Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwNone_GeomW4P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_avx_256_single
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr1;
73     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     real *           vdwioffsetptr3;
77     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
79     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     __m256i          vfitab;
86     __m128i          vfitab_lo,vfitab_hi;
87     __m128i          ifour       = _mm_set1_epi32(4);
88     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
89     real             *vftab;
90     __m256           dummy_mask,cutoff_mask;
91     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
92     __m256           one     = _mm256_set1_ps(1.0);
93     __m256           two     = _mm256_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm256_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107
108     vftab            = kernel_data->table_elec->data;
109     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
110
111     /* Setup water-specific parameters */
112     inr              = nlist->iinr[0];
113     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
114     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
115     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121     j_coord_offsetC = 0;
122     j_coord_offsetD = 0;
123     j_coord_offsetE = 0;
124     j_coord_offsetF = 0;
125     j_coord_offsetG = 0;
126     j_coord_offsetH = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     for(iidx=0;iidx<4*DIM;iidx++)
132     {
133         scratch[iidx] = 0.0;
134     }
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
152                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
153
154         fix1             = _mm256_setzero_ps();
155         fiy1             = _mm256_setzero_ps();
156         fiz1             = _mm256_setzero_ps();
157         fix2             = _mm256_setzero_ps();
158         fiy2             = _mm256_setzero_ps();
159         fiz2             = _mm256_setzero_ps();
160         fix3             = _mm256_setzero_ps();
161         fiy3             = _mm256_setzero_ps();
162         fiz3             = _mm256_setzero_ps();
163
164         /* Reset potential sums */
165         velecsum         = _mm256_setzero_ps();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             jnrC             = jjnr[jidx+2];
175             jnrD             = jjnr[jidx+3];
176             jnrE             = jjnr[jidx+4];
177             jnrF             = jjnr[jidx+5];
178             jnrG             = jjnr[jidx+6];
179             jnrH             = jjnr[jidx+7];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182             j_coord_offsetC  = DIM*jnrC;
183             j_coord_offsetD  = DIM*jnrD;
184             j_coord_offsetE  = DIM*jnrE;
185             j_coord_offsetF  = DIM*jnrF;
186             j_coord_offsetG  = DIM*jnrG;
187             j_coord_offsetH  = DIM*jnrH;
188
189             /* load j atom coordinates */
190             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
191                                                  x+j_coord_offsetC,x+j_coord_offsetD,
192                                                  x+j_coord_offsetE,x+j_coord_offsetF,
193                                                  x+j_coord_offsetG,x+j_coord_offsetH,
194                                                  &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx10             = _mm256_sub_ps(ix1,jx0);
198             dy10             = _mm256_sub_ps(iy1,jy0);
199             dz10             = _mm256_sub_ps(iz1,jz0);
200             dx20             = _mm256_sub_ps(ix2,jx0);
201             dy20             = _mm256_sub_ps(iy2,jy0);
202             dz20             = _mm256_sub_ps(iz2,jz0);
203             dx30             = _mm256_sub_ps(ix3,jx0);
204             dy30             = _mm256_sub_ps(iy3,jy0);
205             dz30             = _mm256_sub_ps(iz3,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
209             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
210             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
211
212             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
213             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
214             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
215
216             /* Load parameters for j particles */
217             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
218                                                                  charge+jnrC+0,charge+jnrD+0,
219                                                                  charge+jnrE+0,charge+jnrF+0,
220                                                                  charge+jnrG+0,charge+jnrH+0);
221
222             fjx0             = _mm256_setzero_ps();
223             fjy0             = _mm256_setzero_ps();
224             fjz0             = _mm256_setzero_ps();
225
226             /**************************
227              * CALCULATE INTERACTIONS *
228              **************************/
229
230             r10              = _mm256_mul_ps(rsq10,rinv10);
231
232             /* Compute parameters for interactions between i and j atoms */
233             qq10             = _mm256_mul_ps(iq1,jq0);
234
235             /* Calculate table index by multiplying r with table scale and truncate to integer */
236             rt               = _mm256_mul_ps(r10,vftabscale);
237             vfitab           = _mm256_cvttps_epi32(rt);
238             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
239             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
240             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
241             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
242             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
243             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
244
245             /* CUBIC SPLINE TABLE ELECTROSTATICS */
246             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
247                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
248             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
249                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
250             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
251                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
252             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
253                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
254             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
255             Heps             = _mm256_mul_ps(vfeps,H);
256             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
257             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
258             velec            = _mm256_mul_ps(qq10,VV);
259             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
260             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velecsum         = _mm256_add_ps(velecsum,velec);
264
265             fscal            = felec;
266
267             /* Calculate temporary vectorial force */
268             tx               = _mm256_mul_ps(fscal,dx10);
