Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_256_single
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
92     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
103     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
104     __m256i          vfitab;
105     __m128i          vfitab_lo,vfitab_hi;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
108     real             *vftab;
109     __m256           dummy_mask,cutoff_mask;
110     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
111     __m256           one     = _mm256_set1_ps(1.0);
112     __m256           two     = _mm256_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm256_set1_ps(fr->ic->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
136     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
137     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
138     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146     j_coord_offsetE = 0;
147     j_coord_offsetF = 0;
148     j_coord_offsetG = 0;
149     j_coord_offsetH = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     for(iidx=0;iidx<4*DIM;iidx++)
155     {
156         scratch[iidx] = 0.0;
157     }
158
159     /* Start outer loop over neighborlists */
160     for(iidx=0; iidx<nri; iidx++)
161     {
162         /* Load shift vector for this list */
163         i_shift_offset   = DIM*shiftidx[iidx];
164
165         /* Load limits for loop over neighbors */
166         j_index_start    = jindex[iidx];
167         j_index_end      = jindex[iidx+1];
168
169         /* Get outer coordinate index */
170         inr              = iinr[iidx];
171         i_coord_offset   = DIM*inr;
172
173         /* Load i particle coords and add shift vector */
174         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
175                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
176
177         fix0             = _mm256_setzero_ps();
178         fiy0             = _mm256_setzero_ps();
179         fiz0             = _mm256_setzero_ps();
180         fix1             = _mm256_setzero_ps();
181         fiy1             = _mm256_setzero_ps();
182         fiz1             = _mm256_setzero_ps();
183         fix2             = _mm256_setzero_ps();
184         fiy2             = _mm256_setzero_ps();
185         fiz2             = _mm256_setzero_ps();
186
187         /* Reset potential sums */
188         velecsum         = _mm256_setzero_ps();
189         vvdwsum          = _mm256_setzero_ps();
190
191         /* Start inner kernel loop */
192         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
193         {
194
195             /* Get j neighbor index, and coordinate index */
196             jnrA             = jjnr[jidx];
197             jnrB             = jjnr[jidx+1];
198             jnrC             = jjnr[jidx+2];
199             jnrD             = jjnr[jidx+3];
200             jnrE             = jjnr[jidx+4];
201             jnrF             = jjnr[jidx+5];
202             jnrG             = jjnr[jidx+6];
203             jnrH             = jjnr[jidx+7];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206             j_coord_offsetC  = DIM*jnrC;
207             j_coord_offsetD  = DIM*jnrD;
208             j_coord_offsetE  = DIM*jnrE;
209             j_coord_offsetF  = DIM*jnrF;
210             j_coord_offsetG  = DIM*jnrG;
211             j_coord_offsetH  = DIM*jnrH;
212
213             /* load j atom coordinates */
214             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
215                                                  x+j_coord_offsetC,x+j_coord_offsetD,
216                                                  x+j_coord_offsetE,x+j_coord_offsetF,
217                                                  x+j_coord_offsetG,x+j_coord_offsetH,
218                                                  &jx0,&jy0,&jz0);
219
220             /* Calculate displacement vector */
221             dx00             = _mm256_sub_ps(ix0,jx0);
222             dy00             = _mm256_sub_ps(iy0,jy0);
223             dz00             = _mm256_sub_ps(iz0,jz0);
224             dx10             = _mm256_sub_ps(ix1,jx0);
225             dy10             = _mm256_sub_ps(iy1,jy0);
226             dz10             = _mm256_sub_ps(iz1,jz0);
227             dx20             = _mm256_sub_ps(ix2,jx0);
228             dy20             = _mm256_sub_ps(iy2,jy0);
229             dz20             = _mm256_sub_ps(iz2,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
233             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
234             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
235
236             rinv00           = avx256_invsqrt_f(rsq00);
237             rinv10           = avx256_invsqrt_f(rsq10);
238             rinv20           = avx256_invsqrt_f(rsq20);
239
240             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
241             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
242             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
243
244             /* Load parameters for j particles */
245             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
246                                                                  charge+jnrC+0,charge+jnrD+0,
247                                                                  charge+jnrE+0,charge+jnrF+0,
248                                                                  charge+jnrG+0,charge+jnrH+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250             vdwjidx0B        = 2*vdwtype[jnrB+0];
251             vdwjidx0C        = 2*vdwtype[jnrC+0];
252             vdwjidx0D        = 2*vdwtype[jnrD+0];
253             vdwjidx0E        = 2*vdwtype[jnrE+0];
254             vdwjidx0F        = 2*vdwtype[jnrF+0];
255             vdwjidx0G        = 2*vdwtype[jnrG+0];
256             vdwjidx0H        = 2*vdwtype[jnrH+0];
257
258             fjx0             = _mm256_setzero_ps();
259             fjy0             = _mm256_setzero_ps();
260             fjz0             = _mm256_setzero_ps();
261
262             /**************************
263              * CALCULATE INTERACTIONS *
264              **************************/
265
266             r00              = _mm256_mul_ps(rsq00,rinv00);
267
268             /* Compute parameters for interactions between i and j atoms */
269             qq00             = _mm256_mul_ps(iq0,jq0);
270             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
271                                             vdwioffsetptr0+vdwjidx0B,
272                                             vdwioffsetptr0+vdwjidx0C,
273                                             vdwioffsetptr0+vdwjidx0D,
274                                             vdwioffsetptr0+vdwjidx0E,
275                                             vdwioffsetptr0+vdwjidx0F,
276                                             vdwioffsetptr0+vdwjidx0G,
277                                             vdwioffsetptr0+vdwjidx0H,
278                                             &c6_00,&c12_00);
279
280             /* Calculate table index by multiplying r with table scale and truncate to integer */
281             rt               = _mm256_mul_ps(r00,vftabscale);
282             vfitab           = _mm256_cvttps_epi32(rt);
283             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
