Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_256_single
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256i          vfitab;
108     __m128i          vfitab_lo,vfitab_hi;
109     __m128i          ifour       = _mm_set1_epi32(4);
110     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
111     real             *vftab;
112     __m256           dummy_mask,cutoff_mask;
113     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
114     __m256           one     = _mm256_set1_ps(1.0);
115     __m256           two     = _mm256_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm256_set1_ps(fr->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     vftab            = kernel_data->table_vdw->data;
134     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
135
136     /* Setup water-specific parameters */
137     inr              = nlist->iinr[0];
138     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
139     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
140     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
141     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149     j_coord_offsetE = 0;
150     j_coord_offsetF = 0;
151     j_coord_offsetG = 0;
152     j_coord_offsetH = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _mm256_setzero_ps();
181         fiy0             = _mm256_setzero_ps();
182         fiz0             = _mm256_setzero_ps();
183         fix1             = _mm256_setzero_ps();
184         fiy1             = _mm256_setzero_ps();
185         fiz1             = _mm256_setzero_ps();
186         fix2             = _mm256_setzero_ps();
187         fiy2             = _mm256_setzero_ps();
188         fiz2             = _mm256_setzero_ps();
189
190         /* Reset potential sums */
191         velecsum         = _mm256_setzero_ps();
192         vvdwsum          = _mm256_setzero_ps();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             jnrE             = jjnr[jidx+4];
204             jnrF             = jjnr[jidx+5];
205             jnrG             = jjnr[jidx+6];
206             jnrH             = jjnr[jidx+7];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209             j_coord_offsetC  = DIM*jnrC;
210             j_coord_offsetD  = DIM*jnrD;
211             j_coord_offsetE  = DIM*jnrE;
212             j_coord_offsetF  = DIM*jnrF;
213             j_coord_offsetG  = DIM*jnrG;
214             j_coord_offsetH  = DIM*jnrH;
215
216             /* load j atom coordinates */
217             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
218                                                  x+j_coord_offsetC,x+j_coord_offsetD,
219                                                  x+j_coord_offsetE,x+j_coord_offsetF,
220                                                  x+j_coord_offsetG,x+j_coord_offsetH,
221                                                  &jx0,&jy0,&jz0);
222
223             /* Calculate displacement vector */
224             dx00             = _mm256_sub_ps(ix0,jx0);
225             dy00             = _mm256_sub_ps(iy0,jy0);
226             dz00             = _mm256_sub_ps(iz0,jz0);
227             dx10             = _mm256_sub_ps(ix1,jx0);
228             dy10             = _mm256_sub_ps(iy1,jy0);
229             dz10             = _mm256_sub_ps(iz1,jz0);
230             dx20             = _mm256_sub_ps(ix2,jx0);
231             dy20             = _mm256_sub_ps(iy2,jy0);
232             dz20             = _mm256_sub_ps(iz2,jz0);
233
234             /* Calculate squared distance and things based on it */
235             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
236             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
237             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
238
239             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
240             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
241             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
242
243             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
244             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
245             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
246
247             /* Load parameters for j particles */
248             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
249                                                                  charge+jnrC+0,charge+jnrD+0,
250                                                                  charge+jnrE+0,charge+jnrF+0,
251                                                                  charge+jnrG+0,charge+jnrH+0);
252             vdwjidx0A        = 2*vdwtype[jnrA+0];
253             vdwjidx0B        = 2*vdwtype[jnrB+0];
254             vdwjidx0C        = 2*vdwtype[jnrC+0];
255             vdwjidx0D        = 2*vdwtype[jnrD+0];
256             vdwjidx0E        = 2*vdwtype[jnrE+0];
257             vdwjidx0F        = 2*vdwtype[jnrF+0];
258             vdwjidx0G        = 2*vdwtype[jnrG+0];
259             vdwjidx0H        = 2*vdwtype[jnrH+0];
260
261             fjx0             = _mm256_setzero_ps();
262             fjy0             = _mm256_setzero_ps();
263             fjz0             = _mm256_setzero_ps();
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             r00              = _mm256_mul_ps(rsq00,rinv00);
270
271             /* Compute parameters for interactions between i and j atoms */
272             qq00             = _mm256_mul_ps(iq0,jq0);
273             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
274                                             vdwioffsetptr0+vdwjidx0B,
275                                             vdwioffsetptr0+vdwjidx0C,
276                                             vdwioffsetptr0+vdwjidx0D,
277                                             vdwioffsetptr0+vdwjidx0E,
278                                             vdwioffsetptr0+vdwjidx0F,
279                                             vdwioffsetptr0+vdwjidx0G,
280                                             vdwioffsetptr0+vdwjidx0H,
281                                             &c6_00,&c12_00);
282
283             /* Calculate table index by multiplying r with table scale and truncate to integer */
284             rt               = _mm256_mul_ps(r00,vftabscale);
285             vfitab           = _mm256_cvttps_epi32(rt);
286             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
287             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
288             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
289             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
290             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
291             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
292
293             /* COULOMB ELECTROSTATICS */
294             velec            = _mm256_mul_ps(qq00,rinv00);
295             felec            = _mm256_mul_ps(velec,rinvsq00);
296
297             /* CUBIC SPLINE TABLE DISPERSION */
