlistC         = jjnr[jidx+2];
386             jnrlistD         = jjnr[jidx+3];
387             jnrlistE         = jjnr[jidx+4];
388             jnrlistF         = jjnr[jidx+5];
389             jnrlistG         = jjnr[jidx+6];
390             jnrlistH         = jjnr[jidx+7];
391             /* Sign of each element will be negative for non-real atoms.
392              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
393              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
394              */
395             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
396                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
397                                             
398             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
399             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
400             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
401             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
402             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
403             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
404             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
405             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
406             j_coord_offsetA  = DIM*jnrA;
407             j_coord_offsetB  = DIM*jnrB;
408             j_coord_offsetC  = DIM*jnrC;
409             j_coord_offsetD  = DIM*jnrD;
410             j_coord_offsetE  = DIM*jnrE;
411             j_coord_offsetF  = DIM*jnrF;
412             j_coord_offsetG  = DIM*jnrG;
413             j_coord_offsetH  = DIM*jnrH;
414
415             /* load j atom coordinates */
416             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
417                                                  x+j_coord_offsetC,x+j_coord_offsetD,
418                                                  x+j_coord_offsetE,x+j_coord_offsetF,
419                                                  x+j_coord_offsetG,x+j_coord_offsetH,
420                                                  &jx0,&jy0,&jz0);
421
422             /* Calculate displacement vector */
423             dx00             = _mm256_sub_ps(ix0,jx0);
424             dy00             = _mm256_sub_ps(iy0,jy0);
425             dz00             = _mm256_sub_ps(iz0,jz0);
426             dx10             = _mm256_sub_ps(ix1,jx0);
427             dy10             = _mm256_sub_ps(iy1,jy0);
428             dz10             = _mm256_sub_ps(iz1,jz0);
429             dx20             = _mm256_sub_ps(ix2,jx0);
430             dy20             = _mm256_sub_ps(iy2,jy0);
431             dz20             = _mm256_sub_ps(iz2,jz0);
432
433             /* Calculate squared distance and things based on it */
434             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
435             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
436             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
437
438             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
439             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
440             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
441
442             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
443             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
444             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
445
446             /* Load parameters for j particles */
447             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
448                                                                  charge+jnrC+0,charge+jnrD+0,
449                                                                  charge+jnrE+0,charge+jnrF+0,
450                                                                  charge+jnrG+0,charge+jnrH+0);
451             vdwjidx0A        = 2*vdwtype[jnrA+0];
452             vdwjidx0B        = 2*vdwtype[jnrB+0];
453             vdwjidx0C        = 2*vdwtype[jnrC+0];
454             vdwjidx0D        = 2*vdwtype[jnrD+0];
455             vdwjidx0E        = 2*vdwtype[jnrE+0];
456             vdwjidx0F        = 2*vdwtype[jnrF+0];
457             vdwjidx0G        = 2*vdwtype[jnrG+0];
458             vdwjidx0H        = 2*vdwtype[jnrH+0];
459
460             fjx0             = _mm256_setzero_ps();
461             fjy0             = _mm256_setzero_ps();
462             fjz0             = _mm256_setzero_ps();
463
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             /* Compute parameters for interactions between i and j atoms */
469             qq00             = _mm256_mul_ps(iq0,jq0);
470             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
471                                             vdwioffsetptr0+vdwjidx0B,
472                                             vdwioffsetptr0+vdwjidx0C,
473                                             vdwioffsetptr0+vdwjidx0D,
474                                             vdwioffsetptr0+vdwjidx0E,
475                                             vdwioffsetptr0+vdwjidx0F,
476                                             vdwioffsetptr0+vdwjidx0G,
477                                             vdwioffsetptr0+vdwjidx0H,
478                                             &c6_00,&c12_00);
479
480             /* COULOMB ELECTROSTATICS */
481             velec            = _mm256_mul_ps(qq00,rinv00);
482             felec            = _mm256_mul_ps(velec,rinvsq00);
483
484             /* LENNARD-JONES DISPERSION/REPULSION */
485
486             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
487             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
488             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
489             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
490             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
491
492             /* Update potential sum for this i atom from the interaction with this j atom. */
493             velec            = _mm256_andnot_ps(dummy_mask,velec);
494             velecsum         = _mm256_add_ps(velecsum,velec);
495             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
