7660e7a785058e95aba54a62554e3a3e76217d03
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_256_single
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
93     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
104     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
105     __m256i          vfitab;
106     __m128i          vfitab_lo,vfitab_hi;
107     __m128i          ifour       = _mm_set1_epi32(4);
108     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
109     real             *vftab;
110     __m256           dummy_mask,cutoff_mask;
111     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
112     __m256           one     = _mm256_set1_ps(1.0);
113     __m256           two     = _mm256_set1_ps(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_ps(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     vftab            = kernel_data->table_vdw->data;
132     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
133
134     /* Setup water-specific parameters */
135     inr              = nlist->iinr[0];
136     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
137     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
138     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
139     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147     j_coord_offsetE = 0;
148     j_coord_offsetF = 0;
149     j_coord_offsetG = 0;
150     j_coord_offsetH = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
177
178         fix0             = _mm256_setzero_ps();
179         fiy0             = _mm256_setzero_ps();
180         fiz0             = _mm256_setzero_ps();
181         fix1             = _mm256_setzero_ps();
182         fiy1             = _mm256_setzero_ps();
183         fiz1             = _mm256_setzero_ps();
184         fix2             = _mm256_setzero_ps();
185         fiy2             = _mm256_setzero_ps();
186         fiz2             = _mm256_setzero_ps();
187
188         /* Reset potential sums */
189         velecsum         = _mm256_setzero_ps();
190         vvdwsum          = _mm256_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             jnrE             = jjnr[jidx+4];
202             jnrF             = jjnr[jidx+5];
203             jnrG             = jjnr[jidx+6];
204             jnrH             = jjnr[jidx+7];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209             j_coord_offsetE  = DIM*jnrE;
210             j_coord_offsetF  = DIM*jnrF;
211             j_coord_offsetG  = DIM*jnrG;
212             j_coord_offsetH  = DIM*jnrH;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  x+j_coord_offsetE,x+j_coord_offsetF,
218                                                  x+j_coord_offsetG,x+j_coord_offsetH,
219                                                  &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm256_sub_ps(ix0,jx0);
223             dy00             = _mm256_sub_ps(iy0,jy0);
224             dz00             = _mm256_sub_ps(iz0,jz0);
225             dx10             = _mm256_sub_ps(ix1,jx0);
226             dy10             = _mm256_sub_ps(iy1,jy0);
227             dz10             = _mm256_sub_ps(iz1,jz0);
228             dx20             = _mm256_sub_ps(ix2,jx0);
229             dy20             = _mm256_sub_ps(iy2,jy0);
230             dz20             = _mm256_sub_ps(iz2,jz0);
231
232             /* Calculate squared distance and things based on it */
233             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
234             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
235             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
236
237             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
238             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
239             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
240
241             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
242             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
243             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
247                                                                  charge+jnrC+0,charge+jnrD+0,
248                                                                  charge+jnrE+0,charge+jnrF+0,
249                                                                  charge+jnrG+0,charge+jnrH+0);
250             vdwjidx0A        = 2*vdwtype[jnrA+0];
251             vdwjidx0B        = 2*vdwtype[jnrB+0];
252             vdwjidx0C        = 2*vdwtype[jnrC+0];
253             vdwjidx0D        = 2*vdwtype[jnrD+0];
254             vdwjidx0E        = 2*vdwtype[jnrE+0];
255             vdwjidx0F        = 2*vdwtype[jnrF+0];
256             vdwjidx0G        = 2*vdwtype[jnrG+0];
257             vdwjidx0H        = 2*vdwtype[jnrH+0];
258
259             fjx0             = _mm256_setzero_ps();
260             fjy0             = _mm256_setzero_ps();
261             fjz0             = _mm256_setzero_ps();
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             r00              = _mm256_mul_ps(rsq00,rinv00);
268
269             /* Compute parameters for interactions between i and j atoms */
270             qq00             = _mm256_mul_ps(iq0,jq0);
271             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
272                                             vdwioffsetptr0+vdwjidx0B,
273                                             vdwioffsetptr0+vdwjidx0C,
274                                             vdwioffsetptr0+vdwjidx0D,
275                                             vdwioffsetptr0+vdwjidx0E,
276                                             vdwioffsetptr0+vdwjidx0F,
277                                             vdwioffsetptr0+vdwjidx0G,
278                                             vdwioffsetptr0+vdwjidx0H,
279                                             &c6_00,&c12_00);
280
281             /* Calculate table index by multiplying r with table scale and truncate to integer */
282             rt               = _mm256_mul_ps(r00,vftabscale);
283             vfitab           = _mm256_cvttps_epi32(rt);
284             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
285             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
286             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
287             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
288             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
289             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
290
291             /* COULOMB ELECTROSTATICS */
292             velec            = _mm256_mul_ps(qq00,rinv00);
293             felec            = _mm256_mul_ps(velec,rinvsq00);
294
295             /* CUBIC SPLINE TABLE DISPERSION */
296             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
297                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
298             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