284             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
285             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
286             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
287             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
288             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
289
290             /* COULOMB ELECTROSTATICS */
291             velec            = _mm256_mul_ps(qq00,rinv00);
292             felec            = _mm256_mul_ps(velec,rinvsq00);
293
294             /* CUBIC SPLINE TABLE DISPERSION */
295             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
296                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
297             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
298                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
299             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
300                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
301             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
302                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
303             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
304             Heps             = _mm256_mul_ps(vfeps,H);
305             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
306             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
307             vvdw6            = _mm256_mul_ps(c6_00,VV);
308             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
309             fvdw6            = _mm256_mul_ps(c6_00,FF);
310
311             /* CUBIC SPLINE TABLE REPULSION */
312             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
313             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
314             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
315                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
316             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
317                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
318             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
319                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
320             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
321                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
322             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
323             Heps             = _mm256_mul_ps(vfeps,H);
324             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
325             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
326             vvdw12           = _mm256_mul_ps(c12_00,VV);
327             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
328             fvdw12           = _mm256_mul_ps(c12_00,FF);
329             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
330             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             velecsum         = _mm256_add_ps(velecsum,velec);
334             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
335
336             fscal            = _mm256_add_ps(felec,fvdw);
337
338             /* Calculate temporary vectorial force */
339             tx               = _mm256_mul_ps(fscal,dx00);
340             ty               = _mm256_mul_ps(fscal,dy00);
341             tz               = _mm256_mul_ps(fscal,dz00);
342
343             /* Update vectorial force */
344             fix0             = _mm256_add_ps(fix0,tx);
345             fiy0             = _mm256_add_ps(fiy0,ty);
346             fiz0             = _mm256_add_ps(fiz0,tz);
347
348             fjx0             = _mm256_add_ps(fjx0,tx);
349             fjy0             = _mm256_add_ps(fjy0,ty);
350             fjz0             = _mm256_add_ps(fjz0,tz);
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             /* Compute parameters for interactions between i and j atoms */
357             qq10             = _mm256_mul_ps(iq1,jq0);
358
359             /* COULOMB ELECTROSTATICS */
360             velec            = _mm256_mul_ps(qq10,rinv10);
361             felec            = _mm256_mul_ps(velec,rinvsq10);
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velecsum         = _mm256_add_ps(velecsum,velec);
365
366             fscal            = felec;
367
368             /* Calculate temporary vectorial force */
369             tx               = _mm256_mul_ps(fscal,dx10);
370             ty               = _mm256_mul_ps(fscal,dy10);
371             tz               = _mm256_mul_ps(fscal,dz10);
372
373             /* Update vectorial force */
374             fix1             = _mm256_add_ps(fix1,tx);
375             fiy1             = _mm256_add_ps(fiy1,ty);
376             fiz1             = _mm256_add_ps(fiz1,tz);
377
378             fjx0             = _mm256_add_ps(fjx0,tx);
379             fjy0             = _mm256_add_ps(fjy0,ty);
380             fjz0             = _mm256_add_ps(fjz0,tz);
381
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             /* Compute parameters for interactions between i and j atoms */
387             qq20             = _mm256_mul_ps(iq2,jq0);
388
389             /* COULOMB ELECTROSTATICS */
390             velec            = _mm256_mul_ps(qq20,rinv20);
391             felec            = _mm256_mul_ps(velec,rinvsq20);
392
393             /* Update potential sum for this i atom from the interaction with this j atom. */
394             velecsum         = _mm256_add_ps(velecsum,velec);
395
396             fscal            = felec;
397
398             /* Calculate temporary vectorial force */
399             tx               = _mm256_mul_ps(fscal,dx20);
400             ty               = _mm256_mul_ps(fscal,dy20);
401             tz               = _mm256_mul_ps(fscal,dz20);
402
403             /* Update vectorial force */
404             fix2             = _mm256_add_ps(fix2,tx);
405             fiy2             = _mm256_add_ps(fiy2,ty);
406             fiz2             = _mm256_add_ps(fiz2,tz);
407
408             fjx0             = _mm256_add_ps(fjx0,tx);
409             fjy0             = _mm256_add_ps(fjy0,ty);
410             fjz0             = _mm256_add_ps(fjz0,tz);
411
412             fjptrA             = f+j_coord_offsetA;
413             fjptrB             = f+j_coord_offsetB;
414             fjptrC             = f+j_coord_offsetC;
415             fjptrD             = f+j_coord_offsetD;
416             fjptrE             = f+j_coord_offsetE;
417             fjptrF             = f+j_coord_offsetF;
418             fjptrG             = f+j_coord_offsetG;
419             fjptrH             = f+j_coord_offsetH;
420
421             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
422
423             /* Inner loop uses 119 flops */
424         }
425
426         if(jidx<j_index_end)
427         {
428
429             /* Get j neighbor index, and coordinate index */
430             jnrlistA         = jjnr[jidx];
431             jnrlistB         = jjnr[jidx+1];
432             jnrlistC         = jjnr[jidx+2];
433             jnrlistD         = jjnr[jidx+3];
434             jnrlistE         = jjnr[jidx+4];
435             jnrlistF         = jjnr[jidx+5];
436             jnrlistG         = jjnr[jidx+6];
437             jnrlistH         = jjnr[jidx+7];
438             /* Sign of each element will be negative for non-real atoms.