269             ty               = _mm256_mul_ps(fscal,dy10);
270             tz               = _mm256_mul_ps(fscal,dz10);
271
272             /* Update vectorial force */
273             fix1             = _mm256_add_ps(fix1,tx);
274             fiy1             = _mm256_add_ps(fiy1,ty);
275             fiz1             = _mm256_add_ps(fiz1,tz);
276
277             fjx0             = _mm256_add_ps(fjx0,tx);
278             fjy0             = _mm256_add_ps(fjy0,ty);
279             fjz0             = _mm256_add_ps(fjz0,tz);
280
281             /**************************
282              * CALCULATE INTERACTIONS *
283              **************************/
284
285             r20              = _mm256_mul_ps(rsq20,rinv20);
286
287             /* Compute parameters for interactions between i and j atoms */
288             qq20             = _mm256_mul_ps(iq2,jq0);
289
290             /* Calculate table index by multiplying r with table scale and truncate to integer */
291             rt               = _mm256_mul_ps(r20,vftabscale);
292             vfitab           = _mm256_cvttps_epi32(rt);
293             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
294             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
295             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
296             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
297             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
298             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
299
300             /* CUBIC SPLINE TABLE ELECTROSTATICS */
301             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
302                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
303             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
304                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
305             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
306                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
307             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
308                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
309             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
310             Heps             = _mm256_mul_ps(vfeps,H);
311             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
312             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
313             velec            = _mm256_mul_ps(qq20,VV);
314             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
315             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velecsum         = _mm256_add_ps(velecsum,velec);
319
320             fscal            = felec;
321
322             /* Calculate temporary vectorial force */
323             tx               = _mm256_mul_ps(fscal,dx20);
324             ty               = _mm256_mul_ps(fscal,dy20);
325             tz               = _mm256_mul_ps(fscal,dz20);
326
327             /* Update vectorial force */
328             fix2             = _mm256_add_ps(fix2,tx);
329             fiy2             = _mm256_add_ps(fiy2,ty);
330             fiz2             = _mm256_add_ps(fiz2,tz);
331
332             fjx0             = _mm256_add_ps(fjx0,tx);
333             fjy0             = _mm256_add_ps(fjy0,ty);
334             fjz0             = _mm256_add_ps(fjz0,tz);
335
336             /**************************
337              * CALCULATE INTERACTIONS *
338              **************************/
339
340             r30              = _mm256_mul_ps(rsq30,rinv30);
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq30             = _mm256_mul_ps(iq3,jq0);
344
345             /* Calculate table index by multiplying r with table scale and truncate to integer */
346             rt               = _mm256_mul_ps(r30,vftabscale);
347             vfitab           = _mm256_cvttps_epi32(rt);
348             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
349             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
350             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
351             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
352             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
353             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
354
355             /* CUBIC SPLINE TABLE ELECTROSTATICS */
356             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
357                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
358             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
359                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
360             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
361                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
362             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
363                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
364             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
365             Heps             = _mm256_mul_ps(vfeps,H);
366             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
367             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
368             velec            = _mm256_mul_ps(qq30,VV);
369             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
370             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velecsum         = _mm256_add_ps(velecsum,velec);
374
375             fscal            = felec;
376
377             /* Calculate temporary vectorial force */
378             tx               = _mm256_mul_ps(fscal,dx30);
379             ty               = _mm256_mul_ps(fscal,dy30);
380             tz               = _mm256_mul_ps(fscal,dz30);
381
382             /* Update vectorial force */
383             fix3             = _mm256_add_ps(fix3,tx);
384             fiy3             = _mm256_add_ps(fiy3,ty);
385             fiz3             = _mm256_add_ps(fiz3,tz);
386
387             fjx0             = _mm256_add_ps(fjx0,tx);
388             fjy0             = _mm256_add_ps(fjy0,ty);
389             fjz0             = _mm256_add_ps(fjz0,tz);
390
391             fjptrA             = f+j_coord_offsetA;
392             fjptrB             = f+j_coord_offsetB;
393             fjptrC             = f+j_coord_offsetC;
394             fjptrD             = f+j_coord_offsetD;
395             fjptrE             = f+j_coord_offsetE;
396             fjptrF             = f+j_coord_offsetF;
397             fjptrG             = f+j_coord_offsetG;
398             fjptrH             = f+j_coord_offsetH;
399
400             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
401
402             /* Inner loop uses 132 flops */
403         }
404
405         if(jidx<j_index_end)
406         {
407
408             /* Get j neighbor index, and coordinate index */
409             jnrlistA         = jjnr[jidx];
410             jnrlistB         = jjnr[jidx+1];
411             jnrlistC         = jjnr[jidx+2];
412             jnrlistD         = jjnr[jidx+3];
413             jnrlistE         = jjnr[jidx+4];
414             jnrlistF         = jjnr[jidx+5];
415             jnrlistG         = jjnr[jidx+6];
416             jnrlistH         = jjnr[jidx+7];
417             /* Sign of each element will be negative for non-real atoms.