299                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
300             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
301                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
302             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
303                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
304             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
305             Heps             = _mm256_mul_ps(vfeps,H);
306             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
307             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
308             vvdw6            = _mm256_mul_ps(c6_00,VV);
309             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
310             fvdw6            = _mm256_mul_ps(c6_00,FF);
311
312             /* CUBIC SPLINE TABLE REPULSION */
313             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
314             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
315             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
316                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
317             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
318                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
319             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
320                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
321             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
322                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
323             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
324             Heps             = _mm256_mul_ps(vfeps,H);
325             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
326             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
327             vvdw12           = _mm256_mul_ps(c12_00,VV);
328             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
329             fvdw12           = _mm256_mul_ps(c12_00,FF);
330             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
331             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
332
333             /* Update potential sum for this i atom from the interaction with this j atom. */
334             velecsum         = _mm256_add_ps(velecsum,velec);
335             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
336
337             fscal            = _mm256_add_ps(felec,fvdw);
338
339             /* Calculate temporary vectorial force */
340             tx               = _mm256_mul_ps(fscal,dx00);
341             ty               = _mm256_mul_ps(fscal,dy00);
342             tz               = _mm256_mul_ps(fscal,dz00);
343
344             /* Update vectorial force */
345             fix0             = _mm256_add_ps(fix0,tx);
346             fiy0             = _mm256_add_ps(fiy0,ty);
347             fiz0             = _mm256_add_ps(fiz0,tz);
348
349             fjx0             = _mm256_add_ps(fjx0,tx);
350             fjy0             = _mm256_add_ps(fjy0,ty);
351             fjz0             = _mm256_add_ps(fjz0,tz);
352
353             /**************************
354              * CALCULATE INTERACTIONS *
355              **************************/
356
357             /* Compute parameters for interactions between i and j atoms */
358             qq10             = _mm256_mul_ps(iq1,jq0);
359
360             /* COULOMB ELECTROSTATICS */
361             velec            = _mm256_mul_ps(qq10,rinv10);
362             felec            = _mm256_mul_ps(velec,rinvsq10);
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velecsum         = _mm256_add_ps(velecsum,velec);
366
367             fscal            = felec;
368
369             /* Calculate temporary vectorial force */
370             tx               = _mm256_mul_ps(fscal,dx10);
371             ty               = _mm256_mul_ps(fscal,dy10);
372             tz               = _mm256_mul_ps(fscal,dz10);
373
374             /* Update vectorial force */
375             fix1             = _mm256_add_ps(fix1,tx);
376             fiy1             = _mm256_add_ps(fiy1,ty);
377             fiz1             = _mm256_add_ps(fiz1,tz);
378
379             fjx0             = _mm256_add_ps(fjx0,tx);
380             fjy0             = _mm256_add_ps(fjy0,ty);
381             fjz0             = _mm256_add_ps(fjz0,tz);
382
383             /**************************
384              * CALCULATE INTERACTIONS *
385              **************************/
386
387             /* Compute parameters for interactions between i and j atoms */
388             qq20             = _mm256_mul_ps(iq2,jq0);
389
390             /* COULOMB ELECTROSTATICS */
391             velec            = _mm256_mul_ps(qq20,rinv20);
392             felec            = _mm256_mul_ps(velec,rinvsq20);
393
394             /* Update potential sum for this i atom from the interaction with this j atom. */
395             velecsum         = _mm256_add_ps(velecsum,velec);
396
397             fscal            = felec;
398
399             /* Calculate temporary vectorial force */
400             tx               = _mm256_mul_ps(fscal,dx20);
401             ty               = _mm256_mul_ps(fscal,dy20);
402             tz               = _mm256_mul_ps(fscal,dz20);
403
404             /* Update vectorial force */
405             fix2             = _mm256_add_ps(fix2,tx);
406             fiy2             = _mm256_add_ps(fiy2,ty);
407             fiz2             = _mm256_add_ps(fiz2,tz);
408
409             fjx0             = _mm256_add_ps(fjx0,tx);
410             fjy0             = _mm256_add_ps(fjy0,ty);
411             fjz0             = _mm256_add_ps(fjz0,tz);
412
413             fjptrA             = f+j_coord_offsetA;
414             fjptrB             = f+j_coord_offsetB;
415             fjptrC             = f+j_coord_offsetC;
416             fjptrD             = f+j_coord_offsetD;
417             fjptrE             = f+j_coord_offsetE;
418             fjptrF             = f+j_coord_offsetF;
419             fjptrG             = f+j_coord_offsetG;
420             fjptrH             = f+j_coord_offsetH;
421
422             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
423
424             /* Inner loop uses 119 flops */
425         }
426
427         if(jidx<j_index_end)
428         {
429
430             /* Get j neighbor index, and coordinate index */
431             jnrlistA         = jjnr[jidx];
432             jnrlistB         = jjnr[jidx+1];
433             jnrlistC         = jjnr[jidx+2];
434             jnrlistD         = jjnr[jidx+3];
435             jnrlistE         = jjnr[jidx+4];
436             jnrlistF         = jjnr[jidx+5];
437             jnrlistG         = jjnr[jidx+6];
438             jnrlistH         = jjnr[jidx+7];
439             /* Sign of each element will be negative for non-real atoms.
