8a2fc6c7a48ace01ded07c22a619f5201ca3b6ff
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwNone_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_avx_256_single
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            None
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr1;
87     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
93     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     __m256i          vfitab;
100     __m128i          vfitab_lo,vfitab_hi;
101     __m128i          ifour       = _mm_set1_epi32(4);
102     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
103     real             *vftab;
104     __m256           dummy_mask,cutoff_mask;
105     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
106     __m256           one     = _mm256_set1_ps(1.0);
107     __m256           two     = _mm256_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121
122     vftab            = kernel_data->table_elec->data;
123     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
124
125     /* Setup water-specific parameters */
126     inr              = nlist->iinr[0];
127     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
128     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
129     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137     j_coord_offsetE = 0;
138     j_coord_offsetF = 0;
139     j_coord_offsetG = 0;
140     j_coord_offsetH = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     for(iidx=0;iidx<4*DIM;iidx++)
146     {
147         scratch[iidx] = 0.0;
148     }
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
166                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
167
168         fix1             = _mm256_setzero_ps();
169         fiy1             = _mm256_setzero_ps();
170         fiz1             = _mm256_setzero_ps();
171         fix2             = _mm256_setzero_ps();
172         fiy2             = _mm256_setzero_ps();
173         fiz2             = _mm256_setzero_ps();
174         fix3             = _mm256_setzero_ps();
175         fiy3             = _mm256_setzero_ps();
176         fiz3             = _mm256_setzero_ps();
177
178         /* Reset potential sums */
179         velecsum         = _mm256_setzero_ps();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             jnrC             = jjnr[jidx+2];
189             jnrD             = jjnr[jidx+3];
190             jnrE             = jjnr[jidx+4];
191             jnrF             = jjnr[jidx+5];
192             jnrG             = jjnr[jidx+6];
193             jnrH             = jjnr[jidx+7];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198             j_coord_offsetE  = DIM*jnrE;
199             j_coord_offsetF  = DIM*jnrF;
200             j_coord_offsetG  = DIM*jnrG;
201             j_coord_offsetH  = DIM*jnrH;
202
203             /* load j atom coordinates */
204             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
205                                                  x+j_coord_offsetC,x+j_coord_offsetD,
206                                                  x+j_coord_offsetE,x+j_coord_offsetF,
207                                                  x+j_coord_offsetG,x+j_coord_offsetH,
208                                                  &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx10             = _mm256_sub_ps(ix1,jx0);
212             dy10             = _mm256_sub_ps(iy1,jy0);
213             dz10             = _mm256_sub_ps(iz1,jz0);
214             dx20             = _mm256_sub_ps(ix2,jx0);
215             dy20             = _mm256_sub_ps(iy2,jy0);
216             dz20             = _mm256_sub_ps(iz2,jz0);
217             dx30             = _mm256_sub_ps(ix3,jx0);
218             dy30             = _mm256_sub_ps(iy3,jy0);
219             dz30             = _mm256_sub_ps(iz3,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
223             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
224             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
225
226             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
227             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
228             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
229
230             /* Load parameters for j particles */
231             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
232                                                                  charge+jnrC+0,charge+jnrD+0,
233                                                                  charge+jnrE+0,charge+jnrF+0,
234                                                                  charge+jnrG+0,charge+jnrH+0);
235
236             fjx0             = _mm256_setzero_ps();
237             fjy0             = _mm256_setzero_ps();
238             fjz0             = _mm256_setzero_ps();
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             r10              = _mm256_mul_ps(rsq10,rinv10);
245
246             /* Compute parameters for interactions between i and j atoms */
247             qq10             = _mm256_mul_ps(iq1,jq0);
248
249             /* Calculate table index by multiplying r with table scale and truncate to integer */
250             rt               = _mm256_mul_ps(r10,vftabscale);
251             vfitab           = _mm256_cvttps_epi32(rt);
252             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
253             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
254             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
255             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
256             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
257             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
258
259             /* CUBIC SPLINE TABLE ELECTROSTATICS */
260             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
261                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
262             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
263                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
264             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
265                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
266             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
267                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
268             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
269             Heps             = _mm256_mul_ps(vfeps,H);
270             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
271             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
272             velec            = _mm256_mul_ps(qq10,VV);
273             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
274             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             velecsum         = _mm256_add_ps(velecsum,velec);
278
279             fscal            = felec;
280
281             /* Calculate temporary vectorial force */
282             tx               = _mm256_mul_ps(fscal,dx10);
283             ty               = _mm256_mul_ps(fscal,dy10);
284             tz               = _mm256_mul_ps(fscal,dz10);
285
286             /* Update vectorial force */
287             fix1             = _mm256_add_ps(fix1,tx);