418              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
419              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
420              */
421             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
422                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
423                                             
424             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
425             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
426             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
427             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
428             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
429             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
430             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
431             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
432             j_coord_offsetA  = DIM*jnrA;
433             j_coord_offsetB  = DIM*jnrB;
434             j_coord_offsetC  = DIM*jnrC;
435             j_coord_offsetD  = DIM*jnrD;
436             j_coord_offsetE  = DIM*jnrE;
437             j_coord_offsetF  = DIM*jnrF;
438             j_coord_offsetG  = DIM*jnrG;
439             j_coord_offsetH  = DIM*jnrH;
440
441             /* load j atom coordinates */
442             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
443                                                  x+j_coord_offsetC,x+j_coord_offsetD,
444                                                  x+j_coord_offsetE,x+j_coord_offsetF,
445                                                  x+j_coord_offsetG,x+j_coord_offsetH,
446                                                  &jx0,&jy0,&jz0);
447
448             /* Calculate displacement vector */
449             dx10             = _mm256_sub_ps(ix1,jx0);
450             dy10             = _mm256_sub_ps(iy1,jy0);
451             dz10             = _mm256_sub_ps(iz1,jz0);
452             dx20             = _mm256_sub_ps(ix2,jx0);
453             dy20             = _mm256_sub_ps(iy2,jy0);
454             dz20             = _mm256_sub_ps(iz2,jz0);
455             dx30             = _mm256_sub_ps(ix3,jx0);
456             dy30             = _mm256_sub_ps(iy3,jy0);
457             dz30             = _mm256_sub_ps(iz3,jz0);
458
459             /* Calculate squared distance and things based on it */
460             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
461             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
462             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
463
464             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
465             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
466             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
467
468             /* Load parameters for j particles */
469             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
470                                                                  charge+jnrC+0,charge+jnrD+0,
471                                                                  charge+jnrE+0,charge+jnrF+0,
472                                                                  charge+jnrG+0,charge+jnrH+0);
473
474             fjx0             = _mm256_setzero_ps();
475             fjy0             = _mm256_setzero_ps();
476             fjz0             = _mm256_setzero_ps();
477
478             /**************************
479              * CALCULATE INTERACTIONS *
480              **************************/
481
482             r10              = _mm256_mul_ps(rsq10,rinv10);
483             r10              = _mm256_andnot_ps(dummy_mask,r10);
484
485             /* Compute parameters for interactions between i and j atoms */
486             qq10             = _mm256_mul_ps(iq1,jq0);
487
488             /* Calculate table index by multiplying r with table scale and truncate to integer */
489             rt               = _mm256_mul_ps(r10,vftabscale);
490             vfitab           = _mm256_cvttps_epi32(rt);
491             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
492             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
493             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
494             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
495             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
496             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
497
498             /* CUBIC SPLINE TABLE ELECTROSTATICS */
499             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
500                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
501             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
502                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
503             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
504                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
505             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
506                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
507             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
508             Heps             = _mm256_mul_ps(vfeps,H);
509             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
510             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
511             velec            = _mm256_mul_ps(qq10,VV);
512             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
513             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
514
515             /* Update potential sum for this i atom from the interaction with this j atom. */
516             velec            = _mm256_andnot_ps(dummy_mask,velec);
517             velecsum         = _mm256_add_ps(velecsum,velec);
518
519             fscal            = felec;
520
521             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
522
523             /* Calculate temporary vectorial force */
524             tx               = _mm256_mul_ps(fscal,dx10);
525             ty               = _mm256_mul_ps(fscal,dy10);
526             tz               = _mm256_mul_ps(fscal,dz10);
527
528             /* Update vectorial force */
529             fix1             = _mm256_add_ps(fix1,tx);
530             fiy1             = _mm256_add_ps(fiy1,ty);
531             fiz1             = _mm256_add_ps(fiz1,tz);
532
533             fjx0             = _mm256_add_ps(fjx0,tx);
534             fjy0             = _mm256_add_ps(fjy0,ty);
535             fjz0             = _mm256_add_ps(fjz0,tz);
536
537             /**************************
538              * CALCULATE INTERACTIONS *
539              **************************/
540
541             r20              = _mm256_mul_ps(rsq20,rinv20);
542             r20              = _mm256_andnot_ps(dummy_mask,r20);
543
544             /* Compute parameters for interactions between i and j atoms */
545             qq20             = _mm256_mul_ps(iq2,jq0);
546
547             /* Calculate table index by multiplying r with table scale and truncate to integer */
548             rt               = _mm256_mul_ps(r20,vftabscale);
549             vfitab           = _mm256_cvttps_epi32(rt);
550             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
551             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
552             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
553             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
554             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
555             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
556
557             /* CUBIC SPLINE TABLE ELECTROSTATICS */