440              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
441              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
442              */
443             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
444                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
445                                             
446             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
447             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
448             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
449             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
450             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
451             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
452             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
453             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
454             j_coord_offsetA  = DIM*jnrA;
455             j_coord_offsetB  = DIM*jnrB;
456             j_coord_offsetC  = DIM*jnrC;
457             j_coord_offsetD  = DIM*jnrD;
458             j_coord_offsetE  = DIM*jnrE;
459             j_coord_offsetF  = DIM*jnrF;
460             j_coord_offsetG  = DIM*jnrG;
461             j_coord_offsetH  = DIM*jnrH;
462
463             /* load j atom coordinates */
464             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
465                                                  x+j_coord_offsetC,x+j_coord_offsetD,
466                                                  x+j_coord_offsetE,x+j_coord_offsetF,
467                                                  x+j_coord_offsetG,x+j_coord_offsetH,
468                                                  &jx0,&jy0,&jz0);
469
470             /* Calculate displacement vector */
471             dx00             = _mm256_sub_ps(ix0,jx0);
472             dy00             = _mm256_sub_ps(iy0,jy0);
473             dz00             = _mm256_sub_ps(iz0,jz0);
474             dx10             = _mm256_sub_ps(ix1,jx0);
475             dy10             = _mm256_sub_ps(iy1,jy0);
476             dz10             = _mm256_sub_ps(iz1,jz0);
477             dx20             = _mm256_sub_ps(ix2,jx0);
478             dy20             = _mm256_sub_ps(iy2,jy0);
479             dz20             = _mm256_sub_ps(iz2,jz0);
480
481             /* Calculate squared distance and things based on it */
482             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
483             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
484             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
485
486             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
487             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
488             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
489
490             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
491             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
492             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
493
494             /* Load parameters for j particles */
495             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
496                                                                  charge+jnrC+0,charge+jnrD+0,
497                                                                  charge+jnrE+0,charge+jnrF+0,
498                                                                  charge+jnrG+0,charge+jnrH+0);
499             vdwjidx0A        = 2*vdwtype[jnrA+0];
500             vdwjidx0B        = 2*vdwtype[jnrB+0];
501             vdwjidx0C        = 2*vdwtype[jnrC+0];
502             vdwjidx0D        = 2*vdwtype[jnrD+0];
503             vdwjidx0E        = 2*vdwtype[jnrE+0];
504             vdwjidx0F        = 2*vdwtype[jnrF+0];
505             vdwjidx0G        = 2*vdwtype[jnrG+0];
506             vdwjidx0H        = 2*vdwtype[jnrH+0];
507
508             fjx0             = _mm256_setzero_ps();
509             fjy0             = _mm256_setzero_ps();
510             fjz0             = _mm256_setzero_ps();
511
512             /**************************
513              * CALCULATE INTERACTIONS *
514              **************************/
515
516             r00              = _mm256_mul_ps(rsq00,rinv00);
517             r00              = _mm256_andnot_ps(dummy_mask,r00);
518
519             /* Compute parameters for interactions between i and j atoms */
520             qq00             = _mm256_mul_ps(iq0,jq0);
521             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
522                                             vdwioffsetptr0+vdwjidx0B,
523                                             vdwioffsetptr0+vdwjidx0C,
524                                             vdwioffsetptr0+vdwjidx0D,
525                                             vdwioffsetptr0+vdwjidx0E,
526                                             vdwioffsetptr0+vdwjidx0F,
527                                             vdwioffsetptr0+vdwjidx0G,
528                                             vdwioffsetptr0+vdwjidx0H,
529                                             &c6_00,&c12_00);
530
531             /* Calculate table index by multiplying r with table scale and truncate to integer */
532             rt               = _mm256_mul_ps(r00,vftabscale);
533             vfitab           = _mm256_cvttps_epi32(rt);
534             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
535             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
536             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
537             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
538             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
539             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
540
541             /* COULOMB ELECTROSTATICS */
542             velec            = _mm256_mul_ps(qq00,rinv00);
543             felec            = _mm256_mul_ps(velec,rinvsq00);
544
545             /* CUBIC SPLINE TABLE DISPERSION */
546             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
547                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
548             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
549                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
550             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
551                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
552             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
553                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
554             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
555             Heps             = _mm256_mul_ps(vfeps,H);
556             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
557             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
558             vvdw6            = _mm256_mul_ps(c6_00,VV);
559             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
560             fvdw6            = _mm256_mul_ps(c6_00,FF);
561
562             /* CUBIC SPLINE TABLE REPULSION */
563             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
564             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
565             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
566                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
567             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
568                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
569             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