439              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
440              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
441              */
442             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
443                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
444                                             
445             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
446             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
447             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
448             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
449             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
450             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
451             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
452             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
453             j_coord_offsetA  = DIM*jnrA;
454             j_coord_offsetB  = DIM*jnrB;
455             j_coord_offsetC  = DIM*jnrC;
456             j_coord_offsetD  = DIM*jnrD;
457             j_coord_offsetE  = DIM*jnrE;
458             j_coord_offsetF  = DIM*jnrF;
459             j_coord_offsetG  = DIM*jnrG;
460             j_coord_offsetH  = DIM*jnrH;
461
462             /* load j atom coordinates */
463             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
464                                                  x+j_coord_offsetC,x+j_coord_offsetD,
465                                                  x+j_coord_offsetE,x+j_coord_offsetF,
466                                                  x+j_coord_offsetG,x+j_coord_offsetH,
467                                                  &jx0,&jy0,&jz0);
468
469             /* Calculate displacement vector */
470             dx00             = _mm256_sub_ps(ix0,jx0);
471             dy00             = _mm256_sub_ps(iy0,jy0);
472             dz00             = _mm256_sub_ps(iz0,jz0);
473             dx10             = _mm256_sub_ps(ix1,jx0);
474             dy10             = _mm256_sub_ps(iy1,jy0);
475             dz10             = _mm256_sub_ps(iz1,jz0);
476             dx20             = _mm256_sub_ps(ix2,jx0);
477             dy20             = _mm256_sub_ps(iy2,jy0);
478             dz20             = _mm256_sub_ps(iz2,jz0);
479
480             /* Calculate squared distance and things based on it */
481             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
482             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
483             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
484
485             rinv00           = avx256_invsqrt_f(rsq00);
486             rinv10           = avx256_invsqrt_f(rsq10);
487             rinv20           = avx256_invsqrt_f(rsq20);
488
489             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
490             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
491             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
492
493             /* Load parameters for j particles */
494             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
495                                                                  charge+jnrC+0,charge+jnrD+0,
496                                                                  charge+jnrE+0,charge+jnrF+0,
497                                                                  charge+jnrG+0,charge+jnrH+0);
498             vdwjidx0A        = 2*vdwtype[jnrA+0];
499             vdwjidx0B        = 2*vdwtype[jnrB+0];
500             vdwjidx0C        = 2*vdwtype[jnrC+0];
501             vdwjidx0D        = 2*vdwtype[jnrD+0];
502             vdwjidx0E        = 2*vdwtype[jnrE+0];
503             vdwjidx0F        = 2*vdwtype[jnrF+0];
504             vdwjidx0G        = 2*vdwtype[jnrG+0];
505             vdwjidx0H        = 2*vdwtype[jnrH+0];
506
507             fjx0             = _mm256_setzero_ps();
508             fjy0             = _mm256_setzero_ps();
509             fjz0             = _mm256_setzero_ps();
510
511             /**************************
512              * CALCULATE INTERACTIONS *
513              **************************/
514
515             r00              = _mm256_mul_ps(rsq00,rinv00);
516             r00              = _mm256_andnot_ps(dummy_mask,r00);
517
518             /* Compute parameters for interactions between i and j atoms */
519             qq00             = _mm256_mul_ps(iq0,jq0);
520             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
521                                             vdwioffsetptr0+vdwjidx0B,
522                                             vdwioffsetptr0+vdwjidx0C,
523                                             vdwioffsetptr0+vdwjidx0D,
524                                             vdwioffsetptr0+vdwjidx0E,
525                                             vdwioffsetptr0+vdwjidx0F,
526                                             vdwioffsetptr0+vdwjidx0G,
527                                             vdwioffsetptr0+vdwjidx0H,
528                                             &c6_00,&c12_00);
529
530             /* Calculate table index by multiplying r with table scale and truncate to integer */
531             rt               = _mm256_mul_ps(r00,vftabscale);
532             vfitab           = _mm256_cvttps_epi32(rt);
533             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
534             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
535             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
536             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
537             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
538             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
539
540             /* COULOMB ELECTROSTATICS */
541             velec            = _mm256_mul_ps(qq00,rinv00);
542             felec            = _mm256_mul_ps(velec,rinvsq00);
543
544             /* CUBIC SPLINE TABLE DISPERSION */
545             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
546                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
547             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
548                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
549             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
550                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
551             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
552                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
553             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
554             Heps             = _mm256_mul_ps(vfeps,H);
555             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
556             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
557             vvdw6            = _mm256_mul_ps(c6_00,VV);
558             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
559             fvdw6            = _mm256_mul_ps(c6_00,FF);
560
561             /* CUBIC SPLINE TABLE REPULSION */
562             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
563             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
564             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
565                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
566             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
567                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
568             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