558             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
559                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
560             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
561                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
562             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
563                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
564             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
565                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
566             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
567             Heps             = _mm256_mul_ps(vfeps,H);
568             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
569             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
570             velec            = _mm256_mul_ps(qq20,VV);
571             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
572             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
573
574             /* Update potential sum for this i atom from the interaction with this j atom. */
575             velec            = _mm256_andnot_ps(dummy_mask,velec);
576             velecsum         = _mm256_add_ps(velecsum,velec);
577
578             fscal            = felec;
579
580             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm256_mul_ps(fscal,dx20);
584             ty               = _mm256_mul_ps(fscal,dy20);
585             tz               = _mm256_mul_ps(fscal,dz20);
586
587             /* Update vectorial force */
588             fix2             = _mm256_add_ps(fix2,tx);
589             fiy2             = _mm256_add_ps(fiy2,ty);
590             fiz2             = _mm256_add_ps(fiz2,tz);
591
592             fjx0             = _mm256_add_ps(fjx0,tx);
593             fjy0             = _mm256_add_ps(fjy0,ty);
594             fjz0             = _mm256_add_ps(fjz0,tz);
595
596             /**************************
597              * CALCULATE INTERACTIONS *
598              **************************/
599
600             r30              = _mm256_mul_ps(rsq30,rinv30);
601             r30              = _mm256_andnot_ps(dummy_mask,r30);
602
603             /* Compute parameters for interactions between i and j atoms */
604             qq30             = _mm256_mul_ps(iq3,jq0);
605
606             /* Calculate table index by multiplying r with table scale and truncate to integer */
607             rt               = _mm256_mul_ps(r30,vftabscale);
608             vfitab           = _mm256_cvttps_epi32(rt);
609             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
610             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
611             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
612             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
613             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
614             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
615
616             /* CUBIC SPLINE TABLE ELECTROSTATICS */
617             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
618                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
619             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
620                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
621             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
622                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
623             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
624                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
625             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
626             Heps             = _mm256_mul_ps(vfeps,H);
627             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
628             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
629             velec            = _mm256_mul_ps(qq30,VV);
630             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
631             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
632
633             /* Update potential sum for this i atom from the interaction with this j atom. */
634             velec            = _mm256_andnot_ps(dummy_mask,velec);
635             velecsum         = _mm256_add_ps(velecsum,velec);
636
637             fscal            = felec;
638
639             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
640
641             /* Calculate temporary vectorial force */
642             tx               = _mm256_mul_ps(fscal,dx30);
643             ty               = _mm256_mul_ps(fscal,dy30);
644             tz               = _mm256_mul_ps(fscal,dz30);
645
646             /* Update vectorial force */
647             fix3             = _mm256_add_ps(fix3,tx);
648             fiy3             = _mm256_add_ps(fiy3,ty);
649             fiz3             = _mm256_add_ps(fiz3,tz);
650
651             fjx0             = _mm256_add_ps(fjx0,tx);
652             fjy0             = _mm256_add_ps(fjy0,ty);
653             fjz0             = _mm256_add_ps(fjz0,tz);
654
655             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
656             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
657             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
658             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
659             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
660             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
661             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
662             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
663
664             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
665
666             /* Inner loop uses 135 flops */
667         }
668
669         /* End of innermost loop */
670
671         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
672                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
673
674         ggid                        = gid[iidx];
675         /* Update potential energies */
676         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
677
678         /* Increment number of inner iterations */
679         inneriter                  += j_index_end - j_index_start;
680
681         /* Outer loop uses 19 flops */
682     }
683
684     /* Increment number of outer iterations */
685     outeriter        += nri;
686
687     /* Update outer/inner flops */
688
689     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*135);
690 }
691 /*
692  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_avx_256_single
693  * Electrostatics interaction: CubicSplineTable
694  * VdW interaction:            None
695  * Geometry:                   Water4-Particle
696  * Calculate force/pot:        Force
697  */
698 void
699 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_avx_256_single
700                     (t_nblist * gmx_restrict                nlist,
701                      rvec * gmx_restrict                    xx,
702                      rvec * gmx_restrict                    ff,
703                      t_forcerec * gmx_restrict              fr,
704                      t_mdatoms * gmx_restrict               mdatoms,
705                      nb_kernel_data_t * gmx_restrict        kernel_data,
706                      t_nrnb * gmx_restrict                  nrnb)
707 {
708     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
709      * just 0 for non-waters.
710      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
711      * jnr indices corresponding to data put in the four positions in the SIMD register.
