Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_256_single
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     real *           vdwioffsetptr3;
92     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
94     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256i          vfitab;
108     __m128i          vfitab_lo,vfitab_hi;
109     __m128i          ifour       = _mm_set1_epi32(4);
110     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
111     real             *vftab;
112     __m256           dummy_mask,cutoff_mask;
113     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
114     __m256           one     = _mm256_set1_ps(1.0);
115     __m256           two     = _mm256_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm256_set1_ps(fr->ic->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     vftab            = kernel_data->table_vdw->data;
134     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
135
136     /* Setup water-specific parameters */
137     inr              = nlist->iinr[0];
138     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
139     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
140     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
141     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149     j_coord_offsetE = 0;
150     j_coord_offsetF = 0;
151     j_coord_offsetG = 0;
152     j_coord_offsetH = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
179
180         fix0             = _mm256_setzero_ps();
181         fiy0             = _mm256_setzero_ps();
182         fiz0             = _mm256_setzero_ps();
183         fix1             = _mm256_setzero_ps();
184         fiy1             = _mm256_setzero_ps();
185         fiz1             = _mm256_setzero_ps();
186         fix2             = _mm256_setzero_ps();
187         fiy2             = _mm256_setzero_ps();
188         fiz2             = _mm256_setzero_ps();
189         fix3             = _mm256_setzero_ps();
190         fiy3             = _mm256_setzero_ps();
191         fiz3             = _mm256_setzero_ps();
192
193         /* Reset potential sums */
194         velecsum         = _mm256_setzero_ps();
195         vvdwsum          = _mm256_setzero_ps();
196
197         /* Start inner kernel loop */
198         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
199         {
200
201             /* Get j neighbor index, and coordinate index */
202             jnrA             = jjnr[jidx];
203             jnrB             = jjnr[jidx+1];
204             jnrC             = jjnr[jidx+2];
205             jnrD             = jjnr[jidx+3];
206             jnrE             = jjnr[jidx+4];
207             jnrF             = jjnr[jidx+5];
208             jnrG             = jjnr[jidx+6];
209             jnrH             = jjnr[jidx+7];
210             j_coord_offsetA  = DIM*jnrA;
211             j_coord_offsetB  = DIM*jnrB;
212             j_coord_offsetC  = DIM*jnrC;
213             j_coord_offsetD  = DIM*jnrD;
214             j_coord_offsetE  = DIM*jnrE;
215             j_coord_offsetF  = DIM*jnrF;
216             j_coord_offsetG  = DIM*jnrG;
217             j_coord_offsetH  = DIM*jnrH;
218
219             /* load j atom coordinates */
220             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
221                                                  x+j_coord_offsetC,x+j_coord_offsetD,
222                                                  x+j_coord_offsetE,x+j_coord_offsetF,
223                                                  x+j_coord_offsetG,x+j_coord_offsetH,
224                                                  &jx0,&jy0,&jz0);
225
226             /* Calculate displacement vector */
227             dx00             = _mm256_sub_ps(ix0,jx0);
228             dy00             = _mm256_sub_ps(iy0,jy0);
229             dz00             = _mm256_sub_ps(iz0,jz0);
230             dx10             = _mm256_sub_ps(ix1,jx0);
231             dy10             = _mm256_sub_ps(iy1,jy0);
232             dz10             = _mm256_sub_ps(iz1,jz0);
233             dx20             = _mm256_sub_ps(ix2,jx0);
234             dy20             = _mm256_sub_ps(iy2,jy0);
235             dz20             = _mm256_sub_ps(iz2,jz0);
236             dx30             = _mm256_sub_ps(ix3,jx0);
237             dy30             = _mm256_sub_ps(iy3,jy0);
238             dz30             = _mm256_sub_ps(iz3,jz0);
239
240             /* Calculate squared distance and things based on it */
241             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
242             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
243             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
244             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
245
246             rinv00           = avx256_invsqrt_f(rsq00);
247             rinv10           = avx256_invsqrt_f(rsq10);
248             rinv20           = avx256_invsqrt_f(rsq20);
249             rinv30           = avx256_invsqrt_f(rsq30);
250
251             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
252             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
253             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
254
255             /* Load parameters for j particles */
256             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
257                                                                  charge+jnrC+0,charge+jnrD+0,
258                                                                  charge+jnrE+0,charge+jnrF+0,
259                                                                  charge+jnrG+0,charge+jnrH+0);
260             vdwjidx0A        = 2*vdwtype[jnrA+0];
261             vdwjidx0B        = 2*vdwtype[jnrB+0];
262             vdwjidx0C        = 2*vdwtype[jnrC+0];
263             vdwjidx0D        = 2*vdwtype[jnrD+0];
264             vdwjidx0E        = 2*vdwtype[jnrE+0];
265             vdwjidx0F        = 2*vdwtype[jnrF+0];
266             vdwjidx0G        = 2*vdwtype[jnrG+0];
267             vdwjidx0H        = 2*vdwtype[jnrH+0];
268
269             fjx0             = _mm256_setzero_ps();
270             fjy0             = _mm256_setzero_ps();
271             fjz0             = _mm256_setzero_ps();
272
273             /**************************
274              * CALCULATE INTERACTIONS *
275              **************************/
276
277             r00              = _mm256_mul_ps(rsq00,rinv00);
278
279             /* Compute parameters for interactions between i and j atoms */
280             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
281                                             vdwioffsetptr0+vdwjidx0B,
282                                             vdwioffsetptr0+vdwjidx0C,
283                                             vdwioffsetptr0+vdwjidx0D,
284                                             vdwioffsetptr0+vdwjidx0E,
285                                             vdwioffsetptr0+vdwjidx0F,
286                                             vdwioffsetptr0+vdwjidx0G,
287                                             vdwioffsetptr0+vdwjidx0H,
288                                             &c6_00,&c12_00);
289
290             /* Calculate table index by multiplying r with table scale and truncate to integer */
291             rt               = _mm256_mul_ps(r00,vftabscale);
292             vfitab           = _mm256_cvttps_epi32(rt);
293             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
294             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
295             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
296             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
297             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
298             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
299
300             /* CUBIC SPLINE TABLE DISPERSION */
301             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
302                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