570                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
571             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
572                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
573             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
574             Heps             = _mm256_mul_ps(vfeps,H);
575             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
576             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
577             vvdw12           = _mm256_mul_ps(c12_00,VV);
578             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
579             fvdw12           = _mm256_mul_ps(c12_00,FF);
580             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
581             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
582
583             /* Update potential sum for this i atom from the interaction with this j atom. */
584             velec            = _mm256_andnot_ps(dummy_mask,velec);
585             velecsum         = _mm256_add_ps(velecsum,velec);
586             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
587             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
588
589             fscal            = _mm256_add_ps(felec,fvdw);
590
591             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
592
593             /* Calculate temporary vectorial force */
594             tx               = _mm256_mul_ps(fscal,dx00);
595             ty               = _mm256_mul_ps(fscal,dy00);
596             tz               = _mm256_mul_ps(fscal,dz00);
597
598             /* Update vectorial force */
599             fix0             = _mm256_add_ps(fix0,tx);
600             fiy0             = _mm256_add_ps(fiy0,ty);
601             fiz0             = _mm256_add_ps(fiz0,tz);
602
603             fjx0             = _mm256_add_ps(fjx0,tx);
604             fjy0             = _mm256_add_ps(fjy0,ty);
605             fjz0             = _mm256_add_ps(fjz0,tz);
606
607             /**************************
608              * CALCULATE INTERACTIONS *
609              **************************/
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq10             = _mm256_mul_ps(iq1,jq0);
613
614             /* COULOMB ELECTROSTATICS */
615             velec            = _mm256_mul_ps(qq10,rinv10);
616             felec            = _mm256_mul_ps(velec,rinvsq10);
617
618             /* Update potential sum for this i atom from the interaction with this j atom. */
619             velec            = _mm256_andnot_ps(dummy_mask,velec);
620             velecsum         = _mm256_add_ps(velecsum,velec);
621
622             fscal            = felec;
623
624             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
625
626             /* Calculate temporary vectorial force */
627             tx               = _mm256_mul_ps(fscal,dx10);
628             ty               = _mm256_mul_ps(fscal,dy10);
629             tz               = _mm256_mul_ps(fscal,dz10);
630
631             /* Update vectorial force */
632             fix1             = _mm256_add_ps(fix1,tx);
633             fiy1             = _mm256_add_ps(fiy1,ty);
634             fiz1             = _mm256_add_ps(fiz1,tz);
635
636             fjx0             = _mm256_add_ps(fjx0,tx);
637             fjy0             = _mm256_add_ps(fjy0,ty);
638             fjz0             = _mm256_add_ps(fjz0,tz);
639
640             /**************************
641              * CALCULATE INTERACTIONS *
642              **************************/
643
644             /* Compute parameters for interactions between i and j atoms */
645             qq20             = _mm256_mul_ps(iq2,jq0);
646
647             /* COULOMB ELECTROSTATICS */
648             velec            = _mm256_mul_ps(qq20,rinv20);
649             felec            = _mm256_mul_ps(velec,rinvsq20);
650
651             /* Update potential sum for this i atom from the interaction with this j atom. */
652             velec            = _mm256_andnot_ps(dummy_mask,velec);
653             velecsum         = _mm256_add_ps(velecsum,velec);
654
655             fscal            = felec;
656
657             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
658
659             /* Calculate temporary vectorial force */
660             tx               = _mm256_mul_ps(fscal,dx20);
661             ty               = _mm256_mul_ps(fscal,dy20);
662             tz               = _mm256_mul_ps(fscal,dz20);
663
664             /* Update vectorial force */
665             fix2             = _mm256_add_ps(fix2,tx);
666             fiy2             = _mm256_add_ps(fiy2,ty);
667             fiz2             = _mm256_add_ps(fiz2,tz);
668
669             fjx0             = _mm256_add_ps(fjx0,tx);
670             fjy0             = _mm256_add_ps(fjy0,ty);
671             fjz0             = _mm256_add_ps(fjz0,tz);
672
673             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
674             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
675             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
676             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
677             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
678             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
679             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
680             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
681
682             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
683
684             /* Inner loop uses 120 flops */
685         }
686
687         /* End of innermost loop */
688
689         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
690                                                  f+i_coord_offset,fshift+i_shift_offset);
691
692         ggid                        = gid[iidx];
693         /* Update potential energies */
694         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
695         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
696
697         /* Increment number of inner iterations */
698         inneriter                  += j_index_end - j_index_start;
699
700         /* Outer loop uses 20 flops */
701     }
702
703     /* Increment number of outer iterations */
704     outeriter        += nri;
705
706     /* Update outer/inner flops */
707
708     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*120);
709 }
710 /*
711  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_256_single
712  * Electrostatics interaction: Coulomb
713  * VdW interaction:            CubicSplineTable
714  * Geometry:                   Water3-Particle
715  * Calculate force/pot:        Force
716  */
717 void
718 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_256_single
719                     (t_nblist                    * gmx_restrict       nlist,
720                      rvec                        * gmx_restrict          xx,
721                      rvec                        * gmx_restrict          ff,
722                      t_forcerec                  * gmx_restrict          fr,
723                      t_mdatoms                   * gmx_restrict     mdatoms,
724                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
725                      t_nrnb                      * gmx_restrict        nrnb)
726 {
727     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
728      * just 0 for non-waters.
729      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
730      * jnr indices corresponding to data put in the four positions in the SIMD register.