712      */
713     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
714     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
715     int              jnrA,jnrB,jnrC,jnrD;
716     int              jnrE,jnrF,jnrG,jnrH;
717     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
718     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
719     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
720     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
721     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
722     real             rcutoff_scalar;
723     real             *shiftvec,*fshift,*x,*f;
724     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
725     real             scratch[4*DIM];
726     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
727     real *           vdwioffsetptr1;
728     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
729     real *           vdwioffsetptr2;
730     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
731     real *           vdwioffsetptr3;
732     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
733     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
734     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
735     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
736     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
737     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
738     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
739     real             *charge;
740     __m256i          vfitab;
741     __m128i          vfitab_lo,vfitab_hi;
742     __m128i          ifour       = _mm_set1_epi32(4);
743     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
744     real             *vftab;
745     __m256           dummy_mask,cutoff_mask;
746     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
747     __m256           one     = _mm256_set1_ps(1.0);
748     __m256           two     = _mm256_set1_ps(2.0);
749     x                = xx[0];
750     f                = ff[0];
751
752     nri              = nlist->nri;
753     iinr             = nlist->iinr;
754     jindex           = nlist->jindex;
755     jjnr             = nlist->jjnr;
756     shiftidx         = nlist->shift;
757     gid              = nlist->gid;
758     shiftvec         = fr->shift_vec[0];
759     fshift           = fr->fshift[0];
760     facel            = _mm256_set1_ps(fr->epsfac);
761     charge           = mdatoms->chargeA;
762
763     vftab            = kernel_data->table_elec->data;
764     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
765
766     /* Setup water-specific parameters */
767     inr              = nlist->iinr[0];
768     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
769     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
770     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
771
772     /* Avoid stupid compiler warnings */
773     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
774     j_coord_offsetA = 0;
775     j_coord_offsetB = 0;
776     j_coord_offsetC = 0;
777     j_coord_offsetD = 0;
778     j_coord_offsetE = 0;
779     j_coord_offsetF = 0;
780     j_coord_offsetG = 0;
781     j_coord_offsetH = 0;
782
783     outeriter        = 0;
784     inneriter        = 0;
785
786     for(iidx=0;iidx<4*DIM;iidx++)
787     {
788         scratch[iidx] = 0.0;
789     }
790
791     /* Start outer loop over neighborlists */
792     for(iidx=0; iidx<nri; iidx++)
793     {
794         /* Load shift vector for this list */
795         i_shift_offset   = DIM*shiftidx[iidx];
796
797         /* Load limits for loop over neighbors */
798         j_index_start    = jindex[iidx];
799         j_index_end      = jindex[iidx+1];
800
801         /* Get outer coordinate index */
802         inr              = iinr[iidx];
803         i_coord_offset   = DIM*inr;
804
805         /* Load i particle coords and add shift vector */
806         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
807                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
808
809         fix1             = _mm256_setzero_ps();
810         fiy1             = _mm256_setzero_ps();
811         fiz1             = _mm256_setzero_ps();
812         fix2             = _mm256_setzero_ps();
813         fiy2             = _mm256_setzero_ps();
814         fiz2             = _mm256_setzero_ps();
815         fix3             = _mm256_setzero_ps();
816         fiy3             = _mm256_setzero_ps();
817         fiz3             = _mm256_setzero_ps();
818
819         /* Start inner kernel loop */
820         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
821         {
822
823             /* Get j neighbor index, and coordinate index */
824             jnrA             = jjnr[jidx];
825             jnrB             = jjnr[jidx+1];
826             jnrC             = jjnr[jidx+2];
827             jnrD             = jjnr[jidx+3];
828             jnrE             = jjnr[jidx+4];
829             jnrF             = jjnr[jidx+5];
830             jnrG             = jjnr[jidx+6];
831             jnrH             = jjnr[jidx+7];
832             j_coord_offsetA  = DIM*jnrA;
833             j_coord_offsetB  = DIM*jnrB;
834             j_coord_offsetC  = DIM*jnrC;
835             j_coord_offsetD  = DIM*jnrD;
836             j_coord_offsetE  = DIM*jnrE;
837             j_coord_offsetF  = DIM*jnrF;
838             j_coord_offsetG  = DIM*jnrG;
839             j_coord_offsetH  = DIM*jnrH;
840
841             /* load j atom coordinates */
842             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
843                                                  x+j_coord_offsetC,x+j_coord_offsetD,
844                                                  x+j_coord_offsetE,x+j_coord_offsetF,
845                                                  x+j_coord_offsetG,x+j_coord_offsetH,
846                                                  &jx0,&jy0,&jz0);
847
848             /* Calculate displacement vector */
849             dx10             = _mm256_sub_ps(ix1,jx0);
850             dy10             = _mm256_sub_ps(iy1,jy0);
851             dz10             = _mm256_sub_ps(iz1,jz0);
852             dx20             = _mm256_sub_ps(ix2,jx0);
853             dy20             = _mm256_sub_ps(iy2,jy0);
854             dz20             = _mm256_sub_ps(iz2,jz0);
855             dx30             = _mm256_sub_ps(ix3,jx0);
856             dy30             = _mm256_sub_ps(iy3,jy0);
857             dz30             = _mm256_sub_ps(iz3,jz0);
858
859             /* Calculate squared distance and things based on it */
860             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
861             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
862             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
863
864             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
865             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
866             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
867
868             /* Load parameters for j particles */
869             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
870                                                                  charge+jnrC+0,charge+jnrD+0,
871                                                                  charge+jnrE+0,charge+jnrF+0,
872                                                                  charge+jnrG+0,charge+jnrH+0);
873
874             fjx0             = _mm256_setzero_ps();
875             fjy0             = _mm256_setzero_ps();