288             fiy1             = _mm256_add_ps(fiy1,ty);
289             fiz1             = _mm256_add_ps(fiz1,tz);
290
291             fjx0             = _mm256_add_ps(fjx0,tx);
292             fjy0             = _mm256_add_ps(fjy0,ty);
293             fjz0             = _mm256_add_ps(fjz0,tz);
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             r20              = _mm256_mul_ps(rsq20,rinv20);
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq20             = _mm256_mul_ps(iq2,jq0);
303
304             /* Calculate table index by multiplying r with table scale and truncate to integer */
305             rt               = _mm256_mul_ps(r20,vftabscale);
306             vfitab           = _mm256_cvttps_epi32(rt);
307             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
308             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
309             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
310             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
311             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
312             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
313
314             /* CUBIC SPLINE TABLE ELECTROSTATICS */
315             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
316                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
317             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
318                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
319             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
320                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
321             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
322                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
323             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
324             Heps             = _mm256_mul_ps(vfeps,H);
325             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
326             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
327             velec            = _mm256_mul_ps(qq20,VV);
328             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
329             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
330
331             /* Update potential sum for this i atom from the interaction with this j atom. */
332             velecsum         = _mm256_add_ps(velecsum,velec);
333
334             fscal            = felec;
335
336             /* Calculate temporary vectorial force */
337             tx               = _mm256_mul_ps(fscal,dx20);
338             ty               = _mm256_mul_ps(fscal,dy20);
339             tz               = _mm256_mul_ps(fscal,dz20);
340
341             /* Update vectorial force */
342             fix2             = _mm256_add_ps(fix2,tx);
343             fiy2             = _mm256_add_ps(fiy2,ty);
344             fiz2             = _mm256_add_ps(fiz2,tz);
345
346             fjx0             = _mm256_add_ps(fjx0,tx);
347             fjy0             = _mm256_add_ps(fjy0,ty);
348             fjz0             = _mm256_add_ps(fjz0,tz);
349
350             /**************************
351              * CALCULATE INTERACTIONS *
352              **************************/
353
354             r30              = _mm256_mul_ps(rsq30,rinv30);
355
356             /* Compute parameters for interactions between i and j atoms */
357             qq30             = _mm256_mul_ps(iq3,jq0);
358
359             /* Calculate table index by multiplying r with table scale and truncate to integer */
360             rt               = _mm256_mul_ps(r30,vftabscale);
361             vfitab           = _mm256_cvttps_epi32(rt);
362             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
363             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
364             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
365             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
366             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
367             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
368
369             /* CUBIC SPLINE TABLE ELECTROSTATICS */
370             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
371                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
372             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
373                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
374             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
375                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
376             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
377                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
378             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
379             Heps             = _mm256_mul_ps(vfeps,H);
380             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
381             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
382             velec            = _mm256_mul_ps(qq30,VV);
383             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
384             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
385
386             /* Update potential sum for this i atom from the interaction with this j atom. */
387             velecsum         = _mm256_add_ps(velecsum,velec);
388
389             fscal            = felec;
390
391             /* Calculate temporary vectorial force */
392             tx               = _mm256_mul_ps(fscal,dx30);
393             ty               = _mm256_mul_ps(fscal,dy30);
394             tz               = _mm256_mul_ps(fscal,dz30);
395
396             /* Update vectorial force */
397             fix3             = _mm256_add_ps(fix3,tx);
398             fiy3             = _mm256_add_ps(fiy3,ty);
399             fiz3             = _mm256_add_ps(fiz3,tz);
400
401             fjx0             = _mm256_add_ps(fjx0,tx);
402             fjy0             = _mm256_add_ps(fjy0,ty);
403             fjz0             = _mm256_add_ps(fjz0,tz);
404
405             fjptrA             = f+j_coord_offsetA;
406             fjptrB             = f+j_coord_offsetB;
407             fjptrC             = f+j_coord_offsetC;
408             fjptrD             = f+j_coord_offsetD;
409             fjptrE             = f+j_coord_offsetE;
410             fjptrF             = f+j_coord_offsetF;
411             fjptrG             = f+j_coord_offsetG;
412             fjptrH             = f+j_coord_offsetH;
413
414             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
415
416             /* Inner loop uses 132 flops */
417         }
418
419         if(jidx<j_index_end)
420         {
421
422             /* Get j neighbor index, and coordinate index */
423             jnrlistA         = jjnr[jidx];
424             jnrlistB         = jjnr[jidx+1];
425             jnrlistC         = jjnr[jidx+2];
426             jnrlistD         = jjnr[jidx+3];
427             jnrlistE         = jjnr[jidx+4];
428             jnrlistF         = jjnr[jidx+5];
429             jnrlistG         = jjnr[jidx+6];
430             jnrlistH         = jjnr[jidx+7];
431             /* Sign of each element will be negative for non-real atoms.