303             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
304                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
305             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
306                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
307             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
308                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
309             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
310             Heps             = _mm256_mul_ps(vfeps,H);
311             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
312             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
313             vvdw6            = _mm256_mul_ps(c6_00,VV);
314             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
315             fvdw6            = _mm256_mul_ps(c6_00,FF);
316
317             /* CUBIC SPLINE TABLE REPULSION */
318             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
319             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
320             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
321                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
322             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
323                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
324             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
325                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
326             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
327                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
328             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
329             Heps             = _mm256_mul_ps(vfeps,H);
330             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
331             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
332             vvdw12           = _mm256_mul_ps(c12_00,VV);
333             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
334             fvdw12           = _mm256_mul_ps(c12_00,FF);
335             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
336             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
340
341             fscal            = fvdw;
342
343             /* Calculate temporary vectorial force */
344             tx               = _mm256_mul_ps(fscal,dx00);
345             ty               = _mm256_mul_ps(fscal,dy00);
346             tz               = _mm256_mul_ps(fscal,dz00);
347
348             /* Update vectorial force */
349             fix0             = _mm256_add_ps(fix0,tx);
350             fiy0             = _mm256_add_ps(fiy0,ty);
351             fiz0             = _mm256_add_ps(fiz0,tz);
352
353             fjx0             = _mm256_add_ps(fjx0,tx);
354             fjy0             = _mm256_add_ps(fjy0,ty);
355             fjz0             = _mm256_add_ps(fjz0,tz);
356
357             /**************************
358              * CALCULATE INTERACTIONS *
359              **************************/
360
361             /* Compute parameters for interactions between i and j atoms */
362             qq10             = _mm256_mul_ps(iq1,jq0);
363
364             /* COULOMB ELECTROSTATICS */
365             velec            = _mm256_mul_ps(qq10,rinv10);
366             felec            = _mm256_mul_ps(velec,rinvsq10);
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             velecsum         = _mm256_add_ps(velecsum,velec);
370
371             fscal            = felec;
372
373             /* Calculate temporary vectorial force */
374             tx               = _mm256_mul_ps(fscal,dx10);
375             ty               = _mm256_mul_ps(fscal,dy10);
376             tz               = _mm256_mul_ps(fscal,dz10);
377
378             /* Update vectorial force */
379             fix1             = _mm256_add_ps(fix1,tx);
380             fiy1             = _mm256_add_ps(fiy1,ty);
381             fiz1             = _mm256_add_ps(fiz1,tz);
382
383             fjx0             = _mm256_add_ps(fjx0,tx);
384             fjy0             = _mm256_add_ps(fjy0,ty);
385             fjz0             = _mm256_add_ps(fjz0,tz);
386
387             /**************************
388              * CALCULATE INTERACTIONS *
389              **************************/
390
391             /* Compute parameters for interactions between i and j atoms */
392             qq20             = _mm256_mul_ps(iq2,jq0);
393
394             /* COULOMB ELECTROSTATICS */
395             velec            = _mm256_mul_ps(qq20,rinv20);
396             felec            = _mm256_mul_ps(velec,rinvsq20);
397
398             /* Update potential sum for this i atom from the interaction with this j atom. */
399             velecsum         = _mm256_add_ps(velecsum,velec);
400
401             fscal            = felec;
402
403             /* Calculate temporary vectorial force */
404             tx               = _mm256_mul_ps(fscal,dx20);
405             ty               = _mm256_mul_ps(fscal,dy20);
406             tz               = _mm256_mul_ps(fscal,dz20);
407
408             /* Update vectorial force */
409             fix2             = _mm256_add_ps(fix2,tx);
410             fiy2             = _mm256_add_ps(fiy2,ty);
411             fiz2             = _mm256_add_ps(fiz2,tz);
412
413             fjx0             = _mm256_add_ps(fjx0,tx);
414             fjy0             = _mm256_add_ps(fjy0,ty);
415             fjz0             = _mm256_add_ps(fjz0,tz);
416
417             /**************************
418              * CALCULATE INTERACTIONS *
419              **************************/
420
421             /* Compute parameters for interactions between i and j atoms */
422             qq30             = _mm256_mul_ps(iq3,jq0);
423
424             /* COULOMB ELECTROSTATICS */
425             velec            = _mm256_mul_ps(qq30,rinv30);
426             felec            = _mm256_mul_ps(velec,rinvsq30);
427
428             /* Update potential sum for this i atom from the interaction with this j atom. */
429             velecsum         = _mm256_add_ps(velecsum,velec);
430
431             fscal            = felec;
432
433             /* Calculate temporary vectorial force */
434             tx               = _mm256_mul_ps(fscal,dx30);
435             ty               = _mm256_mul_ps(fscal,dy30);
436             tz               = _mm256_mul_ps(fscal,dz30);
437
438             /* Update vectorial force */
439             fix3             = _mm256_add_ps(fix3,tx);
440             fiy3             = _mm256_add_ps(fiy3,ty);
441             fiz3             = _mm256_add_ps(fiz3,tz);
442
443             fjx0             = _mm256_add_ps(fjx0,tx);
444             fjy0             = _mm256_add_ps(fjy0,ty);
445             fjz0             = _mm256_add_ps(fjz0,tz);
446
447             fjptrA             = f+j_coord_offsetA;
448             fjptrB             = f+j_coord_offsetB;
449             fjptrC             = f+j_coord_offsetC;
450             fjptrD             = f+j_coord_offsetD;
451             fjptrE             = f+j_coord_offsetE;
452             fjptrF             = f+j_coord_offsetF;
453             fjptrG             = f+j_coord_offsetG;
454             fjptrH             = f+j_coord_offsetH;
455
456             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
457
458             /* Inner loop uses 140 flops */
459         }
460
461         if(jidx<j_index_end)
462         {
463
464             /* Get j neighbor index, and coordinate index */
465             jnrlistA         = jjnr[jidx];
466             jnrlistB         = jjnr[jidx+1];
467             jnrlistC         = jjnr[jidx+2];
468             jnrlistD         = jjnr[jidx+3];
469             jnrlistE         = jjnr[jidx+4];
470             jnrlistF         = jjnr[jidx+5];
471             jnrlistG         = jjnr[jidx+6];
472             jnrlistH         = jjnr[jidx+7];
473             /* Sign of each element will be negative for non-real atoms.