496             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
497
498             fscal            = _mm256_add_ps(felec,fvdw);
499
500             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
501
502             /* Calculate temporary vectorial force */
503             tx               = _mm256_mul_ps(fscal,dx00);
504             ty               = _mm256_mul_ps(fscal,dy00);
505             tz               = _mm256_mul_ps(fscal,dz00);
506
507             /* Update vectorial force */
508             fix0             = _mm256_add_ps(fix0,tx);
509             fiy0             = _mm256_add_ps(fiy0,ty);
510             fiz0             = _mm256_add_ps(fiz0,tz);
511
512             fjx0             = _mm256_add_ps(fjx0,tx);
513             fjy0             = _mm256_add_ps(fjy0,ty);
514             fjz0             = _mm256_add_ps(fjz0,tz);
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             /* Compute parameters for interactions between i and j atoms */
521             qq10             = _mm256_mul_ps(iq1,jq0);
522
523             /* COULOMB ELECTROSTATICS */
524             velec            = _mm256_mul_ps(qq10,rinv10);
525             felec            = _mm256_mul_ps(velec,rinvsq10);
526
527             /* Update potential sum for this i atom from the interaction with this j atom. */
528             velec            = _mm256_andnot_ps(dummy_mask,velec);
529             velecsum         = _mm256_add_ps(velecsum,velec);
530
531             fscal            = felec;
532
533             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
534
535             /* Calculate temporary vectorial force */
536             tx               = _mm256_mul_ps(fscal,dx10);
537             ty               = _mm256_mul_ps(fscal,dy10);
538             tz               = _mm256_mul_ps(fscal,dz10);
539
540             /* Update vectorial force */
541             fix1             = _mm256_add_ps(fix1,tx);
542             fiy1             = _mm256_add_ps(fiy1,ty);
543             fiz1             = _mm256_add_ps(fiz1,tz);
544
545             fjx0             = _mm256_add_ps(fjx0,tx);
546             fjy0             = _mm256_add_ps(fjy0,ty);
547             fjz0             = _mm256_add_ps(fjz0,tz);
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             /* Compute parameters for interactions between i and j atoms */
554             qq20             = _mm256_mul_ps(iq2,jq0);
555
556             /* COULOMB ELECTROSTATICS */
557             velec            = _mm256_mul_ps(qq20,rinv20);
558             felec            = _mm256_mul_ps(velec,rinvsq20);
559
560             /* Update potential sum for this i atom from the interaction with this j atom. */
561             velec            = _mm256_andnot_ps(dummy_mask,velec);
562             velecsum         = _mm256_add_ps(velecsum,velec);
563
564             fscal            = felec;
565
566             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
567
568             /* Calculate temporary vectorial force */
569             tx               = _mm256_mul_ps(fscal,dx20);
570             ty               = _mm256_mul_ps(fscal,dy20);
571             tz               = _mm256_mul_ps(fscal,dz20);
572
573             /* Update vectorial force */
574             fix2             = _mm256_add_ps(fix2,tx);
575             fiy2             = _mm256_add_ps(fiy2,ty);
576             fiz2             = _mm256_add_ps(fiz2,tz);
577
578             fjx0             = _mm256_add_ps(fjx0,tx);
579             fjy0             = _mm256_add_ps(fjy0,ty);
580             fjz0             = _mm256_add_ps(fjz0,tz);
581
582             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
583             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
584             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
585             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
586             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
587             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
588             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
589             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
590
591             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
592
593             /* Inner loop uses 96 flops */
594         }
595
596         /* End of innermost loop */
597
598         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
599                                                  f+i_coord_offset,fshift+i_shift_offset);
600
601         ggid                        = gid[iidx];
602         /* Update potential energies */
603         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
604         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
605
606         /* Increment number of inner iterations */
607         inneriter                  += j_index_end - j_index_start;
608
609         /* Outer loop uses 20 flops */
610     }
611
612     /* Increment number of outer iterations */
613     outeriter        += nri;
614
615     /* Update outer/inner flops */
616
617     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*96);
618 }
619 /*
620  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_256_single
621  * Electrostatics interaction: Coulomb
622  * VdW interaction:            LennardJones
623  * Geometry:                   Water3-Particle
624  * Calculate force/pot:        Force
625  */
626 void
627 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_256_single
628                     (t_nblist                    * gmx_restrict       nlist,
629                      rvec                        * gmx_restrict          xx,
630                      rvec                        * gmx_restrict          ff,
631                      t_forcerec                  * gmx_restrict          fr,
632                      t_mdatoms                   * gmx_restrict     mdatoms,
633                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
634                      t_nrnb                      * gmx_restrict        nrnb)
635 {
636     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
637      * just 0 for non-waters.