731      */
732     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
733     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
734     int              jnrA,jnrB,jnrC,jnrD;
735     int              jnrE,jnrF,jnrG,jnrH;
736     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
737     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
738     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
739     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
740     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
741     real             rcutoff_scalar;
742     real             *shiftvec,*fshift,*x,*f;
743     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
744     real             scratch[4*DIM];
745     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
746     real *           vdwioffsetptr0;
747     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
748     real *           vdwioffsetptr1;
749     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
750     real *           vdwioffsetptr2;
751     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
752     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
753     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
754     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
755     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
756     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
757     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
758     real             *charge;
759     int              nvdwtype;
760     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
761     int              *vdwtype;
762     real             *vdwparam;
763     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
764     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
765     __m256i          vfitab;
766     __m128i          vfitab_lo,vfitab_hi;
767     __m128i          ifour       = _mm_set1_epi32(4);
768     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
769     real             *vftab;
770     __m256           dummy_mask,cutoff_mask;
771     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
772     __m256           one     = _mm256_set1_ps(1.0);
773     __m256           two     = _mm256_set1_ps(2.0);
774     x                = xx[0];
775     f                = ff[0];
776
777     nri              = nlist->nri;
778     iinr             = nlist->iinr;
779     jindex           = nlist->jindex;
780     jjnr             = nlist->jjnr;
781     shiftidx         = nlist->shift;
782     gid              = nlist->gid;
783     shiftvec         = fr->shift_vec[0];
784     fshift           = fr->fshift[0];
785     facel            = _mm256_set1_ps(fr->epsfac);
786     charge           = mdatoms->chargeA;
787     nvdwtype         = fr->ntype;
788     vdwparam         = fr->nbfp;
789     vdwtype          = mdatoms->typeA;
790
791     vftab            = kernel_data->table_vdw->data;
792     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
793
794     /* Setup water-specific parameters */
795     inr              = nlist->iinr[0];
796     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
797     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
798     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
799     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
800
801     /* Avoid stupid compiler warnings */
802     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
803     j_coord_offsetA = 0;
804     j_coord_offsetB = 0;
805     j_coord_offsetC = 0;
806     j_coord_offsetD = 0;
807     j_coord_offsetE = 0;
808     j_coord_offsetF = 0;
809     j_coord_offsetG = 0;
810     j_coord_offsetH = 0;
811
812     outeriter        = 0;
813     inneriter        = 0;
814
815     for(iidx=0;iidx<4*DIM;iidx++)
816     {
817         scratch[iidx] = 0.0;
818     }
819
820     /* Start outer loop over neighborlists */
821     for(iidx=0; iidx<nri; iidx++)
822     {
823         /* Load shift vector for this list */
824         i_shift_offset   = DIM*shiftidx[iidx];
825
826         /* Load limits for loop over neighbors */
827         j_index_start    = jindex[iidx];
828         j_index_end      = jindex[iidx+1];
829
830         /* Get outer coordinate index */
831         inr              = iinr[iidx];
832         i_coord_offset   = DIM*inr;
833
834         /* Load i particle coords and add shift vector */
835         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
836                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
837
838         fix0             = _mm256_setzero_ps();
839         fiy0             = _mm256_setzero_ps();
840         fiz0             = _mm256_setzero_ps();
841         fix1             = _mm256_setzero_ps();
842         fiy1             = _mm256_setzero_ps();
843         fiz1             = _mm256_setzero_ps();
844         fix2             = _mm256_setzero_ps();
845         fiy2             = _mm256_setzero_ps();
846         fiz2             = _mm256_setzero_ps();
847
848         /* Start inner kernel loop */
849         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
850         {
851
852             /* Get j neighbor index, and coordinate index */
853             jnrA             = jjnr[jidx];
854             jnrB             = jjnr[jidx+1];
855             jnrC             = jjnr[jidx+2];
856             jnrD             = jjnr[jidx+3];
857             jnrE             = jjnr[jidx+4];
858             jnrF             = jjnr[jidx+5];
859             jnrG             = jjnr[jidx+6];
860             jnrH             = jjnr[jidx+7];
861             j_coord_offsetA  = DIM*jnrA;
862             j_coord_offsetB  = DIM*jnrB;
863             j_coord_offsetC  = DIM*jnrC;
864             j_coord_offsetD  = DIM*jnrD;
865             j_coord_offsetE  = DIM*jnrE;
866             j_coord_offsetF  = DIM*jnrF;
867             j_coord_offsetG  = DIM*jnrG;
868             j_coord_offsetH  = DIM*jnrH;
869
870             /* load j atom coordinates */
871             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
872                                                  x+j_coord_offsetC,x+j_coord_offsetD,
873                                                  x+j_coord_offsetE,x+j_coord_offsetF,
874                                                  x+j_coord_offsetG,x+j_coord_offsetH,
875                                                  &jx0,&jy0,&jz0);
876
877             /* Calculate displacement vector */
878             dx00             = _mm256_sub_ps(ix0,jx0);
879             dy00             = _mm256_sub_ps(iy0,jy0);
880             dz00             = _mm256_sub_ps(iz0,jz0);
881             dx10             = _mm256_sub_ps(ix1,jx0);
882             dy10             = _mm256_sub_ps(iy1,jy0);
883             dz10             = _mm256_sub_ps(iz1,jz0);
884             dx20             = _mm256_sub_ps(ix2,jx0);
885             dy20             = _mm256_sub_ps(iy2,jy0);
886             dz20             = _mm256_sub_ps(iz2,jz0);
887
888             /* Calculate squared distance and things based on it */
889             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
890             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
891             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
892
893             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
894             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