474              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
475              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
476              */
477             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
478                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
479                                             
480             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
481             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
482             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
483             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
484             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
485             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
486             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
487             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
488             j_coord_offsetA  = DIM*jnrA;
489             j_coord_offsetB  = DIM*jnrB;
490             j_coord_offsetC  = DIM*jnrC;
491             j_coord_offsetD  = DIM*jnrD;
492             j_coord_offsetE  = DIM*jnrE;
493             j_coord_offsetF  = DIM*jnrF;
494             j_coord_offsetG  = DIM*jnrG;
495             j_coord_offsetH  = DIM*jnrH;
496
497             /* load j atom coordinates */
498             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
499                                                  x+j_coord_offsetC,x+j_coord_offsetD,
500                                                  x+j_coord_offsetE,x+j_coord_offsetF,
501                                                  x+j_coord_offsetG,x+j_coord_offsetH,
502                                                  &jx0,&jy0,&jz0);
503
504             /* Calculate displacement vector */
505             dx00             = _mm256_sub_ps(ix0,jx0);
506             dy00             = _mm256_sub_ps(iy0,jy0);
507             dz00             = _mm256_sub_ps(iz0,jz0);
508             dx10             = _mm256_sub_ps(ix1,jx0);
509             dy10             = _mm256_sub_ps(iy1,jy0);
510             dz10             = _mm256_sub_ps(iz1,jz0);
511             dx20             = _mm256_sub_ps(ix2,jx0);
512             dy20             = _mm256_sub_ps(iy2,jy0);
513             dz20             = _mm256_sub_ps(iz2,jz0);
514             dx30             = _mm256_sub_ps(ix3,jx0);
515             dy30             = _mm256_sub_ps(iy3,jy0);
516             dz30             = _mm256_sub_ps(iz3,jz0);
517
518             /* Calculate squared distance and things based on it */
519             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
520             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
521             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
522             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
523
524             rinv00           = avx256_invsqrt_f(rsq00);
525             rinv10           = avx256_invsqrt_f(rsq10);
526             rinv20           = avx256_invsqrt_f(rsq20);
527             rinv30           = avx256_invsqrt_f(rsq30);
528
529             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
530             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
531             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
532
533             /* Load parameters for j particles */
534             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
535                                                                  charge+jnrC+0,charge+jnrD+0,
536                                                                  charge+jnrE+0,charge+jnrF+0,
537                                                                  charge+jnrG+0,charge+jnrH+0);
538             vdwjidx0A        = 2*vdwtype[jnrA+0];
539             vdwjidx0B        = 2*vdwtype[jnrB+0];
540             vdwjidx0C        = 2*vdwtype[jnrC+0];
541             vdwjidx0D        = 2*vdwtype[jnrD+0];
542             vdwjidx0E        = 2*vdwtype[jnrE+0];
543             vdwjidx0F        = 2*vdwtype[jnrF+0];
544             vdwjidx0G        = 2*vdwtype[jnrG+0];
545             vdwjidx0H        = 2*vdwtype[jnrH+0];
546
547             fjx0             = _mm256_setzero_ps();
548             fjy0             = _mm256_setzero_ps();
549             fjz0             = _mm256_setzero_ps();
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             r00              = _mm256_mul_ps(rsq00,rinv00);
556             r00              = _mm256_andnot_ps(dummy_mask,r00);
557
558             /* Compute parameters for interactions between i and j atoms */
559             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
560                                             vdwioffsetptr0+vdwjidx0B,
561                                             vdwioffsetptr0+vdwjidx0C,
562                                             vdwioffsetptr0+vdwjidx0D,
563                                             vdwioffsetptr0+vdwjidx0E,
564                                             vdwioffsetptr0+vdwjidx0F,
565                                             vdwioffsetptr0+vdwjidx0G,
566                                             vdwioffsetptr0+vdwjidx0H,
567                                             &c6_00,&c12_00);
568
569             /* Calculate table index by multiplying r with table scale and truncate to integer */
570             rt               = _mm256_mul_ps(r00,vftabscale);
571             vfitab           = _mm256_cvttps_epi32(rt);
572             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
573             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
574             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
575             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
576             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
577             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
578
579             /* CUBIC SPLINE TABLE DISPERSION */
580             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
581                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
582             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
583                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
584             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
585                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
586             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
587                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
588             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
589             Heps             = _mm256_mul_ps(vfeps,H);
590             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
591             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
592             vvdw6            = _mm256_mul_ps(c6_00,VV);
593             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
594             fvdw6            = _mm256_mul_ps(c6_00,FF);
595
596             /* CUBIC SPLINE TABLE REPULSION */
597             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
598             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
599             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
600                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
601             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
602                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
603             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
604                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
605             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
606                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
607             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
608             Heps             = _mm256_mul_ps(vfeps,H);
609             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
610             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
611             vvdw12           = _mm256_mul_ps(c12_00,VV);
612             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
613             fvdw12           = _mm256_mul_ps(c12_00,FF);