432              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
433              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
434              */
435             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
436                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
437                                             
438             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
439             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
440             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
441             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
442             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
443             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
444             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
445             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
446             j_coord_offsetA  = DIM*jnrA;
447             j_coord_offsetB  = DIM*jnrB;
448             j_coord_offsetC  = DIM*jnrC;
449             j_coord_offsetD  = DIM*jnrD;
450             j_coord_offsetE  = DIM*jnrE;
451             j_coord_offsetF  = DIM*jnrF;
452             j_coord_offsetG  = DIM*jnrG;
453             j_coord_offsetH  = DIM*jnrH;
454
455             /* load j atom coordinates */
456             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
457                                                  x+j_coord_offsetC,x+j_coord_offsetD,
458                                                  x+j_coord_offsetE,x+j_coord_offsetF,
459                                                  x+j_coord_offsetG,x+j_coord_offsetH,
460                                                  &jx0,&jy0,&jz0);
461
462             /* Calculate displacement vector */
463             dx10             = _mm256_sub_ps(ix1,jx0);
464             dy10             = _mm256_sub_ps(iy1,jy0);
465             dz10             = _mm256_sub_ps(iz1,jz0);
466             dx20             = _mm256_sub_ps(ix2,jx0);
467             dy20             = _mm256_sub_ps(iy2,jy0);
468             dz20             = _mm256_sub_ps(iz2,jz0);
469             dx30             = _mm256_sub_ps(ix3,jx0);
470             dy30             = _mm256_sub_ps(iy3,jy0);
471             dz30             = _mm256_sub_ps(iz3,jz0);
472
473             /* Calculate squared distance and things based on it */
474             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
475             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
476             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
477
478             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
479             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
480             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
481
482             /* Load parameters for j particles */
483             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
484                                                                  charge+jnrC+0,charge+jnrD+0,
485                                                                  charge+jnrE+0,charge+jnrF+0,
486                                                                  charge+jnrG+0,charge+jnrH+0);
487
488             fjx0             = _mm256_setzero_ps();
489             fjy0             = _mm256_setzero_ps();
490             fjz0             = _mm256_setzero_ps();
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             r10              = _mm256_mul_ps(rsq10,rinv10);
497             r10              = _mm256_andnot_ps(dummy_mask,r10);
498
499             /* Compute parameters for interactions between i and j atoms */
500             qq10             = _mm256_mul_ps(iq1,jq0);
501
502             /* Calculate table index by multiplying r with table scale and truncate to integer */
503             rt               = _mm256_mul_ps(r10,vftabscale);
504             vfitab           = _mm256_cvttps_epi32(rt);
505             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
506             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
507             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
508             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
509             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
510             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
511
512             /* CUBIC SPLINE TABLE ELECTROSTATICS */
513             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
514                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
515             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
516                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
517             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
518                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
519             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
520                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
521             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
522             Heps             = _mm256_mul_ps(vfeps,H);
523             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
524             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
525             velec            = _mm256_mul_ps(qq10,VV);
526             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
527             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
528
529             /* Update potential sum for this i atom from the interaction with this j atom. */
530             velec            = _mm256_andnot_ps(dummy_mask,velec);
531             velecsum         = _mm256_add_ps(velecsum,velec);
532
533             fscal            = felec;
534
535             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
536
537             /* Calculate temporary vectorial force */
538             tx               = _mm256_mul_ps(fscal,dx10);
539             ty               = _mm256_mul_ps(fscal,dy10);
540             tz               = _mm256_mul_ps(fscal,dz10);
541
542             /* Update vectorial force */
543             fix1             = _mm256_add_ps(fix1,tx);
544             fiy1             = _mm256_add_ps(fiy1,ty);
545             fiz1             = _mm256_add_ps(fiz1,tz);
546
547             fjx0             = _mm256_add_ps(fjx0,tx);
548             fjy0             = _mm256_add_ps(fjy0,ty);
549             fjz0             = _mm256_add_ps(fjz0,tz);
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             r20              = _mm256_mul_ps(rsq20,rinv20);
556             r20              = _mm256_andnot_ps(dummy_mask,r20);
557
558             /* Compute parameters for interactions between i and j atoms */
559             qq20             = _mm256_mul_ps(iq2,jq0);
560
561             /* Calculate table index by multiplying r with table scale and truncate to integer */
562             rt               = _mm256_mul_ps(r20,vftabscale);
563             vfitab           = _mm256_cvttps_epi32(rt);
564             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
565             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
566             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
567             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
568             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
569             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
570
571             /* CUBIC SPLINE TABLE ELECTROSTATICS */
572             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
573                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