876             fjz0             = _mm256_setzero_ps();
877
878             /**************************
879              * CALCULATE INTERACTIONS *
880              **************************/
881
882             r10              = _mm256_mul_ps(rsq10,rinv10);
883
884             /* Compute parameters for interactions between i and j atoms */
885             qq10             = _mm256_mul_ps(iq1,jq0);
886
887             /* Calculate table index by multiplying r with table scale and truncate to integer */
888             rt               = _mm256_mul_ps(r10,vftabscale);
889             vfitab           = _mm256_cvttps_epi32(rt);
890             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
891             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
892             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
893             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
894             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
895             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
896
897             /* CUBIC SPLINE TABLE ELECTROSTATICS */
898             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
899                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
900             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
901                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
902             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
903                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
904             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
905                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
906             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
907             Heps             = _mm256_mul_ps(vfeps,H);
908             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
909             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
910             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
911
912             fscal            = felec;
913
914             /* Calculate temporary vectorial force */
915             tx               = _mm256_mul_ps(fscal,dx10);
916             ty               = _mm256_mul_ps(fscal,dy10);
917             tz               = _mm256_mul_ps(fscal,dz10);
918
919             /* Update vectorial force */
920             fix1             = _mm256_add_ps(fix1,tx);
921             fiy1             = _mm256_add_ps(fiy1,ty);
922             fiz1             = _mm256_add_ps(fiz1,tz);
923
924             fjx0             = _mm256_add_ps(fjx0,tx);
925             fjy0             = _mm256_add_ps(fjy0,ty);
926             fjz0             = _mm256_add_ps(fjz0,tz);
927
928             /**************************
929              * CALCULATE INTERACTIONS *
930              **************************/
931
932             r20              = _mm256_mul_ps(rsq20,rinv20);
933
934             /* Compute parameters for interactions between i and j atoms */
935             qq20             = _mm256_mul_ps(iq2,jq0);
936
937             /* Calculate table index by multiplying r with table scale and truncate to integer */
938             rt               = _mm256_mul_ps(r20,vftabscale);
939             vfitab           = _mm256_cvttps_epi32(rt);
940             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
941             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
942             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
943             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
944             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
945             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
946
947             /* CUBIC SPLINE TABLE ELECTROSTATICS */
948             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
949                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
950             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
951                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
952             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
953                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
954             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
955                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
956             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
957             Heps             = _mm256_mul_ps(vfeps,H);
958             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
959             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
960             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
961
962             fscal            = felec;
963
964             /* Calculate temporary vectorial force */
965             tx               = _mm256_mul_ps(fscal,dx20);
966             ty               = _mm256_mul_ps(fscal,dy20);
967             tz               = _mm256_mul_ps(fscal,dz20);
968
969             /* Update vectorial force */
970             fix2             = _mm256_add_ps(fix2,tx);
971             fiy2             = _mm256_add_ps(fiy2,ty);
972             fiz2             = _mm256_add_ps(fiz2,tz);
973
974             fjx0             = _mm256_add_ps(fjx0,tx);
975             fjy0             = _mm256_add_ps(fjy0,ty);
976             fjz0             = _mm256_add_ps(fjz0,tz);
977
978             /**************************
979              * CALCULATE INTERACTIONS *
980              **************************/
981
982             r30              = _mm256_mul_ps(rsq30,rinv30);
983
984             /* Compute parameters for interactions between i and j atoms */
985             qq30             = _mm256_mul_ps(iq3,jq0);
986
987             /* Calculate table index by multiplying r with table scale and truncate to integer */
988             rt               = _mm256_mul_ps(r30,vftabscale);
989             vfitab           = _mm256_cvttps_epi32(rt);
990             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
991             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
992             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
993             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
994             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
995             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
996
997             /* CUBIC SPLINE TABLE ELECTROSTATICS */
998             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
999                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1000             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1001                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1002             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1003                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1004             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1005                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1006             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1007             Heps             = _mm256_mul_ps(vfeps,H);
1008             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1009             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1010             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
1011
1012             fscal            = felec;
1013
1014             /* Calculate temporary vectorial force */