614             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
615             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
616
617             /* Update potential sum for this i atom from the interaction with this j atom. */
618             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
619             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
620
621             fscal            = fvdw;
622
623             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
624
625             /* Calculate temporary vectorial force */
626             tx               = _mm256_mul_ps(fscal,dx00);
627             ty               = _mm256_mul_ps(fscal,dy00);
628             tz               = _mm256_mul_ps(fscal,dz00);
629
630             /* Update vectorial force */
631             fix0             = _mm256_add_ps(fix0,tx);
632             fiy0             = _mm256_add_ps(fiy0,ty);
633             fiz0             = _mm256_add_ps(fiz0,tz);
634
635             fjx0             = _mm256_add_ps(fjx0,tx);
636             fjy0             = _mm256_add_ps(fjy0,ty);
637             fjz0             = _mm256_add_ps(fjz0,tz);
638
639             /**************************
640              * CALCULATE INTERACTIONS *
641              **************************/
642
643             /* Compute parameters for interactions between i and j atoms */
644             qq10             = _mm256_mul_ps(iq1,jq0);
645
646             /* COULOMB ELECTROSTATICS */
647             velec            = _mm256_mul_ps(qq10,rinv10);
648             felec            = _mm256_mul_ps(velec,rinvsq10);
649
650             /* Update potential sum for this i atom from the interaction with this j atom. */
651             velec            = _mm256_andnot_ps(dummy_mask,velec);
652             velecsum         = _mm256_add_ps(velecsum,velec);
653
654             fscal            = felec;
655
656             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
657
658             /* Calculate temporary vectorial force */
659             tx               = _mm256_mul_ps(fscal,dx10);
660             ty               = _mm256_mul_ps(fscal,dy10);
661             tz               = _mm256_mul_ps(fscal,dz10);
662
663             /* Update vectorial force */
664             fix1             = _mm256_add_ps(fix1,tx);
665             fiy1             = _mm256_add_ps(fiy1,ty);
666             fiz1             = _mm256_add_ps(fiz1,tz);
667
668             fjx0             = _mm256_add_ps(fjx0,tx);
669             fjy0             = _mm256_add_ps(fjy0,ty);
670             fjz0             = _mm256_add_ps(fjz0,tz);
671
672             /**************************
673              * CALCULATE INTERACTIONS *
674              **************************/
675
676             /* Compute parameters for interactions between i and j atoms */
677             qq20             = _mm256_mul_ps(iq2,jq0);
678
679             /* COULOMB ELECTROSTATICS */
680             velec            = _mm256_mul_ps(qq20,rinv20);
681             felec            = _mm256_mul_ps(velec,rinvsq20);
682
683             /* Update potential sum for this i atom from the interaction with this j atom. */
684             velec            = _mm256_andnot_ps(dummy_mask,velec);
685             velecsum         = _mm256_add_ps(velecsum,velec);
686
687             fscal            = felec;
688
689             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
690
691             /* Calculate temporary vectorial force */
692             tx               = _mm256_mul_ps(fscal,dx20);
693             ty               = _mm256_mul_ps(fscal,dy20);
694             tz               = _mm256_mul_ps(fscal,dz20);
695
696             /* Update vectorial force */
697             fix2             = _mm256_add_ps(fix2,tx);
698             fiy2             = _mm256_add_ps(fiy2,ty);
699             fiz2             = _mm256_add_ps(fiz2,tz);
700
701             fjx0             = _mm256_add_ps(fjx0,tx);
702             fjy0             = _mm256_add_ps(fjy0,ty);
703             fjz0             = _mm256_add_ps(fjz0,tz);
704
705             /**************************
706              * CALCULATE INTERACTIONS *
707              **************************/
708
709             /* Compute parameters for interactions between i and j atoms */
710             qq30             = _mm256_mul_ps(iq3,jq0);
711
712             /* COULOMB ELECTROSTATICS */
713             velec            = _mm256_mul_ps(qq30,rinv30);
714             felec            = _mm256_mul_ps(velec,rinvsq30);
715
716             /* Update potential sum for this i atom from the interaction with this j atom. */
717             velec            = _mm256_andnot_ps(dummy_mask,velec);
718             velecsum         = _mm256_add_ps(velecsum,velec);
719
720             fscal            = felec;
721
722             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
723
724             /* Calculate temporary vectorial force */
725             tx               = _mm256_mul_ps(fscal,dx30);
726             ty               = _mm256_mul_ps(fscal,dy30);
727             tz               = _mm256_mul_ps(fscal,dz30);
728
729             /* Update vectorial force */
730             fix3             = _mm256_add_ps(fix3,tx);
731             fiy3             = _mm256_add_ps(fiy3,ty);
732             fiz3             = _mm256_add_ps(fiz3,tz);
733
734             fjx0             = _mm256_add_ps(fjx0,tx);
735             fjy0             = _mm256_add_ps(fjy0,ty);
736             fjz0             = _mm256_add_ps(fjz0,tz);
737
738             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
739             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
740             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
741             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
742             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
743             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
744             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
745             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
746
747             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
748
749             /* Inner loop uses 141 flops */
750         }
751
752         /* End of innermost loop */
753
754         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
755                                                  f+i_coord_offset,fshift+i_shift_offset);
756
757         ggid                        = gid[iidx];
758         /* Update potential energies */
759         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
760         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
761
762         /* Increment number of inner iterations */
763         inneriter                  += j_index_end - j_index_start;
764
765         /* Outer loop uses 26 flops */
766     }
767
768     /* Increment number of outer iterations */
769     outeriter        += nri;
770
771     /* Update outer/inner flops */
772
773     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*141);
774 }
775 /*
776  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_256_single
777  * Electrostatics interaction: Coulomb
778  * VdW interaction:            CubicSplineTable
779  * Geometry:                   Water4-Particle
780  * Calculate force/pot:        Force
781  */
782 void
783 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_256_single
784                     (t_nblist                    * gmx_restrict       nlist,
785                      rvec                        * gmx_restrict          xx,
786                      rvec                        * gmx_restrict          ff,
787                      struct t_forcerec           * gmx_restrict          fr,
788                      t_mdatoms                   * gmx_restrict     mdatoms,
789                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
790                      t_nrnb                      * gmx_restrict        nrnb)
791 {
792     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
793      * just 0 for non-waters.
794      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
795      * jnr indices corresponding to data put in the four positions in the SIMD register.