298             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
299                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
300             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
301                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
302             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
303                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
304             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
305                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
306             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
307             Heps             = _mm256_mul_ps(vfeps,H);
308             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
309             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
310             vvdw6            = _mm256_mul_ps(c6_00,VV);
311             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
312             fvdw6            = _mm256_mul_ps(c6_00,FF);
313
314             /* CUBIC SPLINE TABLE REPULSION */
315             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
316             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
317             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
318                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
319             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
320                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
321             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
322                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
323             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
324                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
325             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
326             Heps             = _mm256_mul_ps(vfeps,H);
327             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
328             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
329             vvdw12           = _mm256_mul_ps(c12_00,VV);
330             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
331             fvdw12           = _mm256_mul_ps(c12_00,FF);
332             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
333             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velecsum         = _mm256_add_ps(velecsum,velec);
337             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
338
339             fscal            = _mm256_add_ps(felec,fvdw);
340
341             /* Calculate temporary vectorial force */
342             tx               = _mm256_mul_ps(fscal,dx00);
343             ty               = _mm256_mul_ps(fscal,dy00);
344             tz               = _mm256_mul_ps(fscal,dz00);
345
346             /* Update vectorial force */
347             fix0             = _mm256_add_ps(fix0,tx);
348             fiy0             = _mm256_add_ps(fiy0,ty);
349             fiz0             = _mm256_add_ps(fiz0,tz);
350
351             fjx0             = _mm256_add_ps(fjx0,tx);
352             fjy0             = _mm256_add_ps(fjy0,ty);
353             fjz0             = _mm256_add_ps(fjz0,tz);
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             /* Compute parameters for interactions between i and j atoms */
360             qq10             = _mm256_mul_ps(iq1,jq0);
361
362             /* COULOMB ELECTROSTATICS */
363             velec            = _mm256_mul_ps(qq10,rinv10);
364             felec            = _mm256_mul_ps(velec,rinvsq10);
365
366             /* Update potential sum for this i atom from the interaction with this j atom. */
367             velecsum         = _mm256_add_ps(velecsum,velec);
368
369             fscal            = felec;
370
371             /* Calculate temporary vectorial force */
372             tx               = _mm256_mul_ps(fscal,dx10);
373             ty               = _mm256_mul_ps(fscal,dy10);
374             tz               = _mm256_mul_ps(fscal,dz10);
375
376             /* Update vectorial force */
377             fix1             = _mm256_add_ps(fix1,tx);
378             fiy1             = _mm256_add_ps(fiy1,ty);
379             fiz1             = _mm256_add_ps(fiz1,tz);
380
381             fjx0             = _mm256_add_ps(fjx0,tx);
382             fjy0             = _mm256_add_ps(fjy0,ty);
383             fjz0             = _mm256_add_ps(fjz0,tz);
384
385             /**************************
386              * CALCULATE INTERACTIONS *
387              **************************/
388
389             /* Compute parameters for interactions between i and j atoms */
390             qq20             = _mm256_mul_ps(iq2,jq0);
391
392             /* COULOMB ELECTROSTATICS */
393             velec            = _mm256_mul_ps(qq20,rinv20);
394             felec            = _mm256_mul_ps(velec,rinvsq20);
395
396             /* Update potential sum for this i atom from the interaction with this j atom. */
397             velecsum         = _mm256_add_ps(velecsum,velec);
398
399             fscal            = felec;
400
401             /* Calculate temporary vectorial force */
402             tx               = _mm256_mul_ps(fscal,dx20);
403             ty               = _mm256_mul_ps(fscal,dy20);
404             tz               = _mm256_mul_ps(fscal,dz20);
405
406             /* Update vectorial force */
407             fix2             = _mm256_add_ps(fix2,tx);
408             fiy2             = _mm256_add_ps(fiy2,ty);
409             fiz2             = _mm256_add_ps(fiz2,tz);
410
411             fjx0             = _mm256_add_ps(fjx0,tx);
412             fjy0             = _mm256_add_ps(fjy0,ty);
413             fjz0             = _mm256_add_ps(fjz0,tz);
414
415             fjptrA             = f+j_coord_offsetA;
416             fjptrB             = f+j_coord_offsetB;
417             fjptrC             = f+j_coord_offsetC;
418             fjptrD             = f+j_coord_offsetD;
419             fjptrE             = f+j_coord_offsetE;
420             fjptrF             = f+j_coord_offsetF;
421             fjptrG             = f+j_coord_offsetG;
422             fjptrH             = f+j_coord_offsetH;
423
424             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
425
426             /* Inner loop uses 119 flops */
427         }
428
429         if(jidx<j_index_end)
430         {
431
432             /* Get j neighbor index, and coordinate index */
433             jnrlistA         = jjnr[jidx];
434             jnrlistB         = jjnr[jidx+1];
435             jnrlistC         = jjnr[jidx+2];
436             jnrlistD         = jjnr[jidx+3];
437             jnrlistE         = jjnr[jidx+4];
438             jnrlistF         = jjnr[jidx+5];
439             jnrlistG         = jjnr[jidx+6];
440             jnrlistH         = jjnr[jidx+7];
441             /* Sign of each element will be negative for non-real atoms.