569                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
570             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
571                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
572             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
573             Heps             = _mm256_mul_ps(vfeps,H);
574             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
575             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
576             vvdw12           = _mm256_mul_ps(c12_00,VV);
577             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
578             fvdw12           = _mm256_mul_ps(c12_00,FF);
579             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
580             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
581
582             /* Update potential sum for this i atom from the interaction with this j atom. */
583             velec            = _mm256_andnot_ps(dummy_mask,velec);
584             velecsum         = _mm256_add_ps(velecsum,velec);
585             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
586             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
587
588             fscal            = _mm256_add_ps(felec,fvdw);
589
590             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
591
592             /* Calculate temporary vectorial force */
593             tx               = _mm256_mul_ps(fscal,dx00);
594             ty               = _mm256_mul_ps(fscal,dy00);
595             tz               = _mm256_mul_ps(fscal,dz00);
596
597             /* Update vectorial force */
598             fix0             = _mm256_add_ps(fix0,tx);
599             fiy0             = _mm256_add_ps(fiy0,ty);
600             fiz0             = _mm256_add_ps(fiz0,tz);
601
602             fjx0             = _mm256_add_ps(fjx0,tx);
603             fjy0             = _mm256_add_ps(fjy0,ty);
604             fjz0             = _mm256_add_ps(fjz0,tz);
605
606             /**************************
607              * CALCULATE INTERACTIONS *
608              **************************/
609
610             /* Compute parameters for interactions between i and j atoms */
611             qq10             = _mm256_mul_ps(iq1,jq0);
612
613             /* COULOMB ELECTROSTATICS */
614             velec            = _mm256_mul_ps(qq10,rinv10);
615             felec            = _mm256_mul_ps(velec,rinvsq10);
616
617             /* Update potential sum for this i atom from the interaction with this j atom. */
618             velec            = _mm256_andnot_ps(dummy_mask,velec);
619             velecsum         = _mm256_add_ps(velecsum,velec);
620
621             fscal            = felec;
622
623             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
624
625             /* Calculate temporary vectorial force */
626             tx               = _mm256_mul_ps(fscal,dx10);
627             ty               = _mm256_mul_ps(fscal,dy10);
628             tz               = _mm256_mul_ps(fscal,dz10);
629
630             /* Update vectorial force */
631             fix1             = _mm256_add_ps(fix1,tx);
632             fiy1             = _mm256_add_ps(fiy1,ty);
633             fiz1             = _mm256_add_ps(fiz1,tz);
634
635             fjx0             = _mm256_add_ps(fjx0,tx);
636             fjy0             = _mm256_add_ps(fjy0,ty);
637             fjz0             = _mm256_add_ps(fjz0,tz);
638
639             /**************************
640              * CALCULATE INTERACTIONS *
641              **************************/
642
643             /* Compute parameters for interactions between i and j atoms */
644             qq20             = _mm256_mul_ps(iq2,jq0);
645
646             /* COULOMB ELECTROSTATICS */
647             velec            = _mm256_mul_ps(qq20,rinv20);
648             felec            = _mm256_mul_ps(velec,rinvsq20);
649
650             /* Update potential sum for this i atom from the interaction with this j atom. */
651             velec            = _mm256_andnot_ps(dummy_mask,velec);
652             velecsum         = _mm256_add_ps(velecsum,velec);
653
654             fscal            = felec;
655
656             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
657
658             /* Calculate temporary vectorial force */
659             tx               = _mm256_mul_ps(fscal,dx20);
660             ty               = _mm256_mul_ps(fscal,dy20);
661             tz               = _mm256_mul_ps(fscal,dz20);
662
663             /* Update vectorial force */
664             fix2             = _mm256_add_ps(fix2,tx);
665             fiy2             = _mm256_add_ps(fiy2,ty);
666             fiz2             = _mm256_add_ps(fiz2,tz);
667
668             fjx0             = _mm256_add_ps(fjx0,tx);
669             fjy0             = _mm256_add_ps(fjy0,ty);
670             fjz0             = _mm256_add_ps(fjz0,tz);
671
672             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
673             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
674             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
675             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
676             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
677             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
678             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
679             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
680
681             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
682
683             /* Inner loop uses 120 flops */
684         }
685
686         /* End of innermost loop */
687
688         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
689                                                  f+i_coord_offset,fshift+i_shift_offset);
690
691         ggid                        = gid[iidx];
692         /* Update potential energies */
693         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
694         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
695
696         /* Increment number of inner iterations */
697         inneriter                  += j_index_end - j_index_start;
698
699         /* Outer loop uses 20 flops */
700     }
701
702     /* Increment number of outer iterations */
703     outeriter        += nri;
704
705     /* Update outer/inner flops */
706
707     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*120);
708 }
709 /*
710  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_256_single
711  * Electrostatics interaction: Coulomb
712  * VdW interaction:            CubicSplineTable
713  * Geometry:                   Water3-Particle
714  * Calculate force/pot:        Force
715  */
716 void
717 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_256_single
718                     (t_nblist                    * gmx_restrict       nlist,
719                      rvec                        * gmx_restrict          xx,
720                      rvec                        * gmx_restrict          ff,
721                      struct t_forcerec           * gmx_restrict          fr,
722                      t_mdatoms                   * gmx_restrict     mdatoms,
723                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
724                      t_nrnb                      * gmx_restrict        nrnb)
725 {
726     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
727      * just 0 for non-waters.
728      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
729      * jnr indices corresponding to data put in the four positions in the SIMD register.