796      */
797     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
798     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
799     int              jnrA,jnrB,jnrC,jnrD;
800     int              jnrE,jnrF,jnrG,jnrH;
801     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
802     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
803     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
804     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
805     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
806     real             rcutoff_scalar;
807     real             *shiftvec,*fshift,*x,*f;
808     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
809     real             scratch[4*DIM];
810     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
811     real *           vdwioffsetptr0;
812     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
813     real *           vdwioffsetptr1;
814     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
815     real *           vdwioffsetptr2;
816     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
817     real *           vdwioffsetptr3;
818     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
819     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
820     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
821     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
822     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
823     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
824     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
825     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
826     real             *charge;
827     int              nvdwtype;
828     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
829     int              *vdwtype;
830     real             *vdwparam;
831     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
832     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
833     __m256i          vfitab;
834     __m128i          vfitab_lo,vfitab_hi;
835     __m128i          ifour       = _mm_set1_epi32(4);
836     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
837     real             *vftab;
838     __m256           dummy_mask,cutoff_mask;
839     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
840     __m256           one     = _mm256_set1_ps(1.0);
841     __m256           two     = _mm256_set1_ps(2.0);
842     x                = xx[0];
843     f                = ff[0];
844
845     nri              = nlist->nri;
846     iinr             = nlist->iinr;
847     jindex           = nlist->jindex;
848     jjnr             = nlist->jjnr;
849     shiftidx         = nlist->shift;
850     gid              = nlist->gid;
851     shiftvec         = fr->shift_vec[0];
852     fshift           = fr->fshift[0];
853     facel            = _mm256_set1_ps(fr->ic->epsfac);
854     charge           = mdatoms->chargeA;
855     nvdwtype         = fr->ntype;
856     vdwparam         = fr->nbfp;
857     vdwtype          = mdatoms->typeA;
858
859     vftab            = kernel_data->table_vdw->data;
860     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
861
862     /* Setup water-specific parameters */
863     inr              = nlist->iinr[0];
864     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
865     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
866     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
867     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
868
869     /* Avoid stupid compiler warnings */
870     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
871     j_coord_offsetA = 0;
872     j_coord_offsetB = 0;
873     j_coord_offsetC = 0;
874     j_coord_offsetD = 0;
875     j_coord_offsetE = 0;
876     j_coord_offsetF = 0;
877     j_coord_offsetG = 0;
878     j_coord_offsetH = 0;
879
880     outeriter        = 0;
881     inneriter        = 0;
882
883     for(iidx=0;iidx<4*DIM;iidx++)
884     {
885         scratch[iidx] = 0.0;
886     }
887
888     /* Start outer loop over neighborlists */
889     for(iidx=0; iidx<nri; iidx++)
890     {
891         /* Load shift vector for this list */
892         i_shift_offset   = DIM*shiftidx[iidx];
893
894         /* Load limits for loop over neighbors */
895         j_index_start    = jindex[iidx];
896         j_index_end      = jindex[iidx+1];
897
898         /* Get outer coordinate index */
899         inr              = iinr[iidx];
900         i_coord_offset   = DIM*inr;
901
902         /* Load i particle coords and add shift vector */
903         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
904                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
905
906         fix0             = _mm256_setzero_ps();
907         fiy0             = _mm256_setzero_ps();
908         fiz0             = _mm256_setzero_ps();
909         fix1             = _mm256_setzero_ps();
910         fiy1             = _mm256_setzero_ps();
911         fiz1             = _mm256_setzero_ps();
912         fix2             = _mm256_setzero_ps();
913         fiy2             = _mm256_setzero_ps();
914         fiz2             = _mm256_setzero_ps();
915         fix3             = _mm256_setzero_ps();
916         fiy3             = _mm256_setzero_ps();
917         fiz3             = _mm256_setzero_ps();
918
919         /* Start inner kernel loop */
920         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
921         {
922
923             /* Get j neighbor index, and coordinate index */
924             jnrA             = jjnr[jidx];
925             jnrB             = jjnr[jidx+1];
926             jnrC             = jjnr[jidx+2];
927             jnrD             = jjnr[jidx+3];
928             jnrE             = jjnr[jidx+4];
929             jnrF             = jjnr[jidx+5];
930             jnrG             = jjnr[jidx+6];
931             jnrH             = jjnr[jidx+7];
932             j_coord_offsetA  = DIM*jnrA;
933             j_coord_offsetB  = DIM*jnrB;
934             j_coord_offsetC  = DIM*jnrC;
935             j_coord_offsetD  = DIM*jnrD;
936             j_coord_offsetE  = DIM*jnrE;
937             j_coord_offsetF  = DIM*jnrF;
938             j_coord_offsetG  = DIM*jnrG;
939             j_coord_offsetH  = DIM*jnrH;
940
941             /* load j atom coordinates */
942             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
943                                                  x+j_coord_offsetC,x+j_coord_offsetD,
944                                                  x+j_coord_offsetE,x+j_coord_offsetF,
945                                                  x+j_coord_offsetG,x+j_coord_offsetH,
946                                                  &jx0,&jy0,&jz0);
947
948             /* Calculate displacement vector */
949             dx00             = _mm256_sub_ps(ix0,jx0);
950             dy00             = _mm256_sub_ps(iy0,jy0);
951             dz00             = _mm256_sub_ps(iz0,jz0);
952             dx10             = _mm256_sub_ps(ix1,jx0);
953             dy10             = _mm256_sub_ps(iy1,jy0);
954             dz10             = _mm256_sub_ps(iz1,jz0);
955             dx20             = _mm256_sub_ps(ix2,jx0);
956             dy20             = _mm256_sub_ps(iy2,jy0);
957             dz20             = _mm256_sub_ps(iz2,jz0);
958             dx30             = _mm256_sub_ps(ix3,jx0);
959             dy30             = _mm256_sub_ps(iy3,jy0);
960             dz30             = _mm256_sub_ps(iz3,jz0);
961
962             /* Calculate squared distance and things based on it */
963             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
964             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
965             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
966             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
967
968             rinv00           = avx256_invsqrt_f(rsq00);
969             rinv10           = avx256_invsqrt_f(rsq10);
970             rinv20           = avx256_invsqrt_f(rsq20);
971             rinv30           = avx256_invsqrt_f(rsq30);
972
973             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