574             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
575                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
576             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
577                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
578             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
579                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
580             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
581             Heps             = _mm256_mul_ps(vfeps,H);
582             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
583             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
584             velec            = _mm256_mul_ps(qq20,VV);
585             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
586             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
587
588             /* Update potential sum for this i atom from the interaction with this j atom. */
589             velec            = _mm256_andnot_ps(dummy_mask,velec);
590             velecsum         = _mm256_add_ps(velecsum,velec);
591
592             fscal            = felec;
593
594             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
595
596             /* Calculate temporary vectorial force */
597             tx               = _mm256_mul_ps(fscal,dx20);
598             ty               = _mm256_mul_ps(fscal,dy20);
599             tz               = _mm256_mul_ps(fscal,dz20);
600
601             /* Update vectorial force */
602             fix2             = _mm256_add_ps(fix2,tx);
603             fiy2             = _mm256_add_ps(fiy2,ty);
604             fiz2             = _mm256_add_ps(fiz2,tz);
605
606             fjx0             = _mm256_add_ps(fjx0,tx);
607             fjy0             = _mm256_add_ps(fjy0,ty);
608             fjz0             = _mm256_add_ps(fjz0,tz);
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             r30              = _mm256_mul_ps(rsq30,rinv30);
615             r30              = _mm256_andnot_ps(dummy_mask,r30);
616
617             /* Compute parameters for interactions between i and j atoms */
618             qq30             = _mm256_mul_ps(iq3,jq0);
619
620             /* Calculate table index by multiplying r with table scale and truncate to integer */
621             rt               = _mm256_mul_ps(r30,vftabscale);
622             vfitab           = _mm256_cvttps_epi32(rt);
623             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
624             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
625             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
626             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
627             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
628             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
629
630             /* CUBIC SPLINE TABLE ELECTROSTATICS */
631             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
632                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
633             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
634                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
635             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
636                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
637             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
638                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
639             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
640             Heps             = _mm256_mul_ps(vfeps,H);
641             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
642             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
643             velec            = _mm256_mul_ps(qq30,VV);
644             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
645             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
646
647             /* Update potential sum for this i atom from the interaction with this j atom. */
648             velec            = _mm256_andnot_ps(dummy_mask,velec);
649             velecsum         = _mm256_add_ps(velecsum,velec);
650
651             fscal            = felec;
652
653             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
654
655             /* Calculate temporary vectorial force */
656             tx               = _mm256_mul_ps(fscal,dx30);
657             ty               = _mm256_mul_ps(fscal,dy30);
658             tz               = _mm256_mul_ps(fscal,dz30);
659
660             /* Update vectorial force */
661             fix3             = _mm256_add_ps(fix3,tx);
662             fiy3             = _mm256_add_ps(fiy3,ty);
663             fiz3             = _mm256_add_ps(fiz3,tz);
664
665             fjx0             = _mm256_add_ps(fjx0,tx);
666             fjy0             = _mm256_add_ps(fjy0,ty);
667             fjz0             = _mm256_add_ps(fjz0,tz);
668
669             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
670             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
671             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
672             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
673             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
674             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
675             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
676             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
677
678             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
679
680             /* Inner loop uses 135 flops */
681         }
682
683         /* End of innermost loop */
684
685         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
686                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
687
688         ggid                        = gid[iidx];
689         /* Update potential energies */
690         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
691
692         /* Increment number of inner iterations */
693         inneriter                  += j_index_end - j_index_start;
694
695         /* Outer loop uses 19 flops */
696     }
697
698     /* Increment number of outer iterations */
699     outeriter        += nri;
700
701     /* Update outer/inner flops */
702
703     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*135);
704 }
705 /*
706  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_avx_256_single
707  * Electrostatics interaction: CubicSplineTable
708  * VdW interaction:            None
709  * Geometry:                   Water4-Particle
710  * Calculate force/pot:        Force
711  */
712 void
713 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_avx_256_single
714                     (t_nblist                    * gmx_restrict       nlist,
715                      rvec                        * gmx_restrict          xx,
716                      rvec                        * gmx_restrict          ff,
717                      t_forcerec                  * gmx_restrict          fr,
718                      t_mdatoms                   * gmx_restrict     mdatoms,
719                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
720                      t_nrnb                      * gmx_restrict        nrnb)
721 {
722     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
723      * just 0 for non-waters.
724      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
725      * jnr indices corresponding to data put in the four positions in the SIMD register.