730      */
731     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
732     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
733     int              jnrA,jnrB,jnrC,jnrD;
734     int              jnrE,jnrF,jnrG,jnrH;
735     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
736     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
737     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
738     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
739     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
740     real             rcutoff_scalar;
741     real             *shiftvec,*fshift,*x,*f;
742     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
743     real             scratch[4*DIM];
744     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
745     real *           vdwioffsetptr0;
746     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
747     real *           vdwioffsetptr1;
748     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
749     real *           vdwioffsetptr2;
750     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
751     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
752     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
753     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
754     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
755     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
756     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
757     real             *charge;
758     int              nvdwtype;
759     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
760     int              *vdwtype;
761     real             *vdwparam;
762     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
763     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
764     __m256i          vfitab;
765     __m128i          vfitab_lo,vfitab_hi;
766     __m128i          ifour       = _mm_set1_epi32(4);
767     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
768     real             *vftab;
769     __m256           dummy_mask,cutoff_mask;
770     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
771     __m256           one     = _mm256_set1_ps(1.0);
772     __m256           two     = _mm256_set1_ps(2.0);
773     x                = xx[0];
774     f                = ff[0];
775
776     nri              = nlist->nri;
777     iinr             = nlist->iinr;
778     jindex           = nlist->jindex;
779     jjnr             = nlist->jjnr;
780     shiftidx         = nlist->shift;
781     gid              = nlist->gid;
782     shiftvec         = fr->shift_vec[0];
783     fshift           = fr->fshift[0];
784     facel            = _mm256_set1_ps(fr->ic->epsfac);
785     charge           = mdatoms->chargeA;
786     nvdwtype         = fr->ntype;
787     vdwparam         = fr->nbfp;
788     vdwtype          = mdatoms->typeA;
789
790     vftab            = kernel_data->table_vdw->data;
791     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
792
793     /* Setup water-specific parameters */
794     inr              = nlist->iinr[0];
795     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
796     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
797     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
798     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
799
800     /* Avoid stupid compiler warnings */
801     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
802     j_coord_offsetA = 0;
803     j_coord_offsetB = 0;
804     j_coord_offsetC = 0;
805     j_coord_offsetD = 0;
806     j_coord_offsetE = 0;
807     j_coord_offsetF = 0;
808     j_coord_offsetG = 0;
809     j_coord_offsetH = 0;
810
811     outeriter        = 0;
812     inneriter        = 0;
813
814     for(iidx=0;iidx<4*DIM;iidx++)
815     {
816         scratch[iidx] = 0.0;
817     }
818
819     /* Start outer loop over neighborlists */
820     for(iidx=0; iidx<nri; iidx++)
821     {
822         /* Load shift vector for this list */
823         i_shift_offset   = DIM*shiftidx[iidx];
824
825         /* Load limits for loop over neighbors */
826         j_index_start    = jindex[iidx];
827         j_index_end      = jindex[iidx+1];
828
829         /* Get outer coordinate index */
830         inr              = iinr[iidx];
831         i_coord_offset   = DIM*inr;
832
833         /* Load i particle coords and add shift vector */
834         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
835                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
836
837         fix0             = _mm256_setzero_ps();
838         fiy0             = _mm256_setzero_ps();
839         fiz0             = _mm256_setzero_ps();
840         fix1             = _mm256_setzero_ps();
841         fiy1             = _mm256_setzero_ps();
842         fiz1             = _mm256_setzero_ps();
843         fix2             = _mm256_setzero_ps();
844         fiy2             = _mm256_setzero_ps();
845         fiz2             = _mm256_setzero_ps();
846
847         /* Start inner kernel loop */
848         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
849         {
850
851             /* Get j neighbor index, and coordinate index */
852             jnrA             = jjnr[jidx];
853             jnrB             = jjnr[jidx+1];
854             jnrC             = jjnr[jidx+2];
855             jnrD             = jjnr[jidx+3];
856             jnrE             = jjnr[jidx+4];
857             jnrF             = jjnr[jidx+5];
858             jnrG             = jjnr[jidx+6];
859             jnrH             = jjnr[jidx+7];
860             j_coord_offsetA  = DIM*jnrA;
861             j_coord_offsetB  = DIM*jnrB;
862             j_coord_offsetC  = DIM*jnrC;
863             j_coord_offsetD  = DIM*jnrD;
864             j_coord_offsetE  = DIM*jnrE;
865             j_coord_offsetF  = DIM*jnrF;
866             j_coord_offsetG  = DIM*jnrG;
867             j_coord_offsetH  = DIM*jnrH;
868
869             /* load j atom coordinates */
870             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
871                                                  x+j_coord_offsetC,x+j_coord_offsetD,
872                                                  x+j_coord_offsetE,x+j_coord_offsetF,
873                                                  x+j_coord_offsetG,x+j_coord_offsetH,
874                                                  &jx0,&jy0,&jz0);
875
876             /* Calculate displacement vector */
877             dx00             = _mm256_sub_ps(ix0,jx0);
878             dy00             = _mm256_sub_ps(iy0,jy0);
879             dz00             = _mm256_sub_ps(iz0,jz0);
880             dx10             = _mm256_sub_ps(ix1,jx0);
881             dy10             = _mm256_sub_ps(iy1,jy0);
882             dz10             = _mm256_sub_ps(iz1,jz0);
883             dx20             = _mm256_sub_ps(ix2,jx0);
884             dy20             = _mm256_sub_ps(iy2,jy0);
885             dz20             = _mm256_sub_ps(iz2,jz0);
886
887             /* Calculate squared distance and things based on it */
888             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
889             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
890             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
891
892             rinv00           = avx256_invsqrt_f(rsq00);
893             rinv10           = avx256_invsqrt_f(rsq10);