442              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
443              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
444              */
445             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
446                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
447                                             
448             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
449             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
450             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
451             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
452             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
453             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
454             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
455             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
456             j_coord_offsetA  = DIM*jnrA;
457             j_coord_offsetB  = DIM*jnrB;
458             j_coord_offsetC  = DIM*jnrC;
459             j_coord_offsetD  = DIM*jnrD;
460             j_coord_offsetE  = DIM*jnrE;
461             j_coord_offsetF  = DIM*jnrF;
462             j_coord_offsetG  = DIM*jnrG;
463             j_coord_offsetH  = DIM*jnrH;
464
465             /* load j atom coordinates */
466             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
467                                                  x+j_coord_offsetC,x+j_coord_offsetD,
468                                                  x+j_coord_offsetE,x+j_coord_offsetF,
469                                                  x+j_coord_offsetG,x+j_coord_offsetH,
470                                                  &jx0,&jy0,&jz0);
471
472             /* Calculate displacement vector */
473             dx00             = _mm256_sub_ps(ix0,jx0);
474             dy00             = _mm256_sub_ps(iy0,jy0);
475             dz00             = _mm256_sub_ps(iz0,jz0);
476             dx10             = _mm256_sub_ps(ix1,jx0);
477             dy10             = _mm256_sub_ps(iy1,jy0);
478             dz10             = _mm256_sub_ps(iz1,jz0);
479             dx20             = _mm256_sub_ps(ix2,jx0);
480             dy20             = _mm256_sub_ps(iy2,jy0);
481             dz20             = _mm256_sub_ps(iz2,jz0);
482
483             /* Calculate squared distance and things based on it */
484             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
485             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
486             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
487
488             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
489             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
490             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
491
492             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
493             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
494             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
495
496             /* Load parameters for j particles */
497             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
498                                                                  charge+jnrC+0,charge+jnrD+0,
499                                                                  charge+jnrE+0,charge+jnrF+0,
500                                                                  charge+jnrG+0,charge+jnrH+0);
501             vdwjidx0A        = 2*vdwtype[jnrA+0];
502             vdwjidx0B        = 2*vdwtype[jnrB+0];
503             vdwjidx0C        = 2*vdwtype[jnrC+0];
504             vdwjidx0D        = 2*vdwtype[jnrD+0];
505             vdwjidx0E        = 2*vdwtype[jnrE+0];
506             vdwjidx0F        = 2*vdwtype[jnrF+0];
507             vdwjidx0G        = 2*vdwtype[jnrG+0];
508             vdwjidx0H        = 2*vdwtype[jnrH+0];
509
510             fjx0             = _mm256_setzero_ps();
511             fjy0             = _mm256_setzero_ps();
512             fjz0             = _mm256_setzero_ps();
513
514             /**************************
515              * CALCULATE INTERACTIONS *
516              **************************/
517
518             r00              = _mm256_mul_ps(rsq00,rinv00);
519             r00              = _mm256_andnot_ps(dummy_mask,r00);
520
521             /* Compute parameters for interactions between i and j atoms */
522             qq00             = _mm256_mul_ps(iq0,jq0);
523             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
524                                             vdwioffsetptr0+vdwjidx0B,
525                                             vdwioffsetptr0+vdwjidx0C,
526                                             vdwioffsetptr0+vdwjidx0D,
527                                             vdwioffsetptr0+vdwjidx0E,
528                                             vdwioffsetptr0+vdwjidx0F,
529                                             vdwioffsetptr0+vdwjidx0G,
530                                             vdwioffsetptr0+vdwjidx0H,
531                                             &c6_00,&c12_00);
532
533             /* Calculate table index by multiplying r with table scale and truncate to integer */
534             rt               = _mm256_mul_ps(r00,vftabscale);
535             vfitab           = _mm256_cvttps_epi32(rt);
536             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
537             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
538             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
539             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
540             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
541             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
542
543             /* COULOMB ELECTROSTATICS */
544             velec            = _mm256_mul_ps(qq00,rinv00);
545             felec            = _mm256_mul_ps(velec,rinvsq00);
546
547             /* CUBIC SPLINE TABLE DISPERSION */
548             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
549                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
550             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
551                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
552             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
553                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
554             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
555                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
556             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
557             Heps             = _mm256_mul_ps(vfeps,H);
558             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
559             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
560             vvdw6            = _mm256_mul_ps(c6_00,VV);
561             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
562             fvdw6            = _mm256_mul_ps(c6_00,FF);
563
564             /* CUBIC SPLINE TABLE REPULSION */
565             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
566             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
567             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
568                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
569             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
570                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
571             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