638      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
639      * jnr indices corresponding to data put in the four positions in the SIMD register.
640      */
641     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
642     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
643     int              jnrA,jnrB,jnrC,jnrD;
644     int              jnrE,jnrF,jnrG,jnrH;
645     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
646     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
647     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
648     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
649     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
650     real             rcutoff_scalar;
651     real             *shiftvec,*fshift,*x,*f;
652     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
653     real             scratch[4*DIM];
654     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
655     real *           vdwioffsetptr0;
656     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
657     real *           vdwioffsetptr1;
658     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
659     real *           vdwioffsetptr2;
660     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
661     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
662     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
663     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
664     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
665     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
666     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
667     real             *charge;
668     int              nvdwtype;
669     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
670     int              *vdwtype;
671     real             *vdwparam;
672     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
673     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
674     __m256           dummy_mask,cutoff_mask;
675     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
676     __m256           one     = _mm256_set1_ps(1.0);
677     __m256           two     = _mm256_set1_ps(2.0);
678     x                = xx[0];
679     f                = ff[0];
680
681     nri              = nlist->nri;
682     iinr             = nlist->iinr;
683     jindex           = nlist->jindex;
684     jjnr             = nlist->jjnr;
685     shiftidx         = nlist->shift;
686     gid              = nlist->gid;
687     shiftvec         = fr->shift_vec[0];
688     fshift           = fr->fshift[0];
689     facel            = _mm256_set1_ps(fr->epsfac);
690     charge           = mdatoms->chargeA;
691     nvdwtype         = fr->ntype;
692     vdwparam         = fr->nbfp;
693     vdwtype          = mdatoms->typeA;
694
695     /* Setup water-specific parameters */
696     inr              = nlist->iinr[0];
697     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
698     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
699     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
700     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
701
702     /* Avoid stupid compiler warnings */
703     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
704     j_coord_offsetA = 0;
705     j_coord_offsetB = 0;
706     j_coord_offsetC = 0;
707     j_coord_offsetD = 0;
708     j_coord_offsetE = 0;
709     j_coord_offsetF = 0;
710     j_coord_offsetG = 0;
711     j_coord_offsetH = 0;
712
713     outeriter        = 0;
714     inneriter        = 0;
715
716     for(iidx=0;iidx<4*DIM;iidx++)
717     {
718         scratch[iidx] = 0.0;
719     }
720
721     /* Start outer loop over neighborlists */
722     for(iidx=0; iidx<nri; iidx++)
723     {
724         /* Load shift vector for this list */
725         i_shift_offset   = DIM*shiftidx[iidx];
726
727         /* Load limits for loop over neighbors */
728         j_index_start    = jindex[iidx];
729         j_index_end      = jindex[iidx+1];
730
731         /* Get outer coordinate index */
732         inr              = iinr[iidx];
733         i_coord_offset   = DIM*inr;
734
735         /* Load i particle coords and add shift vector */
736         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
737                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
738
739         fix0             = _mm256_setzero_ps();
740         fiy0             = _mm256_setzero_ps();
741         fiz0             = _mm256_setzero_ps();
742         fix1             = _mm256_setzero_ps();
743         fiy1             = _mm256_setzero_ps();
744         fiz1             = _mm256_setzero_ps();
745         fix2             = _mm256_setzero_ps();