894             rinv20           = avx256_invsqrt_f(rsq20);
895
896             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
897             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
898             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
899
900             /* Load parameters for j particles */
901             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
902                                                                  charge+jnrC+0,charge+jnrD+0,
903                                                                  charge+jnrE+0,charge+jnrF+0,
904                                                                  charge+jnrG+0,charge+jnrH+0);
905             vdwjidx0A        = 2*vdwtype[jnrA+0];
906             vdwjidx0B        = 2*vdwtype[jnrB+0];
907             vdwjidx0C        = 2*vdwtype[jnrC+0];
908             vdwjidx0D        = 2*vdwtype[jnrD+0];
909             vdwjidx0E        = 2*vdwtype[jnrE+0];
910             vdwjidx0F        = 2*vdwtype[jnrF+0];
911             vdwjidx0G        = 2*vdwtype[jnrG+0];
912             vdwjidx0H        = 2*vdwtype[jnrH+0];
913
914             fjx0             = _mm256_setzero_ps();
915             fjy0             = _mm256_setzero_ps();
916             fjz0             = _mm256_setzero_ps();
917
918             /**************************
919              * CALCULATE INTERACTIONS *
920              **************************/
921
922             r00              = _mm256_mul_ps(rsq00,rinv00);
923
924             /* Compute parameters for interactions between i and j atoms */
925             qq00             = _mm256_mul_ps(iq0,jq0);
926             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
927                                             vdwioffsetptr0+vdwjidx0B,
928                                             vdwioffsetptr0+vdwjidx0C,
929                                             vdwioffsetptr0+vdwjidx0D,
930                                             vdwioffsetptr0+vdwjidx0E,
931                                             vdwioffsetptr0+vdwjidx0F,
932                                             vdwioffsetptr0+vdwjidx0G,
933                                             vdwioffsetptr0+vdwjidx0H,
934                                             &c6_00,&c12_00);
935
936             /* Calculate table index by multiplying r with table scale and truncate to integer */
937             rt               = _mm256_mul_ps(r00,vftabscale);
938             vfitab           = _mm256_cvttps_epi32(rt);
939             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
940             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
941             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
942             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
943             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
944             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
945
946             /* COULOMB ELECTROSTATICS */
947             velec            = _mm256_mul_ps(qq00,rinv00);
948             felec            = _mm256_mul_ps(velec,rinvsq00);
949
950             /* CUBIC SPLINE TABLE DISPERSION */
951             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
952                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
953             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
954                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
955             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
956                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
957             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
958                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
959             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
960             Heps             = _mm256_mul_ps(vfeps,H);
961             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
962             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
963             fvdw6            = _mm256_mul_ps(c6_00,FF);
964
965             /* CUBIC SPLINE TABLE REPULSION */
966             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
967             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
968             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
969                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
970             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
971                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
972             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
973                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
974             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
975                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
976             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
977             Heps             = _mm256_mul_ps(vfeps,H);
978             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
979             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
980             fvdw12           = _mm256_mul_ps(c12_00,FF);
981             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
982
983             fscal            = _mm256_add_ps(felec,fvdw);
984
985             /* Calculate temporary vectorial force */
986             tx               = _mm256_mul_ps(fscal,dx00);
987             ty               = _mm256_mul_ps(fscal,dy00);
988             tz               = _mm256_mul_ps(fscal,dz00);
989
990             /* Update vectorial force */
991             fix0             = _mm256_add_ps(fix0,tx);
992             fiy0             = _mm256_add_ps(fiy0,ty);
993             fiz0             = _mm256_add_ps(fiz0,tz);
994
995             fjx0             = _mm256_add_ps(fjx0,tx);
996             fjy0             = _mm256_add_ps(fjy0,ty);
997             fjz0             = _mm256_add_ps(fjz0,tz);
998
999             /**************************
1000              * CALCULATE INTERACTIONS *
1001              **************************/
1002
1003             /* Compute parameters for interactions between i and j atoms */
1004             qq10             = _mm256_mul_ps(iq1,jq0);
1005
1006             /* COULOMB ELECTROSTATICS */
1007             velec            = _mm256_mul_ps(qq10,rinv10);
1008             felec            = _mm256_mul_ps(velec,rinvsq10);
1009
1010             fscal            = felec;
1011
1012             /* Calculate temporary vectorial force */
1013             tx               = _mm256_mul_ps(fscal,dx10);
1014             ty               = _mm256_mul_ps(fscal,dy10);
1015             tz               = _mm256_mul_ps(fscal,dz10);
1016
1017             /* Update vectorial force */
1018             fix1             = _mm256_add_ps(fix1,tx);
1019             fiy1             = _mm256_add_ps(fiy1,ty);
1020             fiz1             = _mm256_add_ps(fiz1,tz);
1021
1022             fjx0             = _mm256_add_ps(fjx0,tx);
1023             fjy0             = _mm256_add_ps(fjy0,ty);
1024             fjz0             = _mm256_add_ps(fjz0,tz);
1025
1026             /**************************
1027              * CALCULATE INTERACTIONS *
1028              **************************/
1029
1030             /* Compute parameters for interactions between i and j atoms */
1031             qq20             = _mm256_mul_ps(iq2,jq0);