974             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
975             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
976
977             /* Load parameters for j particles */
978             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
979                                                                  charge+jnrC+0,charge+jnrD+0,
980                                                                  charge+jnrE+0,charge+jnrF+0,
981                                                                  charge+jnrG+0,charge+jnrH+0);
982             vdwjidx0A        = 2*vdwtype[jnrA+0];
983             vdwjidx0B        = 2*vdwtype[jnrB+0];
984             vdwjidx0C        = 2*vdwtype[jnrC+0];
985             vdwjidx0D        = 2*vdwtype[jnrD+0];
986             vdwjidx0E        = 2*vdwtype[jnrE+0];
987             vdwjidx0F        = 2*vdwtype[jnrF+0];
988             vdwjidx0G        = 2*vdwtype[jnrG+0];
989             vdwjidx0H        = 2*vdwtype[jnrH+0];
990
991             fjx0             = _mm256_setzero_ps();
992             fjy0             = _mm256_setzero_ps();
993             fjz0             = _mm256_setzero_ps();
994
995             /**************************
996              * CALCULATE INTERACTIONS *
997              **************************/
998
999             r00              = _mm256_mul_ps(rsq00,rinv00);
1000
1001             /* Compute parameters for interactions between i and j atoms */
1002             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1003                                             vdwioffsetptr0+vdwjidx0B,
1004                                             vdwioffsetptr0+vdwjidx0C,
1005                                             vdwioffsetptr0+vdwjidx0D,
1006                                             vdwioffsetptr0+vdwjidx0E,
1007                                             vdwioffsetptr0+vdwjidx0F,
1008                                             vdwioffsetptr0+vdwjidx0G,
1009                                             vdwioffsetptr0+vdwjidx0H,
1010                                             &c6_00,&c12_00);
1011
1012             /* Calculate table index by multiplying r with table scale and truncate to integer */
1013             rt               = _mm256_mul_ps(r00,vftabscale);
1014             vfitab           = _mm256_cvttps_epi32(rt);
1015             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1016             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1017             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1018             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1019             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1020             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1021
1022             /* CUBIC SPLINE TABLE DISPERSION */
1023             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1024                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1025             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1026                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1027             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1028                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1029             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1030                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1031             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1032             Heps             = _mm256_mul_ps(vfeps,H);
1033             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1034             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1035             fvdw6            = _mm256_mul_ps(c6_00,FF);
1036
1037             /* CUBIC SPLINE TABLE REPULSION */
1038             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1039             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1040             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1041                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1042             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1043                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1044             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1045                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1046             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1047                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1048             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1049             Heps             = _mm256_mul_ps(vfeps,H);
1050             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1051             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1052             fvdw12           = _mm256_mul_ps(c12_00,FF);
1053             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1054
1055             fscal            = fvdw;
1056
1057             /* Calculate temporary vectorial force */
1058             tx               = _mm256_mul_ps(fscal,dx00);
1059             ty               = _mm256_mul_ps(fscal,dy00);
1060             tz               = _mm256_mul_ps(fscal,dz00);
1061
1062             /* Update vectorial force */
1063             fix0             = _mm256_add_ps(fix0,tx);
1064             fiy0             = _mm256_add_ps(fiy0,ty);
1065             fiz0             = _mm256_add_ps(fiz0,tz);
1066
1067             fjx0             = _mm256_add_ps(fjx0,tx);
1068             fjy0             = _mm256_add_ps(fjy0,ty);
1069             fjz0             = _mm256_add_ps(fjz0,tz);
1070
1071             /**************************
1072              * CALCULATE INTERACTIONS *
1073              **************************/
1074
1075             /* Compute parameters for interactions between i and j atoms */
1076             qq10             = _mm256_mul_ps(iq1,jq0);
1077
1078             /* COULOMB ELECTROSTATICS */
1079             velec            = _mm256_mul_ps(qq10,rinv10);
1080             felec            = _mm256_mul_ps(velec,rinvsq10);
1081
1082             fscal            = felec;
1083
1084             /* Calculate temporary vectorial force */
1085             tx               = _mm256_mul_ps(fscal,dx10);
1086             ty               = _mm256_mul_ps(fscal,dy10);
1087             tz               = _mm256_mul_ps(fscal,dz10);
1088
1089             /* Update vectorial force */
1090             fix1             = _mm256_add_ps(fix1,tx);
1091             fiy1             = _mm256_add_ps(fiy1,ty);
1092             fiz1             = _mm256_add_ps(fiz1,tz);
1093
1094             fjx0             = _mm256_add_ps(fjx0,tx);
1095             fjy0             = _mm256_add_ps(fjy0,ty);
1096             fjz0             = _mm256_add_ps(fjz0,tz);
1097
1098             /**************************
1099              * CALCULATE INTERACTIONS *
1100              **************************/
1101
1102             /* Compute parameters for interactions between i and j atoms */
1103             qq20             = _mm256_mul_ps(iq2,jq0);
1104
1105             /* COULOMB ELECTROSTATICS */
1106             velec            = _mm256_mul_ps(qq20,rinv20);
1107             felec            = _mm256_mul_ps(velec,rinvsq20);
1108
1109             fscal            = felec;
1110
1111             /* Calculate temporary vectorial force */
1112             tx               = _mm256_mul_ps(fscal,dx20);
1113             ty               = _mm256_mul_ps(fscal,dy20);
1114             tz               = _mm256_mul_ps(fscal,dz20);
1115
1116             /* Update vectorial force */
1117             fix2             = _mm256_add_ps(fix2,tx);
1118             fiy2             = _mm256_add_ps(fiy2,ty);
1119             fiz2             = _mm256_add_ps(fiz2,tz);
1120
1121             fjx0             = _mm256_add_ps(fjx0,tx);
1122             fjy0             = _mm256_add_ps(fjy0,ty);
1123             fjz0             = _mm256_add_ps(fjz0,tz);
1124
1125             /**************************
1126              * CALCULATE INTERACTIONS *
1127              **************************/