726      */
727     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
728     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
729     int              jnrA,jnrB,jnrC,jnrD;
730     int              jnrE,jnrF,jnrG,jnrH;
731     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
732     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
733     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
734     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
735     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
736     real             rcutoff_scalar;
737     real             *shiftvec,*fshift,*x,*f;
738     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
739     real             scratch[4*DIM];
740     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
741     real *           vdwioffsetptr1;
742     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
743     real *           vdwioffsetptr2;
744     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
745     real *           vdwioffsetptr3;
746     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
747     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
748     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
749     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
750     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
751     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
752     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
753     real             *charge;
754     __m256i          vfitab;
755     __m128i          vfitab_lo,vfitab_hi;
756     __m128i          ifour       = _mm_set1_epi32(4);
757     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
758     real             *vftab;
759     __m256           dummy_mask,cutoff_mask;
760     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
761     __m256           one     = _mm256_set1_ps(1.0);
762     __m256           two     = _mm256_set1_ps(2.0);
763     x                = xx[0];
764     f                = ff[0];
765
766     nri              = nlist->nri;
767     iinr             = nlist->iinr;
768     jindex           = nlist->jindex;
769     jjnr             = nlist->jjnr;
770     shiftidx         = nlist->shift;
771     gid              = nlist->gid;
772     shiftvec         = fr->shift_vec[0];
773     fshift           = fr->fshift[0];
774     facel            = _mm256_set1_ps(fr->epsfac);
775     charge           = mdatoms->chargeA;
776
777     vftab            = kernel_data->table_elec->data;
778     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
779
780     /* Setup water-specific parameters */
781     inr              = nlist->iinr[0];
782     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
783     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
784     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
785
786     /* Avoid stupid compiler warnings */
787     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
788     j_coord_offsetA = 0;
789     j_coord_offsetB = 0;
790     j_coord_offsetC = 0;
791     j_coord_offsetD = 0;
792     j_coord_offsetE = 0;
793     j_coord_offsetF = 0;
794     j_coord_offsetG = 0;
795     j_coord_offsetH = 0;
796
797     outeriter        = 0;
798     inneriter        = 0;
799
800     for(iidx=0;iidx<4*DIM;iidx++)
801     {
802         scratch[iidx] = 0.0;
803     }
804
805     /* Start outer loop over neighborlists */
806     for(iidx=0; iidx<nri; iidx++)
807     {
808         /* Load shift vector for this list */
809         i_shift_offset   = DIM*shiftidx[iidx];
810
811         /* Load limits for loop over neighbors */
812         j_index_start    = jindex[iidx];
813         j_index_end      = jindex[iidx+1];
814
815         /* Get outer coordinate index */
816         inr              = iinr[iidx];
817         i_coord_offset   = DIM*inr;
818
819         /* Load i particle coords and add shift vector */
820         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
821                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
822
823         fix1             = _mm256_setzero_ps();
824         fiy1             = _mm256_setzero_ps();
825         fiz1             = _mm256_setzero_ps();
826         fix2             = _mm256_setzero_ps();
827         fiy2             = _mm256_setzero_ps();
828         fiz2             = _mm256_setzero_ps();
829         fix3             = _mm256_setzero_ps();
830         fiy3             = _mm256_setzero_ps();
831         fiz3             = _mm256_setzero_ps();
832
833         /* Start inner kernel loop */
834         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
835         {
836
837             /* Get j neighbor index, and coordinate index */
838             jnrA             = jjnr[jidx];
839             jnrB             = jjnr[jidx+1];
840             jnrC             = jjnr[jidx+2];
841             jnrD             = jjnr[jidx+3];
842             jnrE             = jjnr[jidx+4];
843             jnrF             = jjnr[jidx+5];
844             jnrG             = jjnr[jidx+6];
845             jnrH             = jjnr[jidx+7];
846             j_coord_offsetA  = DIM*jnrA;
847             j_coord_offsetB  = DIM*jnrB;
848             j_coord_offsetC  = DIM*jnrC;
849             j_coord_offsetD  = DIM*jnrD;
850             j_coord_offsetE  = DIM*jnrE;
851             j_coord_offsetF  = DIM*jnrF;
852             j_coord_offsetG  = DIM*jnrG;
853             j_coord_offsetH  = DIM*jnrH;
854
855             /* load j atom coordinates */
856             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
857                                                  x+j_coord_offsetC,x+j_coord_offsetD,
858                                                  x+j_coord_offsetE,x+j_coord_offsetF,
859                                                  x+j_coord_offsetG,x+j_coord_offsetH,
860                                                  &jx0,&jy0,&jz0);
861
862             /* Calculate displacement vector */
863             dx10             = _mm256_sub_ps(ix1,jx0);
864             dy10             = _mm256_sub_ps(iy1,jy0);
865             dz10             = _mm256_sub_ps(iz1,jz0);
866             dx20             = _mm256_sub_ps(ix2,jx0);
867             dy20             = _mm256_sub_ps(iy2,jy0);
868             dz20             = _mm256_sub_ps(iz2,jz0);
869             dx30             = _mm256_sub_ps(ix3,jx0);
870             dy30             = _mm256_sub_ps(iy3,jy0);
871             dz30             = _mm256_sub_ps(iz3,jz0);
872
873             /* Calculate squared distance and things based on it */
874             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
875             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
876             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
877
878             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
879             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
880             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
881
882             /* Load parameters for j particles */
883             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
884                                                                  charge+jnrC+0,charge+jnrD+0,
885                                                                  charge+jnrE+0,charge+jnrF+0,
886                                                                  charge+jnrG+0,charge+jnrH+0);
887
888             fjx0             = _mm256_setzero_ps();
889             fjy0             = _mm256_setzero_ps();