572                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
573             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
574                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
575             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
576             Heps             = _mm256_mul_ps(vfeps,H);
577             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
578             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
579             vvdw12           = _mm256_mul_ps(c12_00,VV);
580             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
581             fvdw12           = _mm256_mul_ps(c12_00,FF);
582             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
583             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
584
585             /* Update potential sum for this i atom from the interaction with this j atom. */
586             velec            = _mm256_andnot_ps(dummy_mask,velec);
587             velecsum         = _mm256_add_ps(velecsum,velec);
588             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
589             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
590
591             fscal            = _mm256_add_ps(felec,fvdw);
592
593             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm256_mul_ps(fscal,dx00);
597             ty               = _mm256_mul_ps(fscal,dy00);
598             tz               = _mm256_mul_ps(fscal,dz00);
599
600             /* Update vectorial force */
601             fix0             = _mm256_add_ps(fix0,tx);
602             fiy0             = _mm256_add_ps(fiy0,ty);
603             fiz0             = _mm256_add_ps(fiz0,tz);
604
605             fjx0             = _mm256_add_ps(fjx0,tx);
606             fjy0             = _mm256_add_ps(fjy0,ty);
607             fjz0             = _mm256_add_ps(fjz0,tz);
608
609             /**************************
610              * CALCULATE INTERACTIONS *
611              **************************/
612
613             /* Compute parameters for interactions between i and j atoms */
614             qq10             = _mm256_mul_ps(iq1,jq0);
615
616             /* COULOMB ELECTROSTATICS */
617             velec            = _mm256_mul_ps(qq10,rinv10);
618             felec            = _mm256_mul_ps(velec,rinvsq10);
619
620             /* Update potential sum for this i atom from the interaction with this j atom. */
621             velec            = _mm256_andnot_ps(dummy_mask,velec);
622             velecsum         = _mm256_add_ps(velecsum,velec);
623
624             fscal            = felec;
625
626             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
627
628             /* Calculate temporary vectorial force */
629             tx               = _mm256_mul_ps(fscal,dx10);
630             ty               = _mm256_mul_ps(fscal,dy10);
631             tz               = _mm256_mul_ps(fscal,dz10);
632
633             /* Update vectorial force */
634             fix1             = _mm256_add_ps(fix1,tx);
635             fiy1             = _mm256_add_ps(fiy1,ty);
636             fiz1             = _mm256_add_ps(fiz1,tz);
637
638             fjx0             = _mm256_add_ps(fjx0,tx);
639             fjy0             = _mm256_add_ps(fjy0,ty);
640             fjz0             = _mm256_add_ps(fjz0,tz);
641
642             /**************************
643              * CALCULATE INTERACTIONS *
644              **************************/
645
646             /* Compute parameters for interactions between i and j atoms */
647             qq20             = _mm256_mul_ps(iq2,jq0);
648
649             /* COULOMB ELECTROSTATICS */
650             velec            = _mm256_mul_ps(qq20,rinv20);
651             felec            = _mm256_mul_ps(velec,rinvsq20);
652
653             /* Update potential sum for this i atom from the interaction with this j atom. */
654             velec            = _mm256_andnot_ps(dummy_mask,velec);
655             velecsum         = _mm256_add_ps(velecsum,velec);
656
657             fscal            = felec;
658
659             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
660
661             /* Calculate temporary vectorial force */
662             tx               = _mm256_mul_ps(fscal,dx20);
663             ty               = _mm256_mul_ps(fscal,dy20);
664             tz               = _mm256_mul_ps(fscal,dz20);
665
666             /* Update vectorial force */
667             fix2             = _mm256_add_ps(fix2,tx);
668             fiy2             = _mm256_add_ps(fiy2,ty);
669             fiz2             = _mm256_add_ps(fiz2,tz);
670
671             fjx0             = _mm256_add_ps(fjx0,tx);
672             fjy0             = _mm256_add_ps(fjy0,ty);
673             fjz0             = _mm256_add_ps(fjz0,tz);
674
675             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
676             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
677             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
678             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
679             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
680             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
681             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
682             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
683
684             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
685
686             /* Inner loop uses 120 flops */
687         }
688
689         /* End of innermost loop */
690
691         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
692                                                  f+i_coord_offset,fshift+i_shift_offset);
693
694         ggid                        = gid[iidx];
695         /* Update potential energies */
696         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
697         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
698
699         /* Increment number of inner iterations */
700         inneriter                  += j_index_end - j_index_start;
701
702         /* Outer loop uses 20 flops */
703     }
704
705     /* Increment number of outer iterations */
706     outeriter        += nri;
707
708     /* Update outer/inner flops */
709
710     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*120);
711 }
712 /*
713  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_256_single
714  * Electrostatics interaction: Coulomb
715  * VdW interaction:            CubicSplineTable
716  * Geometry:                   Water3-Particle
717  * Calculate force/pot:        Force
718  */
719 void
720 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_256_single
721                     (t_nblist                    * gmx_restrict       nlist,
722                      rvec                        * gmx_restrict          xx,
723                      rvec                        * gmx_restrict          ff,
724                      t_forcerec                  * gmx_restrict          fr,
725                      t_mdatoms                   * gmx_restrict     mdatoms,
726                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
727                      t_nrnb                      * gmx_restrict        nrnb)
728 {
729     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
730      * just 0 for non-waters.
731      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
732      * jnr indices corresponding to data put in the four positions in the SIMD register.