1015             tx               = _mm256_mul_ps(fscal,dx30);
1016             ty               = _mm256_mul_ps(fscal,dy30);
1017             tz               = _mm256_mul_ps(fscal,dz30);
1018
1019             /* Update vectorial force */
1020             fix3             = _mm256_add_ps(fix3,tx);
1021             fiy3             = _mm256_add_ps(fiy3,ty);
1022             fiz3             = _mm256_add_ps(fiz3,tz);
1023
1024             fjx0             = _mm256_add_ps(fjx0,tx);
1025             fjy0             = _mm256_add_ps(fjy0,ty);
1026             fjz0             = _mm256_add_ps(fjz0,tz);
1027
1028             fjptrA             = f+j_coord_offsetA;
1029             fjptrB             = f+j_coord_offsetB;
1030             fjptrC             = f+j_coord_offsetC;
1031             fjptrD             = f+j_coord_offsetD;
1032             fjptrE             = f+j_coord_offsetE;
1033             fjptrF             = f+j_coord_offsetF;
1034             fjptrG             = f+j_coord_offsetG;
1035             fjptrH             = f+j_coord_offsetH;
1036
1037             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1038
1039             /* Inner loop uses 120 flops */
1040         }
1041
1042         if(jidx<j_index_end)
1043         {
1044
1045             /* Get j neighbor index, and coordinate index */
1046             jnrlistA         = jjnr[jidx];
1047             jnrlistB         = jjnr[jidx+1];
1048             jnrlistC         = jjnr[jidx+2];
1049             jnrlistD         = jjnr[jidx+3];
1050             jnrlistE         = jjnr[jidx+4];
1051             jnrlistF         = jjnr[jidx+5];
1052             jnrlistG         = jjnr[jidx+6];
1053             jnrlistH         = jjnr[jidx+7];
1054             /* Sign of each element will be negative for non-real atoms.
1055              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1056              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1057              */
1058             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1059                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1060                                             
1061             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1062             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1063             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1064             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1065             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1066             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1067             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1068             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1069             j_coord_offsetA  = DIM*jnrA;
1070             j_coord_offsetB  = DIM*jnrB;
1071             j_coord_offsetC  = DIM*jnrC;
1072             j_coord_offsetD  = DIM*jnrD;
1073             j_coord_offsetE  = DIM*jnrE;
1074             j_coord_offsetF  = DIM*jnrF;
1075             j_coord_offsetG  = DIM*jnrG;
1076             j_coord_offsetH  = DIM*jnrH;
1077
1078             /* load j atom coordinates */
1079             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1080                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1081                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1082                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1083                                                  &jx0,&jy0,&jz0);
1084
1085             /* Calculate displacement vector */
1086             dx10             = _mm256_sub_ps(ix1,jx0);
1087             dy10             = _mm256_sub_ps(iy1,jy0);
1088             dz10             = _mm256_sub_ps(iz1,jz0);
1089             dx20             = _mm256_sub_ps(ix2,jx0);
1090             dy20             = _mm256_sub_ps(iy2,jy0);
1091             dz20             = _mm256_sub_ps(iz2,jz0);
1092             dx30             = _mm256_sub_ps(ix3,jx0);
1093             dy30             = _mm256_sub_ps(iy3,jy0);
1094             dz30             = _mm256_sub_ps(iz3,jz0);
1095
1096             /* Calculate squared distance and things based on it */
1097             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1098             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1099             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1100
1101             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1102             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1103             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1104
1105             /* Load parameters for j particles */
1106             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1107                                                                  charge+jnrC+0,charge+jnrD+0,
1108                                                                  charge+jnrE+0,charge+jnrF+0,
1109                                                                  charge+jnrG+0,charge+jnrH+0);
1110
1111             fjx0             = _mm256_setzero_ps();
1112             fjy0             = _mm256_setzero_ps();
1113             fjz0             = _mm256_setzero_ps();
1114
1115             /**************************
1116              * CALCULATE INTERACTIONS *
1117              **************************/
1118
1119             r10              = _mm256_mul_ps(rsq10,rinv10);
1120             r10              = _mm256_andnot_ps(dummy_mask,r10);
1121
1122             /* Compute parameters for interactions between i and j atoms */
1123             qq10             = _mm256_mul_ps(iq1,jq0);
1124
1125             /* Calculate table index by multiplying r with table scale and truncate to integer */
1126             rt               = _mm256_mul_ps(r10,vftabscale);
1127             vfitab           = _mm256_cvttps_epi32(rt);
1128             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1129             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1130             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1131             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1132             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1133             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1134
1135             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1136             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1137                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1138             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1139                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1140             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1141                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1142             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1143                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1144             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1145             Heps             = _mm256_mul_ps(vfeps,H);
1146             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1147             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1148             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1149
1150             fscal            = felec;
1151
1152             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1153
1154             /* Calculate temporary vectorial force */
1155             tx               = _mm256_mul_ps(fscal,dx10);
1156             ty               = _mm256_mul_ps(fscal,dy10);