746         fiy2             = _mm256_setzero_ps();
747         fiz2             = _mm256_setzero_ps();
748
749         /* Start inner kernel loop */
750         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
751         {
752
753             /* Get j neighbor index, and coordinate index */
754             jnrA             = jjnr[jidx];
755             jnrB             = jjnr[jidx+1];
756             jnrC             = jjnr[jidx+2];
757             jnrD             = jjnr[jidx+3];
758             jnrE             = jjnr[jidx+4];
759             jnrF             = jjnr[jidx+5];
760             jnrG             = jjnr[jidx+6];
761             jnrH             = jjnr[jidx+7];
762             j_coord_offsetA  = DIM*jnrA;
763             j_coord_offsetB  = DIM*jnrB;
764             j_coord_offsetC  = DIM*jnrC;
765             j_coord_offsetD  = DIM*jnrD;
766             j_coord_offsetE  = DIM*jnrE;
767             j_coord_offsetF  = DIM*jnrF;
768             j_coord_offsetG  = DIM*jnrG;
769             j_coord_offsetH  = DIM*jnrH;
770
771             /* load j atom coordinates */
772             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
773                                                  x+j_coord_offsetC,x+j_coord_offsetD,
774                                                  x+j_coord_offsetE,x+j_coord_offsetF,
775                                                  x+j_coord_offsetG,x+j_coord_offsetH,
776                                                  &jx0,&jy0,&jz0);
777
778             /* Calculate displacement vector */
779             dx00             = _mm256_sub_ps(ix0,jx0);
780             dy00             = _mm256_sub_ps(iy0,jy0);
781             dz00             = _mm256_sub_ps(iz0,jz0);
782             dx10             = _mm256_sub_ps(ix1,jx0);
783             dy10             = _mm256_sub_ps(iy1,jy0);
784             dz10             = _mm256_sub_ps(iz1,jz0);
785             dx20             = _mm256_sub_ps(ix2,jx0);
786             dy20             = _mm256_sub_ps(iy2,jy0);
787             dz20             = _mm256_sub_ps(iz2,jz0);
788
789             /* Calculate squared distance and things based on it */
790             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
791             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
792             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
793
794             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
795             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
796             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
797
798             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
799             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
800             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
801
802             /* Load parameters for j particles */
803             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
804                                                                  charge+jnrC+0,charge+jnrD+0,
805                                                                  charge+jnrE+0,charge+jnrF+0,
806                                                                  charge+jnrG+0,charge+jnrH+0);
807             vdwjidx0A        = 2*vdwtype[jnrA+0];
808             vdwjidx0B        = 2*vdwtype[jnrB+0];
809             vdwjidx0C        = 2*vdwtype[jnrC+0];
810             vdwjidx0D        = 2*vdwtype[jnrD+0];
811             vdwjidx0E        = 2*vdwtype[jnrE+0];
812             vdwjidx0F        = 2*vdwtype[jnrF+0];
813             vdwjidx0G        = 2*vdwtype[jnrG+0];
814             vdwjidx0H        = 2*vdwtype[jnrH+0];
815
816             fjx0             = _mm256_setzero_ps();
817             fjy0             = _mm256_setzero_ps();
818             fjz0             = _mm256_setzero_ps();
819
820             /**************************
821              * CALCULATE INTERACTIONS *
822              **************************/
823
824             /* Compute parameters for interactions between i and j atoms */
825             qq00             = _mm256_mul_ps(iq0,jq0);
826             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
827                                             vdwioffsetptr0+vdwjidx0B,
828                                             vdwioffsetptr0+vdwjidx0C,
829                                             vdwioffsetptr0+vdwjidx0D,
830                                             vdwioffsetptr0+vdwjidx0E,
831                                             vdwioffsetptr0+vdwjidx0F,
832                                             vdwioffsetptr0+vdwjidx0G,
833                                             vdwioffsetptr0+vdwjidx0H,