733      */
734     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
735     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
736     int              jnrA,jnrB,jnrC,jnrD;
737     int              jnrE,jnrF,jnrG,jnrH;
738     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
739     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
740     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
741     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
742     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
743     real             rcutoff_scalar;
744     real             *shiftvec,*fshift,*x,*f;
745     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
746     real             scratch[4*DIM];
747     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
748     real *           vdwioffsetptr0;
749     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
750     real *           vdwioffsetptr1;
751     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
752     real *           vdwioffsetptr2;
753     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
754     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
755     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
756     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
757     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
758     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
759     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
760     real             *charge;
761     int              nvdwtype;
762     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
763     int              *vdwtype;
764     real             *vdwparam;
765     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
766     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
767     __m256i          vfitab;
768     __m128i          vfitab_lo,vfitab_hi;
769     __m128i          ifour       = _mm_set1_epi32(4);
770     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
771     real             *vftab;
772     __m256           dummy_mask,cutoff_mask;
773     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
774     __m256           one     = _mm256_set1_ps(1.0);
775     __m256           two     = _mm256_set1_ps(2.0);
776     x                = xx[0];
777     f                = ff[0];
778
779     nri              = nlist->nri;
780     iinr             = nlist->iinr;
781     jindex           = nlist->jindex;
782     jjnr             = nlist->jjnr;
783     shiftidx         = nlist->shift;
784     gid              = nlist->gid;
785     shiftvec         = fr->shift_vec[0];
786     fshift           = fr->fshift[0];
787     facel            = _mm256_set1_ps(fr->epsfac);
788     charge           = mdatoms->chargeA;
789     nvdwtype         = fr->ntype;
790     vdwparam         = fr->nbfp;
791     vdwtype          = mdatoms->typeA;
792
793     vftab            = kernel_data->table_vdw->data;
794     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
795
796     /* Setup water-specific parameters */
797     inr              = nlist->iinr[0];
798     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
799     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
800     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
801     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
802
803     /* Avoid stupid compiler warnings */
804     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
805     j_coord_offsetA = 0;
806     j_coord_offsetB = 0;
807     j_coord_offsetC = 0;
808     j_coord_offsetD = 0;
809     j_coord_offsetE = 0;
810     j_coord_offsetF = 0;
811     j_coord_offsetG = 0;
812     j_coord_offsetH = 0;
813
814     outeriter        = 0;
815     inneriter        = 0;
816
817     for(iidx=0;iidx<4*DIM;iidx++)
818     {
819         scratch[iidx] = 0.0;
820     }
821
822     /* Start outer loop over neighborlists */
823     for(iidx=0; iidx<nri; iidx++)
824     {
825         /* Load shift vector for this list */
826         i_shift_offset   = DIM*shiftidx[iidx];
827
828         /* Load limits for loop over neighbors */
829         j_index_start    = jindex[iidx];
830         j_index_end      = jindex[iidx+1];
831
832         /* Get outer coordinate index */
833         inr              = iinr[iidx];
834         i_coord_offset   = DIM*inr;
835
836         /* Load i particle coords and add shift vector */
837         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
838                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
839
840         fix0             = _mm256_setzero_ps();
841         fiy0             = _mm256_setzero_ps();
842         fiz0             = _mm256_setzero_ps();
843         fix1             = _mm256_setzero_ps();
844         fiy1             = _mm256_setzero_ps();
845         fiz1             = _mm256_setzero_ps();
846         fix2             = _mm256_setzero_ps();
847         fiy2             = _mm256_setzero_ps();
848         fiz2             = _mm256_setzero_ps();
849
850         /* Start inner kernel loop */
851         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
852         {
853
854             /* Get j neighbor index, and coordinate index */
855             jnrA             = jjnr[jidx];
856             jnrB             = jjnr[jidx+1];
857             jnrC             = jjnr[jidx+2];
858             jnrD             = jjnr[jidx+3];
859             jnrE             = jjnr[jidx+4];
860             jnrF             = jjnr[jidx+5];
861             jnrG             = jjnr[jidx+6];
862             jnrH             = jjnr[jidx+7];
863             j_coord_offsetA  = DIM*jnrA;
864             j_coord_offsetB  = DIM*jnrB;
865             j_coord_offsetC  = DIM*jnrC;
866             j_coord_offsetD  = DIM*jnrD;
867             j_coord_offsetE  = DIM*jnrE;
868             j_coord_offsetF  = DIM*jnrF;
869             j_coord_offsetG  = DIM*jnrG;
870             j_coord_offsetH  = DIM*jnrH;
871
872             /* load j atom coordinates */
873             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
874                                                  x+j_coord_offsetC,x+j_coord_offsetD,
875                                                  x+j_coord_offsetE,x+j_coord_offsetF,
876                                                  x+j_coord_offsetG,x+j_coord_offsetH,
877                                                  &jx0,&jy0,&jz0);
878
879             /* Calculate displacement vector */
880             dx00             = _mm256_sub_ps(ix0,jx0);
881             dy00             = _mm256_sub_ps(iy0,jy0);
882             dz00             = _mm256_sub_ps(iz0,jz0);
883             dx10             = _mm256_sub_ps(ix1,jx0);
884             dy10             = _mm256_sub_ps(iy1,jy0);
885             dz10             = _mm256_sub_ps(iz1,jz0);
886             dx20             = _mm256_sub_ps(ix2,jx0);
887             dy20             = _mm256_sub_ps(iy2,jy0);
888             dz20             = _mm256_sub_ps(iz2,jz0);
889
890             /* Calculate squared distance and things based on it */
891             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
892             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
893             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
894
895             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
896             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