895             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
896
897             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
898             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
899             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
900
901             /* Load parameters for j particles */
902             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
903                                                                  charge+jnrC+0,charge+jnrD+0,
904                                                                  charge+jnrE+0,charge+jnrF+0,
905                                                                  charge+jnrG+0,charge+jnrH+0);
906             vdwjidx0A        = 2*vdwtype[jnrA+0];
907             vdwjidx0B        = 2*vdwtype[jnrB+0];
908             vdwjidx0C        = 2*vdwtype[jnrC+0];
909             vdwjidx0D        = 2*vdwtype[jnrD+0];
910             vdwjidx0E        = 2*vdwtype[jnrE+0];
911             vdwjidx0F        = 2*vdwtype[jnrF+0];
912             vdwjidx0G        = 2*vdwtype[jnrG+0];
913             vdwjidx0H        = 2*vdwtype[jnrH+0];
914
915             fjx0             = _mm256_setzero_ps();
916             fjy0             = _mm256_setzero_ps();
917             fjz0             = _mm256_setzero_ps();
918
919             /**************************
920              * CALCULATE INTERACTIONS *
921              **************************/
922
923             r00              = _mm256_mul_ps(rsq00,rinv00);
924
925             /* Compute parameters for interactions between i and j atoms */
926             qq00             = _mm256_mul_ps(iq0,jq0);
927             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
928                                             vdwioffsetptr0+vdwjidx0B,
929                                             vdwioffsetptr0+vdwjidx0C,
930                                             vdwioffsetptr0+vdwjidx0D,
931                                             vdwioffsetptr0+vdwjidx0E,
932                                             vdwioffsetptr0+vdwjidx0F,
933                                             vdwioffsetptr0+vdwjidx0G,
934                                             vdwioffsetptr0+vdwjidx0H,
935                                             &c6_00,&c12_00);
936
937             /* Calculate table index by multiplying r with table scale and truncate to integer */
938             rt               = _mm256_mul_ps(r00,vftabscale);
939             vfitab           = _mm256_cvttps_epi32(rt);
940             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
941             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
942             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
943             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
944             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
945             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
946
947             /* COULOMB ELECTROSTATICS */
948             velec            = _mm256_mul_ps(qq00,rinv00);
949             felec            = _mm256_mul_ps(velec,rinvsq00);
950
951             /* CUBIC SPLINE TABLE DISPERSION */
952             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
953                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
954             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
955                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
956             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
957                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
958             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
959                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
960             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
961             Heps             = _mm256_mul_ps(vfeps,H);
962             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
963             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
964             fvdw6            = _mm256_mul_ps(c6_00,FF);
965
966             /* CUBIC SPLINE TABLE REPULSION */
967             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
968             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
969             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
970                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
971             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
972                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
973             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
974                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
975             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
976                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
977             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
978             Heps             = _mm256_mul_ps(vfeps,H);
979             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
980             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
981             fvdw12           = _mm256_mul_ps(c12_00,FF);
982             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
983
984             fscal            = _mm256_add_ps(felec,fvdw);
985
986             /* Calculate temporary vectorial force */
987             tx               = _mm256_mul_ps(fscal,dx00);
988             ty               = _mm256_mul_ps(fscal,dy00);
989             tz               = _mm256_mul_ps(fscal,dz00);
990
991             /* Update vectorial force */
992             fix0             = _mm256_add_ps(fix0,tx);
993             fiy0             = _mm256_add_ps(fiy0,ty);
994             fiz0             = _mm256_add_ps(fiz0,tz);
995
996             fjx0             = _mm256_add_ps(fjx0,tx);
997             fjy0             = _mm256_add_ps(fjy0,ty);
998             fjz0             = _mm256_add_ps(fjz0,tz);
999
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             /* Compute parameters for interactions between i and j atoms */
1005             qq10             = _mm256_mul_ps(iq1,jq0);
1006
1007             /* COULOMB ELECTROSTATICS */
1008             velec            = _mm256_mul_ps(qq10,rinv10);
1009             felec            = _mm256_mul_ps(velec,rinvsq10);
1010
1011             fscal            = felec;
1012
1013             /* Calculate temporary vectorial force */
1014             tx               = _mm256_mul_ps(fscal,dx10);
1015             ty               = _mm256_mul_ps(fscal,dy10);
1016             tz               = _mm256_mul_ps(fscal,dz10);
1017
1018             /* Update vectorial force */
1019             fix1             = _mm256_add_ps(fix1,tx);
1020             fiy1             = _mm256_add_ps(fiy1,ty);
1021             fiz1             = _mm256_add_ps(fiz1,tz);
1022
1023             fjx0             = _mm256_add_ps(fjx0,tx);
1024             fjy0             = _mm256_add_ps(fjy0,ty);
1025             fjz0             = _mm256_add_ps(fjz0,tz);
1026
1027             /**************************
1028              * CALCULATE INTERACTIONS *
1029              **************************/
1030
1031             /* Compute parameters for interactions between i and j atoms */
1032             qq20             = _mm256_mul_ps(iq2,jq0);
1033
1034             /* COULOMB ELECTROSTATICS */