1157             tz               = _mm256_mul_ps(fscal,dz10);
1158
1159             /* Update vectorial force */
1160             fix1             = _mm256_add_ps(fix1,tx);
1161             fiy1             = _mm256_add_ps(fiy1,ty);
1162             fiz1             = _mm256_add_ps(fiz1,tz);
1163
1164             fjx0             = _mm256_add_ps(fjx0,tx);
1165             fjy0             = _mm256_add_ps(fjy0,ty);
1166             fjz0             = _mm256_add_ps(fjz0,tz);
1167
1168             /**************************
1169              * CALCULATE INTERACTIONS *
1170              **************************/
1171
1172             r20              = _mm256_mul_ps(rsq20,rinv20);
1173             r20              = _mm256_andnot_ps(dummy_mask,r20);
1174
1175             /* Compute parameters for interactions between i and j atoms */
1176             qq20             = _mm256_mul_ps(iq2,jq0);
1177
1178             /* Calculate table index by multiplying r with table scale and truncate to integer */
1179             rt               = _mm256_mul_ps(r20,vftabscale);
1180             vfitab           = _mm256_cvttps_epi32(rt);
1181             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1182             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1183             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1184             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1185             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1186             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1187
1188             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1189             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1190                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1191             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1192                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1193             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1194                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1195             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1196                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1197             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1198             Heps             = _mm256_mul_ps(vfeps,H);
1199             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1200             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1201             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1202
1203             fscal            = felec;
1204
1205             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1206
1207             /* Calculate temporary vectorial force */
1208             tx               = _mm256_mul_ps(fscal,dx20);
1209             ty               = _mm256_mul_ps(fscal,dy20);
1210             tz               = _mm256_mul_ps(fscal,dz20);
1211
1212             /* Update vectorial force */
1213             fix2             = _mm256_add_ps(fix2,tx);
1214             fiy2             = _mm256_add_ps(fiy2,ty);
1215             fiz2             = _mm256_add_ps(fiz2,tz);
1216
1217             fjx0             = _mm256_add_ps(fjx0,tx);
1218             fjy0             = _mm256_add_ps(fjy0,ty);
1219             fjz0             = _mm256_add_ps(fjz0,tz);
1220
1221             /**************************
1222              * CALCULATE INTERACTIONS *
1223              **************************/
1224
1225             r30              = _mm256_mul_ps(rsq30,rinv30);
1226             r30              = _mm256_andnot_ps(dummy_mask,r30);
1227
1228             /* Compute parameters for interactions between i and j atoms */
1229             qq30             = _mm256_mul_ps(iq3,jq0);
1230
1231             /* Calculate table index by multiplying r with table scale and truncate to integer */
1232             rt               = _mm256_mul_ps(r30,vftabscale);
1233             vfitab           = _mm256_cvttps_epi32(rt);
1234             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1235             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1236             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1237             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1238             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1239             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1240
1241             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1242             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1243                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1244             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1245                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1246             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1247                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1248             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1249                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1250             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1251             Heps             = _mm256_mul_ps(vfeps,H);
1252             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1253             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1254             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
1255
1256             fscal            = felec;
1257
1258             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1259
1260             /* Calculate temporary vectorial force */
1261             tx               = _mm256_mul_ps(fscal,dx30);
1262             ty               = _mm256_mul_ps(fscal,dy30);
1263             tz               = _mm256_mul_ps(fscal,dz30);
1264
1265             /* Update vectorial force */
1266             fix3             = _mm256_add_ps(fix3,tx);
1267             fiy3             = _mm256_add_ps(fiy3,ty);
1268             fiz3             = _mm256_add_ps(fiz3,tz);
1269
1270             fjx0             = _mm256_add_ps(fjx0,tx);
1271             fjy0             = _mm256_add_ps(fjy0,ty);
1272             fjz0             = _mm256_add_ps(fjz0,tz);
1273
1274             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1275             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1276             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1277             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1278             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1279             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1280             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1281             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1282
1283             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1284
1285             /* Inner loop uses 123 flops */
1286         }
1287
1288         /* End of innermost loop */
1289
1290         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1291                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1292
1293         /* Increment number of inner iterations */
1294         inneriter                  += j_index_end - j_index_start;
1295
1296         /* Outer loop uses 18 flops */
1297     }
1298
1299     /* Increment number of outer iterations */
1300     outeriter        += nri;
1301
1302     /* Update outer/inner flops */
1303
1304     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*123);
1305 }