834                                             &c6_00,&c12_00);
835
836             /* COULOMB ELECTROSTATICS */
837             velec            = _mm256_mul_ps(qq00,rinv00);
838             felec            = _mm256_mul_ps(velec,rinvsq00);
839
840             /* LENNARD-JONES DISPERSION/REPULSION */
841
842             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
843             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
844
845             fscal            = _mm256_add_ps(felec,fvdw);
846
847             /* Calculate temporary vectorial force */
848             tx               = _mm256_mul_ps(fscal,dx00);
849             ty               = _mm256_mul_ps(fscal,dy00);
850             tz               = _mm256_mul_ps(fscal,dz00);
851
852             /* Update vectorial force */
853             fix0             = _mm256_add_ps(fix0,tx);
854             fiy0             = _mm256_add_ps(fiy0,ty);
855             fiz0             = _mm256_add_ps(fiz0,tz);
856
857             fjx0             = _mm256_add_ps(fjx0,tx);
858             fjy0             = _mm256_add_ps(fjy0,ty);
859             fjz0             = _mm256_add_ps(fjz0,tz);
860
861             /**************************
862              * CALCULATE INTERACTIONS *
863              **************************/
864
865             /* Compute parameters for interactions between i and j atoms */
866             qq10             = _mm256_mul_ps(iq1,jq0);
867
868             /* COULOMB ELECTROSTATICS */
869             velec            = _mm256_mul_ps(qq10,rinv10);
870             felec            = _mm256_mul_ps(velec,rinvsq10);
871
872             fscal            = felec;
873
874             /* Calculate temporary vectorial force */
875             tx               = _mm256_mul_ps(fscal,dx10);
876             ty               = _mm256_mul_ps(fscal,dy10);
877             tz               = _mm256_mul_ps(fscal,dz10);
878
879             /* Update vectorial force */
880             fix1             = _mm256_add_ps(fix1,tx);
881             fiy1             = _mm256_add_ps(fiy1,ty);
882             fiz1             = _mm256_add_ps(fiz1,tz);
883
884             fjx0             = _mm256_add_ps(fjx0,tx);
885             fjy0             = _mm256_add_ps(fjy0,ty);
886             fjz0             = _mm256_add_ps(fjz0,tz);
887
888             /**************************
889              * CALCULATE INTERACTIONS *
890              **************************/
891
892             /* Compute parameters for interactions between i and j atoms */
893             qq20             = _mm256_mul_ps(iq2,jq0);
894
895             /* COULOMB ELECTROSTATICS */
896             velec            = _mm256_mul_ps(qq20,rinv20);
897             felec            = _mm256_mul_ps(velec,rinvsq20);
898
899             fscal            = felec;
900
901             /* Calculate temporary vectorial force */
902             tx               = _mm256_mul_ps(fscal,dx20);
903             ty               = _mm256_mul_ps(fscal,dy20);
904             tz               = _mm256_mul_ps(fscal,dz20);
905
906             /* Update vectorial force */
907             fix2             = _mm256_add_ps(fix2,tx);
908             fiy2             = _mm256_add_ps(fiy2,ty);
909             fiz2             = _mm256_add_ps(fiz2,tz);
910
911             fjx0             = _mm256_add_ps(fjx0,tx);
912             fjy0             = _mm256_add_ps(fjy0,ty);
913             fjz0             = _mm256_add_ps(fjz0,tz);
914
915             fjptrA             = f+j_coord_offsetA;
916             fjptrB             = f+j_coord_offsetB;
917             fjptrC             = f+j_coord_offsetC;
918             fjptrD             = f+j_coord_offsetD;
919             fjptrE             = f+j_coord_offsetE;
920             fjptrF             = f+j_coord_offsetF;
921             fjptrG             = f+j_coord_offsetG;
922             fjptrH             = f+j_coord_offsetH;
923
924             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
925
926             /* Inner loop uses 88 flops */
927         }
928
929         if(jidx<j_index_end)
930         {
931
932             /* Get j neighbor index, and coordinate index */
933             jnrlistA         = jjnr[jidx];
934             jnrlistB         = jjnr[jidx+1];
935             jnrlistC         = jjnr[jidx+2];
936             jnrlistD         = jjnr[jidx+3];
937             jnrlistE         = jjnr[jidx+4];
938             jnrlistF         = jjnr[jidx+5];
939             jnrlistG         = jjnr[jidx+6];
940             jnrlistH         = jjnr[jidx+7];
941             /* Sign of each element will be negative for non-real atoms.