1032
1033             /* COULOMB ELECTROSTATICS */
1034             velec            = _mm256_mul_ps(qq20,rinv20);
1035             felec            = _mm256_mul_ps(velec,rinvsq20);
1036
1037             fscal            = felec;
1038
1039             /* Calculate temporary vectorial force */
1040             tx               = _mm256_mul_ps(fscal,dx20);
1041             ty               = _mm256_mul_ps(fscal,dy20);
1042             tz               = _mm256_mul_ps(fscal,dz20);
1043
1044             /* Update vectorial force */
1045             fix2             = _mm256_add_ps(fix2,tx);
1046             fiy2             = _mm256_add_ps(fiy2,ty);
1047             fiz2             = _mm256_add_ps(fiz2,tz);
1048
1049             fjx0             = _mm256_add_ps(fjx0,tx);
1050             fjy0             = _mm256_add_ps(fjy0,ty);
1051             fjz0             = _mm256_add_ps(fjz0,tz);
1052
1053             fjptrA             = f+j_coord_offsetA;
1054             fjptrB             = f+j_coord_offsetB;
1055             fjptrC             = f+j_coord_offsetC;
1056             fjptrD             = f+j_coord_offsetD;
1057             fjptrE             = f+j_coord_offsetE;
1058             fjptrF             = f+j_coord_offsetF;
1059             fjptrG             = f+j_coord_offsetG;
1060             fjptrH             = f+j_coord_offsetH;
1061
1062             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1063
1064             /* Inner loop uses 108 flops */
1065         }
1066
1067         if(jidx<j_index_end)
1068         {
1069
1070             /* Get j neighbor index, and coordinate index */
1071             jnrlistA         = jjnr[jidx];
1072             jnrlistB         = jjnr[jidx+1];
1073             jnrlistC         = jjnr[jidx+2];
1074             jnrlistD         = jjnr[jidx+3];
1075             jnrlistE         = jjnr[jidx+4];
1076             jnrlistF         = jjnr[jidx+5];
1077             jnrlistG         = jjnr[jidx+6];
1078             jnrlistH         = jjnr[jidx+7];
1079             /* Sign of each element will be negative for non-real atoms.
1080              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1081              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1082              */
1083             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1084                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1085                                             
1086             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1087             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1088             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1089             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1090             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1091             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1092             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1093             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1094             j_coord_offsetA  = DIM*jnrA;
1095             j_coord_offsetB  = DIM*jnrB;
1096             j_coord_offsetC  = DIM*jnrC;
1097             j_coord_offsetD  = DIM*jnrD;
1098             j_coord_offsetE  = DIM*jnrE;
1099             j_coord_offsetF  = DIM*jnrF;
1100             j_coord_offsetG  = DIM*jnrG;
1101             j_coord_offsetH  = DIM*jnrH;
1102
1103             /* load j atom coordinates */
1104             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1105                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1106                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1107                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1108                                                  &jx0,&jy0,&jz0);
1109
1110             /* Calculate displacement vector */
1111             dx00             = _mm256_sub_ps(ix0,jx0);
1112             dy00             = _mm256_sub_ps(iy0,jy0);
1113             dz00             = _mm256_sub_ps(iz0,jz0);
1114             dx10             = _mm256_sub_ps(ix1,jx0);
1115             dy10             = _mm256_sub_ps(iy1,jy0);
1116             dz10             = _mm256_sub_ps(iz1,jz0);
1117             dx20             = _mm256_sub_ps(ix2,jx0);
1118             dy20             = _mm256_sub_ps(iy2,jy0);
1119             dz20             = _mm256_sub_ps(iz2,jz0);
1120
1121             /* Calculate squared distance and things based on it */
1122             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1123             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1124             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1125
1126             rinv00           = avx256_invsqrt_f(rsq00);
1127             rinv10           = avx256_invsqrt_f(rsq10);
1128             rinv20           = avx256_invsqrt_f(rsq20);
1129
1130             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1131             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1132             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1133
1134             /* Load parameters for j particles */
1135             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1136                                                                  charge+jnrC+0,charge+jnrD+0,
1137                                                                  charge+jnrE+0,charge+jnrF+0,
1138                                                                  charge+jnrG+0,charge+jnrH+0);
1139             vdwjidx0A        = 2*vdwtype[jnrA+0];
1140             vdwjidx0B        = 2*vdwtype[jnrB+0];
1141             vdwjidx0C        = 2*vdwtype[jnrC+0];
1142             vdwjidx0D        = 2*vdwtype[jnrD+0];
1143             vdwjidx0E        = 2*vdwtype[jnrE+0];
1144             vdwjidx0F        = 2*vdwtype[jnrF+0];
1145             vdwjidx0G        = 2*vdwtype[jnrG+0];
1146             vdwjidx0H        = 2*vdwtype[jnrH+0];
1147
1148             fjx0             = _mm256_setzero_ps();
1149             fjy0             = _mm256_setzero_ps();
1150             fjz0             = _mm256_setzero_ps();
1151
1152             /**************************
1153              * CALCULATE INTERACTIONS *
1154              **************************/
1155
1156             r00              = _mm256_mul_ps(rsq00,rinv00);
1157             r00              = _mm256_andnot_ps(dummy_mask,r00);
1158
1159             /* Compute parameters for interactions between i and j atoms */
1160             qq00             = _mm256_mul_ps(iq0,jq0);
1161             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1162                                             vdwioffsetptr0+vdwjidx0B,
1163                                             vdwioffsetptr0+vdwjidx0C,
1164                                             vdwioffsetptr0+vdwjidx0D,
1165                                             vdwioffsetptr0+vdwjidx0E,
1166                                             vdwioffsetptr0+vdwjidx0F,
1167                                             vdwioffsetptr0+vdwjidx0G,
1168                                             vdwioffsetptr0+vdwjidx0H,
1169                                             &c6_00,&c12_00);
1170
1171             /* Calculate table index by multiplying r with table scale and truncate to integer */
1172             rt               = _mm256_mul_ps(r00,vftabscale);
1173             vfitab           = _mm256_cvttps_epi32(rt);