890             fjz0             = _mm256_setzero_ps();
891
892             /**************************
893              * CALCULATE INTERACTIONS *
894              **************************/
895
896             r10              = _mm256_mul_ps(rsq10,rinv10);
897
898             /* Compute parameters for interactions between i and j atoms */
899             qq10             = _mm256_mul_ps(iq1,jq0);
900
901             /* Calculate table index by multiplying r with table scale and truncate to integer */
902             rt               = _mm256_mul_ps(r10,vftabscale);
903             vfitab           = _mm256_cvttps_epi32(rt);
904             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
905             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
906             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
907             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
908             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
909             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
910
911             /* CUBIC SPLINE TABLE ELECTROSTATICS */
912             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
913                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
914             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
915                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
916             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
917                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
918             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
919                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
920             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
921             Heps             = _mm256_mul_ps(vfeps,H);
922             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
923             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
924             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
925
926             fscal            = felec;
927
928             /* Calculate temporary vectorial force */
929             tx               = _mm256_mul_ps(fscal,dx10);
930             ty               = _mm256_mul_ps(fscal,dy10);
931             tz               = _mm256_mul_ps(fscal,dz10);
932
933             /* Update vectorial force */
934             fix1             = _mm256_add_ps(fix1,tx);
935             fiy1             = _mm256_add_ps(fiy1,ty);
936             fiz1             = _mm256_add_ps(fiz1,tz);
937
938             fjx0             = _mm256_add_ps(fjx0,tx);
939             fjy0             = _mm256_add_ps(fjy0,ty);
940             fjz0             = _mm256_add_ps(fjz0,tz);
941
942             /**************************
943              * CALCULATE INTERACTIONS *
944              **************************/
945
946             r20              = _mm256_mul_ps(rsq20,rinv20);
947
948             /* Compute parameters for interactions between i and j atoms */
949             qq20             = _mm256_mul_ps(iq2,jq0);
950
951             /* Calculate table index by multiplying r with table scale and truncate to integer */
952             rt               = _mm256_mul_ps(r20,vftabscale);
953             vfitab           = _mm256_cvttps_epi32(rt);
954             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
955             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
956             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
957             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
958             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
959             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
960
961             /* CUBIC SPLINE TABLE ELECTROSTATICS */
962             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
963                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
964             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
965                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
966             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
967                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
968             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
969                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
970             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
971             Heps             = _mm256_mul_ps(vfeps,H);
972             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
973             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
974             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
975
976             fscal            = felec;
977
978             /* Calculate temporary vectorial force */
979             tx               = _mm256_mul_ps(fscal,dx20);
980             ty               = _mm256_mul_ps(fscal,dy20);
981             tz               = _mm256_mul_ps(fscal,dz20);
982
983             /* Update vectorial force */
984             fix2             = _mm256_add_ps(fix2,tx);
985             fiy2             = _mm256_add_ps(fiy2,ty);
986             fiz2             = _mm256_add_ps(fiz2,tz);
987
988             fjx0             = _mm256_add_ps(fjx0,tx);
989             fjy0             = _mm256_add_ps(fjy0,ty);
990             fjz0             = _mm256_add_ps(fjz0,tz);
991
992             /**************************
993              * CALCULATE INTERACTIONS *
994              **************************/
995
996             r30              = _mm256_mul_ps(rsq30,rinv30);
997
998             /* Compute parameters for interactions between i and j atoms */
999             qq30             = _mm256_mul_ps(iq3,jq0);
1000
1001             /* Calculate table index by multiplying r with table scale and truncate to integer */
1002             rt               = _mm256_mul_ps(r30,vftabscale);
1003             vfitab           = _mm256_cvttps_epi32(rt);
1004             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1005             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1006             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1007             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1008             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1009             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1010
1011             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1012             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1013                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1014             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1015                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1016             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1017                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1018             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1019                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1020             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1021             Heps             = _mm256_mul_ps(vfeps,H);
1022             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1023             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1024             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
1025
1026             fscal            = felec;
1027
1028             /* Calculate temporary vectorial force */