1035             velec            = _mm256_mul_ps(qq20,rinv20);
1036             felec            = _mm256_mul_ps(velec,rinvsq20);
1037
1038             fscal            = felec;
1039
1040             /* Calculate temporary vectorial force */
1041             tx               = _mm256_mul_ps(fscal,dx20);
1042             ty               = _mm256_mul_ps(fscal,dy20);
1043             tz               = _mm256_mul_ps(fscal,dz20);
1044
1045             /* Update vectorial force */
1046             fix2             = _mm256_add_ps(fix2,tx);
1047             fiy2             = _mm256_add_ps(fiy2,ty);
1048             fiz2             = _mm256_add_ps(fiz2,tz);
1049
1050             fjx0             = _mm256_add_ps(fjx0,tx);
1051             fjy0             = _mm256_add_ps(fjy0,ty);
1052             fjz0             = _mm256_add_ps(fjz0,tz);
1053
1054             fjptrA             = f+j_coord_offsetA;
1055             fjptrB             = f+j_coord_offsetB;
1056             fjptrC             = f+j_coord_offsetC;
1057             fjptrD             = f+j_coord_offsetD;
1058             fjptrE             = f+j_coord_offsetE;
1059             fjptrF             = f+j_coord_offsetF;
1060             fjptrG             = f+j_coord_offsetG;
1061             fjptrH             = f+j_coord_offsetH;
1062
1063             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1064
1065             /* Inner loop uses 108 flops */
1066         }
1067
1068         if(jidx<j_index_end)
1069         {
1070
1071             /* Get j neighbor index, and coordinate index */
1072             jnrlistA         = jjnr[jidx];
1073             jnrlistB         = jjnr[jidx+1];
1074             jnrlistC         = jjnr[jidx+2];
1075             jnrlistD         = jjnr[jidx+3];
1076             jnrlistE         = jjnr[jidx+4];
1077             jnrlistF         = jjnr[jidx+5];
1078             jnrlistG         = jjnr[jidx+6];
1079             jnrlistH         = jjnr[jidx+7];
1080             /* Sign of each element will be negative for non-real atoms.
1081              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1082              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1083              */
1084             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1085                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1086                                             
1087             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1088             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1089             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1090             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1091             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1092             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1093             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1094             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1095             j_coord_offsetA  = DIM*jnrA;
1096             j_coord_offsetB  = DIM*jnrB;
1097             j_coord_offsetC  = DIM*jnrC;
1098             j_coord_offsetD  = DIM*jnrD;
1099             j_coord_offsetE  = DIM*jnrE;
1100             j_coord_offsetF  = DIM*jnrF;
1101             j_coord_offsetG  = DIM*jnrG;
1102             j_coord_offsetH  = DIM*jnrH;
1103
1104             /* load j atom coordinates */
1105             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1106                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1107                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1108                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1109                                                  &jx0,&jy0,&jz0);
1110
1111             /* Calculate displacement vector */
1112             dx00             = _mm256_sub_ps(ix0,jx0);
1113             dy00             = _mm256_sub_ps(iy0,jy0);
1114             dz00             = _mm256_sub_ps(iz0,jz0);
1115             dx10             = _mm256_sub_ps(ix1,jx0);
1116             dy10             = _mm256_sub_ps(iy1,jy0);
1117             dz10             = _mm256_sub_ps(iz1,jz0);
1118             dx20             = _mm256_sub_ps(ix2,jx0);
1119             dy20             = _mm256_sub_ps(iy2,jy0);
1120             dz20             = _mm256_sub_ps(iz2,jz0);
1121
1122             /* Calculate squared distance and things based on it */
1123             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1124             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1125             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1126
1127             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1128             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1129             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1130
1131             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1132             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1133             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1134
1135             /* Load parameters for j particles */
1136             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1137                                                                  charge+jnrC+0,charge+jnrD+0,
1138                                                                  charge+jnrE+0,charge+jnrF+0,
1139                                                                  charge+jnrG+0,charge+jnrH+0);
1140             vdwjidx0A        = 2*vdwtype[jnrA+0];
1141             vdwjidx0B        = 2*vdwtype[jnrB+0];
1142             vdwjidx0C        = 2*vdwtype[jnrC+0];
1143             vdwjidx0D        = 2*vdwtype[jnrD+0];
1144             vdwjidx0E        = 2*vdwtype[jnrE+0];
1145             vdwjidx0F        = 2*vdwtype[jnrF+0];
1146             vdwjidx0G        = 2*vdwtype[jnrG+0];
1147             vdwjidx0H        = 2*vdwtype[jnrH+0];
1148
1149             fjx0             = _mm256_setzero_ps();
1150             fjy0             = _mm256_setzero_ps();
1151             fjz0             = _mm256_setzero_ps();
1152
1153             /**************************
1154              * CALCULATE INTERACTIONS *
1155              **************************/
1156
1157             r00              = _mm256_mul_ps(rsq00,rinv00);
1158             r00              = _mm256_andnot_ps(dummy_mask,r00);
1159
1160             /* Compute parameters for interactions between i and j atoms */
1161             qq00             = _mm256_mul_ps(iq0,jq0);
1162             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1163                                             vdwioffsetptr0+vdwjidx0B,
1164                                             vdwioffsetptr0+vdwjidx0C,
1165                                             vdwioffsetptr0+vdwjidx0D,
1166                                             vdwioffsetptr0+vdwjidx0E,
1167                                             vdwioffsetptr0+vdwjidx0F,
1168                                             vdwioffsetptr0+vdwjidx0G,
1169                                             vdwioffsetptr0+vdwjidx0H,
1170                                             &c6_00,&c12_00);
1171
1172             /* Calculate table index by multiplying r with table scale and truncate to integer */
1173             rt               = _mm256_mul_ps(r00,vftabscale);
1174             vfitab           = _mm256_cvttps_epi32(rt);