897             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
898
899             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
900             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
901             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
902
903             /* Load parameters for j particles */
904             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
905                                                                  charge+jnrC+0,charge+jnrD+0,
906                                                                  charge+jnrE+0,charge+jnrF+0,
907                                                                  charge+jnrG+0,charge+jnrH+0);
908             vdwjidx0A        = 2*vdwtype[jnrA+0];
909             vdwjidx0B        = 2*vdwtype[jnrB+0];
910             vdwjidx0C        = 2*vdwtype[jnrC+0];
911             vdwjidx0D        = 2*vdwtype[jnrD+0];
912             vdwjidx0E        = 2*vdwtype[jnrE+0];
913             vdwjidx0F        = 2*vdwtype[jnrF+0];
914             vdwjidx0G        = 2*vdwtype[jnrG+0];
915             vdwjidx0H        = 2*vdwtype[jnrH+0];
916
917             fjx0             = _mm256_setzero_ps();
918             fjy0             = _mm256_setzero_ps();
919             fjz0             = _mm256_setzero_ps();
920
921             /**************************
922              * CALCULATE INTERACTIONS *
923              **************************/
924
925             r00              = _mm256_mul_ps(rsq00,rinv00);
926
927             /* Compute parameters for interactions between i and j atoms */
928             qq00             = _mm256_mul_ps(iq0,jq0);
929             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
930                                             vdwioffsetptr0+vdwjidx0B,
931                                             vdwioffsetptr0+vdwjidx0C,
932                                             vdwioffsetptr0+vdwjidx0D,
933                                             vdwioffsetptr0+vdwjidx0E,
934                                             vdwioffsetptr0+vdwjidx0F,
935                                             vdwioffsetptr0+vdwjidx0G,
936                                             vdwioffsetptr0+vdwjidx0H,
937                                             &c6_00,&c12_00);
938
939             /* Calculate table index by multiplying r with table scale and truncate to integer */
940             rt               = _mm256_mul_ps(r00,vftabscale);
941             vfitab           = _mm256_cvttps_epi32(rt);
942             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
943             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
944             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
945             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
946             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
947             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
948
949             /* COULOMB ELECTROSTATICS */
950             velec            = _mm256_mul_ps(qq00,rinv00);
951             felec            = _mm256_mul_ps(velec,rinvsq00);
952
953             /* CUBIC SPLINE TABLE DISPERSION */
954             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
955                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
956             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
957                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
958             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
959                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
960             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
961                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
962             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
963             Heps             = _mm256_mul_ps(vfeps,H);
964             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
965             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
966             fvdw6            = _mm256_mul_ps(c6_00,FF);
967
968             /* CUBIC SPLINE TABLE REPULSION */
969             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
970             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
971             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
972                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
973             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
974                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
975             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
976                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
977             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
978                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
979             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
980             Heps             = _mm256_mul_ps(vfeps,H);
981             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
982             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
983             fvdw12           = _mm256_mul_ps(c12_00,FF);
984             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
985
986             fscal            = _mm256_add_ps(felec,fvdw);
987
988             /* Calculate temporary vectorial force */
989             tx               = _mm256_mul_ps(fscal,dx00);
990             ty               = _mm256_mul_ps(fscal,dy00);
991             tz               = _mm256_mul_ps(fscal,dz00);
992
993             /* Update vectorial force */
994             fix0             = _mm256_add_ps(fix0,tx);
995             fiy0             = _mm256_add_ps(fiy0,ty);
996             fiz0             = _mm256_add_ps(fiz0,tz);
997
998             fjx0             = _mm256_add_ps(fjx0,tx);
999             fjy0             = _mm256_add_ps(fjy0,ty);
1000             fjz0             = _mm256_add_ps(fjz0,tz);
1001
1002             /**************************
1003              * CALCULATE INTERACTIONS *
1004              **************************/
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             qq10             = _mm256_mul_ps(iq1,jq0);
1008
1009             /* COULOMB ELECTROSTATICS */
1010             velec            = _mm256_mul_ps(qq10,rinv10);
1011             felec            = _mm256_mul_ps(velec,rinvsq10);
1012
1013             fscal            = felec;
1014
1015             /* Calculate temporary vectorial force */
1016             tx               = _mm256_mul_ps(fscal,dx10);
1017             ty               = _mm256_mul_ps(fscal,dy10);
1018             tz               = _mm256_mul_ps(fscal,dz10);
1019
1020             /* Update vectorial force */
1021             fix1             = _mm256_add_ps(fix1,tx);
1022             fiy1             = _mm256_add_ps(fiy1,ty);
1023             fiz1             = _mm256_add_ps(fiz1,tz);
1024
1025             fjx0             = _mm256_add_ps(fjx0,tx);
1026             fjy0             = _mm256_add_ps(fjy0,ty);
1027             fjz0             = _mm256_add_ps(fjz0,tz);
1028
1029             /**************************
1030              * CALCULATE INTERACTIONS *
1031              **************************/
1032
1033             /* Compute parameters for interactions between i and j atoms */
1034             qq20             = _mm256_mul_ps(iq2,jq0);
1035