942              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
943              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
944              */
945             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
946                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
947                                             
948             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
949             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
950             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
951             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
952             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
953             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
954             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
955             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
956             j_coord_offsetA  = DIM*jnrA;
957             j_coord_offsetB  = DIM*jnrB;
958             j_coord_offsetC  = DIM*jnrC;
959             j_coord_offsetD  = DIM*jnrD;
960             j_coord_offsetE  = DIM*jnrE;
961             j_coord_offsetF  = DIM*jnrF;
962             j_coord_offsetG  = DIM*jnrG;
963             j_coord_offsetH  = DIM*jnrH;
964
965             /* load j atom coordinates */
966             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
967                                                  x+j_coord_offsetC,x+j_coord_offsetD,
968                                                  x+j_coord_offsetE,x+j_coord_offsetF,
969                                                  x+j_coord_offsetG,x+j_coord_offsetH,
970                                                  &jx0,&jy0,&jz0);
971
972             /* Calculate displacement vector */
973             dx00             = _mm256_sub_ps(ix0,jx0);
974             dy00             = _mm256_sub_ps(iy0,jy0);
975             dz00             = _mm256_sub_ps(iz0,jz0);
976             dx10             = _mm256_sub_ps(ix1,jx0);
977             dy10             = _mm256_sub_ps(iy1,jy0);
978             dz10             = _mm256_sub_ps(iz1,jz0);
979             dx20             = _mm256_sub_ps(ix2,jx0);
980             dy20             = _mm256_sub_ps(iy2,jy0);
981             dz20             = _mm256_sub_ps(iz2,jz0);
982
983             /* Calculate squared distance and things based on it */
984             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
985             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
986             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
987
988             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
989             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
990             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
991
992             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
993             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
994             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
995
996             /* Load parameters for j particles */
997             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
998                                                                  charge+jnrC+0,charge+jnrD+0,
999                                                                  charge+jnrE+0,charge+jnrF+0,
1000                                                                  charge+jnrG+0,charge+jnrH+0);
1001             vdwjidx0A        = 2*vdwtype[jnrA+0];
1002             vdwjidx0B        = 2*vdwtype[jnrB+0];
1003             vdwjidx0C        = 2*vdwtype[jnrC+0];
1004             vdwjidx0D        = 2*vdwtype[jnrD+0];
1005             vdwjidx0E        = 2*vdwtype[jnrE+0];
1006             vdwjidx0F        = 2*vdwtype[jnrF+0];
1007             vdwjidx0G        = 2*vdwtype[jnrG+0];
1008             vdwjidx0H        = 2*vdwtype[jnrH+0];
1009
1010             fjx0             = _mm256_setzero_ps();
1011             fjy0             = _mm256_setzero_ps();
1012             fjz0             = _mm256_setzero_ps();
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             qq00             = _mm256_mul_ps(iq0,jq0);
1020             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1021                                             vdwioffsetptr0+vdwjidx0B,
1022                                             vdwioffsetptr0+vdwjidx0C,
1023                                             vdwioffsetptr0+vdwjidx0D,
1024                                             vdwioffsetptr0+vdwjidx0E,
1025                                             vdwioffsetptr0+vdwjidx0F,
1026                                             vdwioffsetptr0+vdwjidx0G,
1027                                             vdwioffsetptr0+vdwjidx0H,
1028                                             &c6_00,&c12_00);
1029
1030             /* COULOMB ELECTROSTATICS */
1031             velec            = _mm256_mul_ps(qq00,rinv00);