1029             tx               = _mm256_mul_ps(fscal,dx30);
1030             ty               = _mm256_mul_ps(fscal,dy30);
1031             tz               = _mm256_mul_ps(fscal,dz30);
1032
1033             /* Update vectorial force */
1034             fix3             = _mm256_add_ps(fix3,tx);
1035             fiy3             = _mm256_add_ps(fiy3,ty);
1036             fiz3             = _mm256_add_ps(fiz3,tz);
1037
1038             fjx0             = _mm256_add_ps(fjx0,tx);
1039             fjy0             = _mm256_add_ps(fjy0,ty);
1040             fjz0             = _mm256_add_ps(fjz0,tz);
1041
1042             fjptrA             = f+j_coord_offsetA;
1043             fjptrB             = f+j_coord_offsetB;
1044             fjptrC             = f+j_coord_offsetC;
1045             fjptrD             = f+j_coord_offsetD;
1046             fjptrE             = f+j_coord_offsetE;
1047             fjptrF             = f+j_coord_offsetF;
1048             fjptrG             = f+j_coord_offsetG;
1049             fjptrH             = f+j_coord_offsetH;
1050
1051             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1052
1053             /* Inner loop uses 120 flops */
1054         }
1055
1056         if(jidx<j_index_end)
1057         {
1058
1059             /* Get j neighbor index, and coordinate index */
1060             jnrlistA         = jjnr[jidx];
1061             jnrlistB         = jjnr[jidx+1];
1062             jnrlistC         = jjnr[jidx+2];
1063             jnrlistD         = jjnr[jidx+3];
1064             jnrlistE         = jjnr[jidx+4];
1065             jnrlistF         = jjnr[jidx+5];
1066             jnrlistG         = jjnr[jidx+6];
1067             jnrlistH         = jjnr[jidx+7];
1068             /* Sign of each element will be negative for non-real atoms.
1069              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1070              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1071              */
1072             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1073                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1074                                             
1075             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1076             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1077             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1078             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1079             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1080             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1081             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1082             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1083             j_coord_offsetA  = DIM*jnrA;
1084             j_coord_offsetB  = DIM*jnrB;
1085             j_coord_offsetC  = DIM*jnrC;
1086             j_coord_offsetD  = DIM*jnrD;
1087             j_coord_offsetE  = DIM*jnrE;
1088             j_coord_offsetF  = DIM*jnrF;
1089             j_coord_offsetG  = DIM*jnrG;
1090             j_coord_offsetH  = DIM*jnrH;
1091
1092             /* load j atom coordinates */
1093             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1094                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1095                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1096                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1097                                                  &jx0,&jy0,&jz0);
1098
1099             /* Calculate displacement vector */
1100             dx10             = _mm256_sub_ps(ix1,jx0);
1101             dy10             = _mm256_sub_ps(iy1,jy0);
1102             dz10             = _mm256_sub_ps(iz1,jz0);
1103             dx20             = _mm256_sub_ps(ix2,jx0);
1104             dy20             = _mm256_sub_ps(iy2,jy0);
1105             dz20             = _mm256_sub_ps(iz2,jz0);
1106             dx30             = _mm256_sub_ps(ix3,jx0);
1107             dy30             = _mm256_sub_ps(iy3,jy0);
1108             dz30             = _mm256_sub_ps(iz3,jz0);
1109
1110             /* Calculate squared distance and things based on it */
1111             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1112             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1113             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1114
1115             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1116             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1117             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1118
1119             /* Load parameters for j particles */
1120             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1121                                                                  charge+jnrC+0,charge+jnrD+0,
1122                                                                  charge+jnrE+0,charge+jnrF+0,
1123                                                                  charge+jnrG+0,charge+jnrH+0);
1124
1125             fjx0             = _mm256_setzero_ps();
1126             fjy0             = _mm256_setzero_ps();
1127             fjz0             = _mm256_setzero_ps();
1128
1129             /**************************
1130              * CALCULATE INTERACTIONS *
1131              **************************/
1132
1133             r10              = _mm256_mul_ps(rsq10,rinv10);
1134             r10              = _mm256_andnot_ps(dummy_mask,r10);
1135
1136             /* Compute parameters for interactions between i and j atoms */
1137             qq10             = _mm256_mul_ps(iq1,jq0);
1138
1139             /* Calculate table index by multiplying r with table scale and truncate to integer */
1140             rt               = _mm256_mul_ps(r10,vftabscale);
1141             vfitab           = _mm256_cvttps_epi32(rt);
1142             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1143             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1144             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1145             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1146             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1147             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1148
1149             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1150             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1151                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1152             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1153                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1154             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1155                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1156             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1157                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1158             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1159             Heps             = _mm256_mul_ps(vfeps,H);
1160             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1161             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1162             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1163
1164             fscal            = felec;
1165
1166             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1167
1168             /* Calculate temporary vectorial force */
1169             tx               = _mm256_mul_ps(fscal,dx10);
1170             ty               = _mm256_mul_ps(fscal,dy10);