1128
1129             /* Compute parameters for interactions between i and j atoms */
1130             qq30             = _mm256_mul_ps(iq3,jq0);
1131
1132             /* COULOMB ELECTROSTATICS */
1133             velec            = _mm256_mul_ps(qq30,rinv30);
1134             felec            = _mm256_mul_ps(velec,rinvsq30);
1135
1136             fscal            = felec;
1137
1138             /* Calculate temporary vectorial force */
1139             tx               = _mm256_mul_ps(fscal,dx30);
1140             ty               = _mm256_mul_ps(fscal,dy30);
1141             tz               = _mm256_mul_ps(fscal,dz30);
1142
1143             /* Update vectorial force */
1144             fix3             = _mm256_add_ps(fix3,tx);
1145             fiy3             = _mm256_add_ps(fiy3,ty);
1146             fiz3             = _mm256_add_ps(fiz3,tz);
1147
1148             fjx0             = _mm256_add_ps(fjx0,tx);
1149             fjy0             = _mm256_add_ps(fjy0,ty);
1150             fjz0             = _mm256_add_ps(fjz0,tz);
1151
1152             fjptrA             = f+j_coord_offsetA;
1153             fjptrB             = f+j_coord_offsetB;
1154             fjptrC             = f+j_coord_offsetC;
1155             fjptrD             = f+j_coord_offsetD;
1156             fjptrE             = f+j_coord_offsetE;
1157             fjptrF             = f+j_coord_offsetF;
1158             fjptrG             = f+j_coord_offsetG;
1159             fjptrH             = f+j_coord_offsetH;
1160
1161             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1162
1163             /* Inner loop uses 129 flops */
1164         }
1165
1166         if(jidx<j_index_end)
1167         {
1168
1169             /* Get j neighbor index, and coordinate index */
1170             jnrlistA         = jjnr[jidx];
1171             jnrlistB         = jjnr[jidx+1];
1172             jnrlistC         = jjnr[jidx+2];
1173             jnrlistD         = jjnr[jidx+3];
1174             jnrlistE         = jjnr[jidx+4];
1175             jnrlistF         = jjnr[jidx+5];
1176             jnrlistG         = jjnr[jidx+6];
1177             jnrlistH         = jjnr[jidx+7];
1178             /* Sign of each element will be negative for non-real atoms.
1179              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1180              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1181              */
1182             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1183                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1184                                             
1185             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1186             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1187             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1188             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1189             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1190             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1191             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1192             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1193             j_coord_offsetA  = DIM*jnrA;
1194             j_coord_offsetB  = DIM*jnrB;
1195             j_coord_offsetC  = DIM*jnrC;
1196             j_coord_offsetD  = DIM*jnrD;
1197             j_coord_offsetE  = DIM*jnrE;
1198             j_coord_offsetF  = DIM*jnrF;
1199             j_coord_offsetG  = DIM*jnrG;
1200             j_coord_offsetH  = DIM*jnrH;
1201
1202             /* load j atom coordinates */
1203             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1204                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1205                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1206                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1207                                                  &jx0,&jy0,&jz0);
1208
1209             /* Calculate displacement vector */
1210             dx00             = _mm256_sub_ps(ix0,jx0);
1211             dy00             = _mm256_sub_ps(iy0,jy0);
1212             dz00             = _mm256_sub_ps(iz0,jz0);
1213             dx10             = _mm256_sub_ps(ix1,jx0);
1214             dy10             = _mm256_sub_ps(iy1,jy0);
1215             dz10             = _mm256_sub_ps(iz1,jz0);
1216             dx20             = _mm256_sub_ps(ix2,jx0);
1217             dy20             = _mm256_sub_ps(iy2,jy0);
1218             dz20             = _mm256_sub_ps(iz2,jz0);
1219             dx30             = _mm256_sub_ps(ix3,jx0);
1220             dy30             = _mm256_sub_ps(iy3,jy0);
1221             dz30             = _mm256_sub_ps(iz3,jz0);
1222
1223             /* Calculate squared distance and things based on it */
1224             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1225             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1226             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1227             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1228
1229             rinv00           = avx256_invsqrt_f(rsq00);
1230             rinv10           = avx256_invsqrt_f(rsq10);
1231             rinv20           = avx256_invsqrt_f(rsq20);
1232             rinv30           = avx256_invsqrt_f(rsq30);
1233
1234             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1235             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1236             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1237
1238             /* Load parameters for j particles */
1239             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1240                                                                  charge+jnrC+0,charge+jnrD+0,
1241                                                                  charge+jnrE+0,charge+jnrF+0,
1242                                                                  charge+jnrG+0,charge+jnrH+0);
1243             vdwjidx0A        = 2*vdwtype[jnrA+0];
1244             vdwjidx0B        = 2*vdwtype[jnrB+0];
1245             vdwjidx0C        = 2*vdwtype[jnrC+0];
1246             vdwjidx0D        = 2*vdwtype[jnrD+0];
1247             vdwjidx0E        = 2*vdwtype[jnrE+0];
1248             vdwjidx0F        = 2*vdwtype[jnrF+0];
1249             vdwjidx0G        = 2*vdwtype[jnrG+0];
1250             vdwjidx0H        = 2*vdwtype[jnrH+0];
1251
1252             fjx0             = _mm256_setzero_ps();
1253             fjy0             = _mm256_setzero_ps();
1254             fjz0             = _mm256_setzero_ps();
1255
1256             /**************************
1257              * CALCULATE INTERACTIONS *
1258              **************************/
1259
1260             r00              = _mm256_mul_ps(rsq00,rinv00);
1261             r00              = _mm256_andnot_ps(dummy_mask,r00);
1262
1263             /* Compute parameters for interactions between i and j atoms */
1264             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1265                                             vdwioffsetptr0+vdwjidx0B,
1266                                             vdwioffsetptr0+vdwjidx0C,
1267                                             vdwioffsetptr0+vdwjidx0D,
1268                                             vdwioffsetptr0+vdwjidx0E,
1269                                             vdwioffsetptr0+vdwjidx0F,
1270                                             vdwioffsetptr0+vdwjidx0G,
1271                                             vdwioffsetptr0+vdwjidx0H,
1272                                             &c6_00,&c12_00);
1273
1274             /* Calculate table index by multiplying r with table scale and truncate to integer */
1275             rt               = _mm256_mul_ps(r00,vftabscale);
1276             vfitab           = _mm256_cvttps_epi32(rt);
1277             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1278             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1279             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1280             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1281             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1282             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1283