1032             felec            = _mm256_mul_ps(velec,rinvsq00);
1033
1034             /* LENNARD-JONES DISPERSION/REPULSION */
1035
1036             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1037             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1038
1039             fscal            = _mm256_add_ps(felec,fvdw);
1040
1041             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1042
1043             /* Calculate temporary vectorial force */
1044             tx               = _mm256_mul_ps(fscal,dx00);
1045             ty               = _mm256_mul_ps(fscal,dy00);
1046             tz               = _mm256_mul_ps(fscal,dz00);
1047
1048             /* Update vectorial force */
1049             fix0             = _mm256_add_ps(fix0,tx);
1050             fiy0             = _mm256_add_ps(fiy0,ty);
1051             fiz0             = _mm256_add_ps(fiz0,tz);
1052
1053             fjx0             = _mm256_add_ps(fjx0,tx);
1054             fjy0             = _mm256_add_ps(fjy0,ty);
1055             fjz0             = _mm256_add_ps(fjz0,tz);
1056
1057             /**************************
1058              * CALCULATE INTERACTIONS *
1059              **************************/
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             qq10             = _mm256_mul_ps(iq1,jq0);
1063
1064             /* COULOMB ELECTROSTATICS */
1065             velec            = _mm256_mul_ps(qq10,rinv10);
1066             felec            = _mm256_mul_ps(velec,rinvsq10);
1067
1068             fscal            = felec;
1069
1070             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1071
1072             /* Calculate temporary vectorial force */
1073             tx               = _mm256_mul_ps(fscal,dx10);
1074             ty               = _mm256_mul_ps(fscal,dy10);
1075             tz               = _mm256_mul_ps(fscal,dz10);
1076
1077             /* Update vectorial force */
1078             fix1             = _mm256_add_ps(fix1,tx);
1079             fiy1             = _mm256_add_ps(fiy1,ty);
1080             fiz1             = _mm256_add_ps(fiz1,tz);
1081
1082             fjx0             = _mm256_add_ps(fjx0,tx);
1083             fjy0             = _mm256_add_ps(fjy0,ty);
1084             fjz0             = _mm256_add_ps(fjz0,tz);
1085
1086             /**************************
1087              * CALCULATE INTERACTIONS *
1088              **************************/
1089
1090             /* Compute parameters for interactions between i and j atoms */
1091             qq20             = _mm256_mul_ps(iq2,jq0);
1092
1093             /* COULOMB ELECTROSTATICS */
1094             velec            = _mm256_mul_ps(qq20,rinv20);
1095             felec            = _mm256_mul_ps(velec,rinvsq20);
1096
1097             fscal            = felec;
1098
1099             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1100
1101             /* Calculate temporary vectorial force */
1102             tx               = _mm256_mul_ps(fscal,dx20);
1103             ty               = _mm256_mul_ps(fscal,dy20);
1104             tz               = _mm256_mul_ps(fscal,dz20);
1105
1106             /* Update vectorial force */
1107             fix2             = _mm256_add_ps(fix2,tx);
1108             fiy2             = _mm256_add_ps(fiy2,ty);
1109             fiz2             = _mm256_add_ps(fiz2,tz);
1110
1111             fjx0             = _mm256_add_ps(fjx0,tx);
1112             fjy0             = _mm256_add_ps(fjy0,ty);
1113             fjz0             = _mm256_add_ps(fjz0,tz);
1114
1115             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1116             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1117             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1118             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1119             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1120             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1121             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1122             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1123
1124             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1125
1126             /* Inner loop uses 88 flops */
1127         }
1128
1129         /* End of innermost loop */
1130
1131         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1132                                                  f+i_coord_offset,fshift+i_shift_offset);
1133
1134         /* Increment number of inner iterations */
1135         inneriter                  += j_index_end - j_index_start;
1136
1137         /* Outer loop uses 18 flops */
1138     }
1139
1140     /* Increment number of outer iterations */
1141     outeriter        += nri;
1142
1143     /* Update outer/inner flops */
1144
1145     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*88);
1146 }