1175             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1176             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1177             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1178             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1179             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1180             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1181
1182             /* COULOMB ELECTROSTATICS */
1183             velec            = _mm256_mul_ps(qq00,rinv00);
1184             felec            = _mm256_mul_ps(velec,rinvsq00);
1185
1186             /* CUBIC SPLINE TABLE DISPERSION */
1187             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1188                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1189             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1190                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1191             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1192                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1193             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1194                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1195             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1196             Heps             = _mm256_mul_ps(vfeps,H);
1197             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1198             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1199             fvdw6            = _mm256_mul_ps(c6_00,FF);
1200
1201             /* CUBIC SPLINE TABLE REPULSION */
1202             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1203             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1204             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1205                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1206             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1207                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1208             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1209                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1210             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1211                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1212             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1213             Heps             = _mm256_mul_ps(vfeps,H);
1214             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1215             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1216             fvdw12           = _mm256_mul_ps(c12_00,FF);
1217             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1218
1219             fscal            = _mm256_add_ps(felec,fvdw);
1220
1221             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1222
1223             /* Calculate temporary vectorial force */
1224             tx               = _mm256_mul_ps(fscal,dx00);
1225             ty               = _mm256_mul_ps(fscal,dy00);
1226             tz               = _mm256_mul_ps(fscal,dz00);
1227
1228             /* Update vectorial force */
1229             fix0             = _mm256_add_ps(fix0,tx);
1230             fiy0             = _mm256_add_ps(fiy0,ty);
1231             fiz0             = _mm256_add_ps(fiz0,tz);
1232
1233             fjx0             = _mm256_add_ps(fjx0,tx);
1234             fjy0             = _mm256_add_ps(fjy0,ty);
1235             fjz0             = _mm256_add_ps(fjz0,tz);
1236
1237             /**************************
1238              * CALCULATE INTERACTIONS *
1239              **************************/
1240
1241             /* Compute parameters for interactions between i and j atoms */
1242             qq10             = _mm256_mul_ps(iq1,jq0);
1243
1244             /* COULOMB ELECTROSTATICS */
1245             velec            = _mm256_mul_ps(qq10,rinv10);
1246             felec            = _mm256_mul_ps(velec,rinvsq10);
1247
1248             fscal            = felec;
1249
1250             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1251
1252             /* Calculate temporary vectorial force */
1253             tx               = _mm256_mul_ps(fscal,dx10);
1254             ty               = _mm256_mul_ps(fscal,dy10);
1255             tz               = _mm256_mul_ps(fscal,dz10);
1256
1257             /* Update vectorial force */
1258             fix1             = _mm256_add_ps(fix1,tx);
1259             fiy1             = _mm256_add_ps(fiy1,ty);
1260             fiz1             = _mm256_add_ps(fiz1,tz);
1261
1262             fjx0             = _mm256_add_ps(fjx0,tx);
1263             fjy0             = _mm256_add_ps(fjy0,ty);
1264             fjz0             = _mm256_add_ps(fjz0,tz);
1265
1266             /**************************
1267              * CALCULATE INTERACTIONS *
1268              **************************/
1269
1270             /* Compute parameters for interactions between i and j atoms */
1271             qq20             = _mm256_mul_ps(iq2,jq0);
1272
1273             /* COULOMB ELECTROSTATICS */
1274             velec            = _mm256_mul_ps(qq20,rinv20);
1275             felec            = _mm256_mul_ps(velec,rinvsq20);
1276
1277             fscal            = felec;
1278
1279             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1280
1281             /* Calculate temporary vectorial force */
1282             tx               = _mm256_mul_ps(fscal,dx20);
1283             ty               = _mm256_mul_ps(fscal,dy20);
1284             tz               = _mm256_mul_ps(fscal,dz20);
1285
1286             /* Update vectorial force */
1287             fix2             = _mm256_add_ps(fix2,tx);
1288             fiy2             = _mm256_add_ps(fiy2,ty);
1289             fiz2             = _mm256_add_ps(fiz2,tz);
1290
1291             fjx0             = _mm256_add_ps(fjx0,tx);
1292             fjy0             = _mm256_add_ps(fjy0,ty);
1293             fjz0             = _mm256_add_ps(fjz0,tz);
1294
1295             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1296             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1297             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1298             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1299             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1300             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1301             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1302             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1303
1304             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1305
1306             /* Inner loop uses 109 flops */
1307         }
1308
1309         /* End of innermost loop */
1310
1311         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1312                                                  f+i_coord_offset,fshift+i_shift_offset);
1313
1314         /* Increment number of inner iterations */
1315         inneriter                  += j_index_end - j_index_start;
1316
1317         /* Outer loop uses 18 flops */
1318     }
1319
1320     /* Increment number of outer iterations */
1321     outeriter        += nri;
1322
1323     /* Update outer/inner flops */
1324
1325     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*109);
1326 }