1036             /* COULOMB ELECTROSTATICS */
1037             velec            = _mm256_mul_ps(qq20,rinv20);
1038             felec            = _mm256_mul_ps(velec,rinvsq20);
1039
1040             fscal            = felec;
1041
1042             /* Calculate temporary vectorial force */
1043             tx               = _mm256_mul_ps(fscal,dx20);
1044             ty               = _mm256_mul_ps(fscal,dy20);
1045             tz               = _mm256_mul_ps(fscal,dz20);
1046
1047             /* Update vectorial force */
1048             fix2             = _mm256_add_ps(fix2,tx);
1049             fiy2             = _mm256_add_ps(fiy2,ty);
1050             fiz2             = _mm256_add_ps(fiz2,tz);
1051
1052             fjx0             = _mm256_add_ps(fjx0,tx);
1053             fjy0             = _mm256_add_ps(fjy0,ty);
1054             fjz0             = _mm256_add_ps(fjz0,tz);
1055
1056             fjptrA             = f+j_coord_offsetA;
1057             fjptrB             = f+j_coord_offsetB;
1058             fjptrC             = f+j_coord_offsetC;
1059             fjptrD             = f+j_coord_offsetD;
1060             fjptrE             = f+j_coord_offsetE;
1061             fjptrF             = f+j_coord_offsetF;
1062             fjptrG             = f+j_coord_offsetG;
1063             fjptrH             = f+j_coord_offsetH;
1064
1065             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1066
1067             /* Inner loop uses 108 flops */
1068         }
1069
1070         if(jidx<j_index_end)
1071         {
1072
1073             /* Get j neighbor index, and coordinate index */
1074             jnrlistA         = jjnr[jidx];
1075             jnrlistB         = jjnr[jidx+1];
1076             jnrlistC         = jjnr[jidx+2];
1077             jnrlistD         = jjnr[jidx+3];
1078             jnrlistE         = jjnr[jidx+4];
1079             jnrlistF         = jjnr[jidx+5];
1080             jnrlistG         = jjnr[jidx+6];
1081             jnrlistH         = jjnr[jidx+7];
1082             /* Sign of each element will be negative for non-real atoms.
1083              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1084              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1085              */
1086             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1087                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1088                                             
1089             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1090             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1091             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1092             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1093             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1094             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1095             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1096             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1097             j_coord_offsetA  = DIM*jnrA;
1098             j_coord_offsetB  = DIM*jnrB;
1099             j_coord_offsetC  = DIM*jnrC;
1100             j_coord_offsetD  = DIM*jnrD;
1101             j_coord_offsetE  = DIM*jnrE;
1102             j_coord_offsetF  = DIM*jnrF;
1103             j_coord_offsetG  = DIM*jnrG;
1104             j_coord_offsetH  = DIM*jnrH;
1105
1106             /* load j atom coordinates */
1107             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1108                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1109                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1110                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1111                                                  &jx0,&jy0,&jz0);
1112
1113             /* Calculate displacement vector */
1114             dx00             = _mm256_sub_ps(ix0,jx0);
1115             dy00             = _mm256_sub_ps(iy0,jy0);
1116             dz00             = _mm256_sub_ps(iz0,jz0);
1117             dx10             = _mm256_sub_ps(ix1,jx0);
1118             dy10             = _mm256_sub_ps(iy1,jy0);
1119             dz10             = _mm256_sub_ps(iz1,jz0);
1120             dx20             = _mm256_sub_ps(ix2,jx0);
1121             dy20             = _mm256_sub_ps(iy2,jy0);
1122             dz20             = _mm256_sub_ps(iz2,jz0);
1123
1124             /* Calculate squared distance and things based on it */
1125             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1126             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1127             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1128
1129             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1130             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1131             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1132
1133             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1134             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1135             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1136
1137             /* Load parameters for j particles */
1138             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1139                                                                  charge+jnrC+0,charge+jnrD+0,
1140                                                                  charge+jnrE+0,charge+jnrF+0,
1141                                                                  charge+jnrG+0,charge+jnrH+0);
1142             vdwjidx0A        = 2*vdwtype[jnrA+0];
1143             vdwjidx0B        = 2*vdwtype[jnrB+0];
1144             vdwjidx0C        = 2*vdwtype[jnrC+0];
1145             vdwjidx0D        = 2*vdwtype[jnrD+0];
1146             vdwjidx0E        = 2*vdwtype[jnrE+0];
1147             vdwjidx0F        = 2*vdwtype[jnrF+0];
1148             vdwjidx0G        = 2*vdwtype[jnrG+0];
1149             vdwjidx0H        = 2*vdwtype[jnrH+0];
1150
1151             fjx0             = _mm256_setzero_ps();
1152             fjy0             = _mm256_setzero_ps();
1153             fjz0             = _mm256_setzero_ps();
1154
1155             /**************************
1156              * CALCULATE INTERACTIONS *
1157              **************************/
1158
1159             r00              = _mm256_mul_ps(rsq00,rinv00);
1160             r00              = _mm256_andnot_ps(dummy_mask,r00);
1161
1162             /* Compute parameters for interactions between i and j atoms */
1163             qq00             = _mm256_mul_ps(iq0,jq0);
1164             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1165                                             vdwioffsetptr0+vdwjidx0B,
1166                                             vdwioffsetptr0+vdwjidx0C,
1167                                             vdwioffsetptr0+vdwjidx0D,
1168                                             vdwioffsetptr0+vdwjidx0E,
1169                                             vdwioffsetptr0+vdwjidx0F,
1170                                             vdwioffsetptr0+vdwjidx0G,
1171                                             vdwioffsetptr0+vdwjidx0H,
1172                                             &c6_00,&c12_00);
1173
1174             /* Calculate table index by multiplying r with table scale and truncate to integer */
1175             rt               = _mm256_mul_ps(r00,vftabscale);