1284             /* CUBIC SPLINE TABLE DISPERSION */
1285             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1286                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1287             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1288                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1289             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1290                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1291             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1292                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1293             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1294             Heps             = _mm256_mul_ps(vfeps,H);
1295             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1296             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1297             fvdw6            = _mm256_mul_ps(c6_00,FF);
1298
1299             /* CUBIC SPLINE TABLE REPULSION */
1300             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1301             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1302             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1303                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1304             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1305                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1306             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1307                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1308             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1309                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1310             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1311             Heps             = _mm256_mul_ps(vfeps,H);
1312             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1313             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1314             fvdw12           = _mm256_mul_ps(c12_00,FF);
1315             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1316
1317             fscal            = fvdw;
1318
1319             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1320
1321             /* Calculate temporary vectorial force */
1322             tx               = _mm256_mul_ps(fscal,dx00);
1323             ty               = _mm256_mul_ps(fscal,dy00);
1324             tz               = _mm256_mul_ps(fscal,dz00);
1325
1326             /* Update vectorial force */
1327             fix0             = _mm256_add_ps(fix0,tx);
1328             fiy0             = _mm256_add_ps(fiy0,ty);
1329             fiz0             = _mm256_add_ps(fiz0,tz);
1330
1331             fjx0             = _mm256_add_ps(fjx0,tx);
1332             fjy0             = _mm256_add_ps(fjy0,ty);
1333             fjz0             = _mm256_add_ps(fjz0,tz);
1334
1335             /**************************
1336              * CALCULATE INTERACTIONS *
1337              **************************/
1338
1339             /* Compute parameters for interactions between i and j atoms */
1340             qq10             = _mm256_mul_ps(iq1,jq0);
1341
1342             /* COULOMB ELECTROSTATICS */
1343             velec            = _mm256_mul_ps(qq10,rinv10);
1344             felec            = _mm256_mul_ps(velec,rinvsq10);
1345
1346             fscal            = felec;
1347
1348             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1349
1350             /* Calculate temporary vectorial force */
1351             tx               = _mm256_mul_ps(fscal,dx10);
1352             ty               = _mm256_mul_ps(fscal,dy10);
1353             tz               = _mm256_mul_ps(fscal,dz10);
1354
1355             /* Update vectorial force */
1356             fix1             = _mm256_add_ps(fix1,tx);
1357             fiy1             = _mm256_add_ps(fiy1,ty);
1358             fiz1             = _mm256_add_ps(fiz1,tz);
1359
1360             fjx0             = _mm256_add_ps(fjx0,tx);
1361             fjy0             = _mm256_add_ps(fjy0,ty);
1362             fjz0             = _mm256_add_ps(fjz0,tz);
1363
1364             /**************************
1365              * CALCULATE INTERACTIONS *
1366              **************************/
1367
1368             /* Compute parameters for interactions between i and j atoms */
1369             qq20             = _mm256_mul_ps(iq2,jq0);
1370
1371             /* COULOMB ELECTROSTATICS */
1372             velec            = _mm256_mul_ps(qq20,rinv20);
1373             felec            = _mm256_mul_ps(velec,rinvsq20);
1374
1375             fscal            = felec;
1376
1377             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1378
1379             /* Calculate temporary vectorial force */
1380             tx               = _mm256_mul_ps(fscal,dx20);
1381             ty               = _mm256_mul_ps(fscal,dy20);
1382             tz               = _mm256_mul_ps(fscal,dz20);
1383
1384             /* Update vectorial force */
1385             fix2             = _mm256_add_ps(fix2,tx);
1386             fiy2             = _mm256_add_ps(fiy2,ty);
1387             fiz2             = _mm256_add_ps(fiz2,tz);
1388
1389             fjx0             = _mm256_add_ps(fjx0,tx);
1390             fjy0             = _mm256_add_ps(fjy0,ty);
1391             fjz0             = _mm256_add_ps(fjz0,tz);
1392
1393             /**************************
1394              * CALCULATE INTERACTIONS *
1395              **************************/
1396
1397             /* Compute parameters for interactions between i and j atoms */
1398             qq30             = _mm256_mul_ps(iq3,jq0);
1399
1400             /* COULOMB ELECTROSTATICS */
1401             velec            = _mm256_mul_ps(qq30,rinv30);
1402             felec            = _mm256_mul_ps(velec,rinvsq30);
1403
1404             fscal            = felec;
1405
1406             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1407
1408             /* Calculate temporary vectorial force */
1409             tx               = _mm256_mul_ps(fscal,dx30);
1410             ty               = _mm256_mul_ps(fscal,dy30);
1411             tz               = _mm256_mul_ps(fscal,dz30);
1412
1413             /* Update vectorial force */
1414             fix3             = _mm256_add_ps(fix3,tx);
1415             fiy3             = _mm256_add_ps(fiy3,ty);
1416             fiz3             = _mm256_add_ps(fiz3,tz);
1417
1418             fjx0             = _mm256_add_ps(fjx0,tx);
1419             fjy0             = _mm256_add_ps(fjy0,ty);
1420             fjz0             = _mm256_add_ps(fjz0,tz);
1421
1422             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1423             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1424             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1425             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1426             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1427             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1428             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1429             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1430
1431             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1432
1433             /* Inner loop uses 130 flops */
1434         }
1435
1436         /* End of innermost loop */
1437
1438         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1439                                                  f+i_coord_offset,fshift+i_shift_offset);
1440
1441         /* Increment number of inner iterations */
1442         inneriter                  += j_index_end - j_index_start;
1443
1444         /* Outer loop uses 24 flops */
1445     }
1446
1447     /* Increment number of outer iterations */
1448     outeriter        += nri;
1449
1450     /* Update outer/inner flops */
1451
1452     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*130);
1453 }