1171             tz               = _mm256_mul_ps(fscal,dz10);
1172
1173             /* Update vectorial force */
1174             fix1             = _mm256_add_ps(fix1,tx);
1175             fiy1             = _mm256_add_ps(fiy1,ty);
1176             fiz1             = _mm256_add_ps(fiz1,tz);
1177
1178             fjx0             = _mm256_add_ps(fjx0,tx);
1179             fjy0             = _mm256_add_ps(fjy0,ty);
1180             fjz0             = _mm256_add_ps(fjz0,tz);
1181
1182             /**************************
1183              * CALCULATE INTERACTIONS *
1184              **************************/
1185
1186             r20              = _mm256_mul_ps(rsq20,rinv20);
1187             r20              = _mm256_andnot_ps(dummy_mask,r20);
1188
1189             /* Compute parameters for interactions between i and j atoms */
1190             qq20             = _mm256_mul_ps(iq2,jq0);
1191
1192             /* Calculate table index by multiplying r with table scale and truncate to integer */
1193             rt               = _mm256_mul_ps(r20,vftabscale);
1194             vfitab           = _mm256_cvttps_epi32(rt);
1195             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1196             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1197             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1198             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1199             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1200             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1201
1202             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1203             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1204                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1205             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1206                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1207             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1208                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1209             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1210                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1211             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1212             Heps             = _mm256_mul_ps(vfeps,H);
1213             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1214             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1215             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1216
1217             fscal            = felec;
1218
1219             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1220
1221             /* Calculate temporary vectorial force */
1222             tx               = _mm256_mul_ps(fscal,dx20);
1223             ty               = _mm256_mul_ps(fscal,dy20);
1224             tz               = _mm256_mul_ps(fscal,dz20);
1225
1226             /* Update vectorial force */
1227             fix2             = _mm256_add_ps(fix2,tx);
1228             fiy2             = _mm256_add_ps(fiy2,ty);
1229             fiz2             = _mm256_add_ps(fiz2,tz);
1230
1231             fjx0             = _mm256_add_ps(fjx0,tx);
1232             fjy0             = _mm256_add_ps(fjy0,ty);
1233             fjz0             = _mm256_add_ps(fjz0,tz);
1234
1235             /**************************
1236              * CALCULATE INTERACTIONS *
1237              **************************/
1238
1239             r30              = _mm256_mul_ps(rsq30,rinv30);
1240             r30              = _mm256_andnot_ps(dummy_mask,r30);
1241
1242             /* Compute parameters for interactions between i and j atoms */
1243             qq30             = _mm256_mul_ps(iq3,jq0);
1244
1245             /* Calculate table index by multiplying r with table scale and truncate to integer */
1246             rt               = _mm256_mul_ps(r30,vftabscale);
1247             vfitab           = _mm256_cvttps_epi32(rt);
1248             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1249             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1250             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1251             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1252             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1253             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1254
1255             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1256             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1257                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1258             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1259                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1260             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1261                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1262             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1263                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1264             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1265             Heps             = _mm256_mul_ps(vfeps,H);
1266             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1267             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1268             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
1269
1270             fscal            = felec;
1271
1272             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1273
1274             /* Calculate temporary vectorial force */
1275             tx               = _mm256_mul_ps(fscal,dx30);
1276             ty               = _mm256_mul_ps(fscal,dy30);
1277             tz               = _mm256_mul_ps(fscal,dz30);
1278
1279             /* Update vectorial force */
1280             fix3             = _mm256_add_ps(fix3,tx);
1281             fiy3             = _mm256_add_ps(fiy3,ty);
1282             fiz3             = _mm256_add_ps(fiz3,tz);
1283
1284             fjx0             = _mm256_add_ps(fjx0,tx);
1285             fjy0             = _mm256_add_ps(fjy0,ty);
1286             fjz0             = _mm256_add_ps(fjz0,tz);
1287
1288             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1289             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1290             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1291             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1292             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1293             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1294             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1295             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1296
1297             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1298
1299             /* Inner loop uses 123 flops */
1300         }
1301
1302         /* End of innermost loop */
1303
1304         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1305                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1306
1307         /* Increment number of inner iterations */
1308         inneriter                  += j_index_end - j_index_start;
1309
1310         /* Outer loop uses 18 flops */
1311     }
1312
1313     /* Increment number of outer iterations */
1314     outeriter        += nri;
1315
1316     /* Update outer/inner flops */
1317
1318     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*123);
1319 }