1176             vfitab           = _mm256_cvttps_epi32(rt);
1177             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1178             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1179             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1180             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1181             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1182             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1183
1184             /* COULOMB ELECTROSTATICS */
1185             velec            = _mm256_mul_ps(qq00,rinv00);
1186             felec            = _mm256_mul_ps(velec,rinvsq00);
1187
1188             /* CUBIC SPLINE TABLE DISPERSION */
1189             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1190                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1191             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1192                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1193             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1194                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1195             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1196                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1197             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1198             Heps             = _mm256_mul_ps(vfeps,H);
1199             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1200             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1201             fvdw6            = _mm256_mul_ps(c6_00,FF);
1202
1203             /* CUBIC SPLINE TABLE REPULSION */
1204             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1205             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1206             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1207                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1208             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1209                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1210             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1211                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1212             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1213                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1214             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1215             Heps             = _mm256_mul_ps(vfeps,H);
1216             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1217             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1218             fvdw12           = _mm256_mul_ps(c12_00,FF);
1219             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1220
1221             fscal            = _mm256_add_ps(felec,fvdw);
1222
1223             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1224
1225             /* Calculate temporary vectorial force */
1226             tx               = _mm256_mul_ps(fscal,dx00);
1227             ty               = _mm256_mul_ps(fscal,dy00);
1228             tz               = _mm256_mul_ps(fscal,dz00);
1229
1230             /* Update vectorial force */
1231             fix0             = _mm256_add_ps(fix0,tx);
1232             fiy0             = _mm256_add_ps(fiy0,ty);
1233             fiz0             = _mm256_add_ps(fiz0,tz);
1234
1235             fjx0             = _mm256_add_ps(fjx0,tx);
1236             fjy0             = _mm256_add_ps(fjy0,ty);
1237             fjz0             = _mm256_add_ps(fjz0,tz);
1238
1239             /**************************
1240              * CALCULATE INTERACTIONS *
1241              **************************/
1242
1243             /* Compute parameters for interactions between i and j atoms */
1244             qq10             = _mm256_mul_ps(iq1,jq0);
1245
1246             /* COULOMB ELECTROSTATICS */
1247             velec            = _mm256_mul_ps(qq10,rinv10);
1248             felec            = _mm256_mul_ps(velec,rinvsq10);
1249
1250             fscal            = felec;
1251
1252             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1253
1254             /* Calculate temporary vectorial force */
1255             tx               = _mm256_mul_ps(fscal,dx10);
1256             ty               = _mm256_mul_ps(fscal,dy10);
1257             tz               = _mm256_mul_ps(fscal,dz10);
1258
1259             /* Update vectorial force */
1260             fix1             = _mm256_add_ps(fix1,tx);
1261             fiy1             = _mm256_add_ps(fiy1,ty);
1262             fiz1             = _mm256_add_ps(fiz1,tz);
1263
1264             fjx0             = _mm256_add_ps(fjx0,tx);
1265             fjy0             = _mm256_add_ps(fjy0,ty);
1266             fjz0             = _mm256_add_ps(fjz0,tz);
1267
1268             /**************************
1269              * CALCULATE INTERACTIONS *
1270              **************************/
1271
1272             /* Compute parameters for interactions between i and j atoms */
1273             qq20             = _mm256_mul_ps(iq2,jq0);
1274
1275             /* COULOMB ELECTROSTATICS */
1276             velec            = _mm256_mul_ps(qq20,rinv20);
1277             felec            = _mm256_mul_ps(velec,rinvsq20);
1278
1279             fscal            = felec;
1280
1281             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1282
1283             /* Calculate temporary vectorial force */
1284             tx               = _mm256_mul_ps(fscal,dx20);
1285             ty               = _mm256_mul_ps(fscal,dy20);
1286             tz               = _mm256_mul_ps(fscal,dz20);
1287
1288             /* Update vectorial force */
1289             fix2             = _mm256_add_ps(fix2,tx);
1290             fiy2             = _mm256_add_ps(fiy2,ty);
1291             fiz2             = _mm256_add_ps(fiz2,tz);
1292
1293             fjx0             = _mm256_add_ps(fjx0,tx);
1294             fjy0             = _mm256_add_ps(fjy0,ty);
1295             fjz0             = _mm256_add_ps(fjz0,tz);
1296
1297             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1298             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1299             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1300             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1301             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1302             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1303             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1304             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1305
1306             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1307
1308             /* Inner loop uses 109 flops */
1309         }
1310
1311         /* End of innermost loop */
1312
1313         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1314                                                  f+i_coord_offset,fshift+i_shift_offset);
1315
1316         /* Increment number of inner iterations */
1317         inneriter                  += j_index_end - j_index_start;
1318
1319         /* Outer loop uses 18 flops */
1320     }
1321
1322     /* Increment number of outer iterations */
1323     outeriter        += nri;
1324
1325     /* Update outer/inner flops */
1326
1327     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*109);
1328 }