1174             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1175             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1176             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1177             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1178             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1179             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1180
1181             /* COULOMB ELECTROSTATICS */
1182             velec            = _mm256_mul_ps(qq00,rinv00);
1183             felec            = _mm256_mul_ps(velec,rinvsq00);
1184
1185             /* CUBIC SPLINE TABLE DISPERSION */
1186             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1187                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1188             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1189                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1190             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1191                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1192             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1193                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1194             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1195             Heps             = _mm256_mul_ps(vfeps,H);
1196             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1197             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1198             fvdw6            = _mm256_mul_ps(c6_00,FF);
1199
1200             /* CUBIC SPLINE TABLE REPULSION */
1201             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1202             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1203             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1204                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1205             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1206                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1207             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1208                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1209             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1210                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1211             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1212             Heps             = _mm256_mul_ps(vfeps,H);
1213             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1214             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1215             fvdw12           = _mm256_mul_ps(c12_00,FF);
1216             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1217
1218             fscal            = _mm256_add_ps(felec,fvdw);
1219
1220             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1221
1222             /* Calculate temporary vectorial force */
1223             tx               = _mm256_mul_ps(fscal,dx00);
1224             ty               = _mm256_mul_ps(fscal,dy00);
1225             tz               = _mm256_mul_ps(fscal,dz00);
1226
1227             /* Update vectorial force */
1228             fix0             = _mm256_add_ps(fix0,tx);
1229             fiy0             = _mm256_add_ps(fiy0,ty);
1230             fiz0             = _mm256_add_ps(fiz0,tz);
1231
1232             fjx0             = _mm256_add_ps(fjx0,tx);
1233             fjy0             = _mm256_add_ps(fjy0,ty);
1234             fjz0             = _mm256_add_ps(fjz0,tz);
1235
1236             /**************************
1237              * CALCULATE INTERACTIONS *
1238              **************************/
1239
1240             /* Compute parameters for interactions between i and j atoms */
1241             qq10             = _mm256_mul_ps(iq1,jq0);
1242
1243             /* COULOMB ELECTROSTATICS */
1244             velec            = _mm256_mul_ps(qq10,rinv10);
1245             felec            = _mm256_mul_ps(velec,rinvsq10);
1246
1247             fscal            = felec;
1248
1249             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1250
1251             /* Calculate temporary vectorial force */
1252             tx               = _mm256_mul_ps(fscal,dx10);
1253             ty               = _mm256_mul_ps(fscal,dy10);
1254             tz               = _mm256_mul_ps(fscal,dz10);
1255
1256             /* Update vectorial force */
1257             fix1             = _mm256_add_ps(fix1,tx);
1258             fiy1             = _mm256_add_ps(fiy1,ty);
1259             fiz1             = _mm256_add_ps(fiz1,tz);
1260
1261             fjx0             = _mm256_add_ps(fjx0,tx);
1262             fjy0             = _mm256_add_ps(fjy0,ty);
1263             fjz0             = _mm256_add_ps(fjz0,tz);
1264
1265             /**************************
1266              * CALCULATE INTERACTIONS *
1267              **************************/
1268
1269             /* Compute parameters for interactions between i and j atoms */
1270             qq20             = _mm256_mul_ps(iq2,jq0);
1271
1272             /* COULOMB ELECTROSTATICS */
1273             velec            = _mm256_mul_ps(qq20,rinv20);
1274             felec            = _mm256_mul_ps(velec,rinvsq20);
1275
1276             fscal            = felec;
1277
1278             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1279
1280             /* Calculate temporary vectorial force */
1281             tx               = _mm256_mul_ps(fscal,dx20);
1282             ty               = _mm256_mul_ps(fscal,dy20);
1283             tz               = _mm256_mul_ps(fscal,dz20);
1284
1285             /* Update vectorial force */
1286             fix2             = _mm256_add_ps(fix2,tx);
1287             fiy2             = _mm256_add_ps(fiy2,ty);
1288             fiz2             = _mm256_add_ps(fiz2,tz);
1289
1290             fjx0             = _mm256_add_ps(fjx0,tx);
1291             fjy0             = _mm256_add_ps(fjy0,ty);
1292             fjz0             = _mm256_add_ps(fjz0,tz);
1293
1294             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1295             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1296             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1297             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1298             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1299             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1300             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1301             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1302
1303             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1304
1305             /* Inner loop uses 109 flops */
1306         }
1307
1308         /* End of innermost loop */
1309
1310         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1311                                                  f+i_coord_offset,fshift+i_shift_offset);
1312
1313         /* Increment number of inner iterations */
1314         inneriter                  += j_index_end - j_index_start;
1315
1316         /* Outer loop uses 18 flops */
1317     }
1318
1319     /* Increment number of outer iterations */
1320     outeriter        += nri;
1321
1322     /* Update outer/inner flops */
1323
1324     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*109);
1325 }