Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwNone_GeomP1P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_single
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
88     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m256i          vfitab;
93     __m128i          vfitab_lo,vfitab_hi;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
96     real             *vftab;
97     __m256           dummy_mask,cutoff_mask;
98     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
99     __m256           one     = _mm256_set1_ps(1.0);
100     __m256           two     = _mm256_set1_ps(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm256_set1_ps(fr->ic->epsfac);
113     charge           = mdatoms->chargeA;
114
115     vftab            = kernel_data->table_elec->data;
116     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122     j_coord_offsetC = 0;
123     j_coord_offsetD = 0;
124     j_coord_offsetE = 0;
125     j_coord_offsetF = 0;
126     j_coord_offsetG = 0;
127     j_coord_offsetH = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm256_setzero_ps();
155         fiy0             = _mm256_setzero_ps();
156         fiz0             = _mm256_setzero_ps();
157
158         /* Load parameters for i particles */
159         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
160
161         /* Reset potential sums */
162         velecsum         = _mm256_setzero_ps();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173             jnrE             = jjnr[jidx+4];
174             jnrF             = jjnr[jidx+5];
175             jnrG             = jjnr[jidx+6];
176             jnrH             = jjnr[jidx+7];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179             j_coord_offsetC  = DIM*jnrC;
180             j_coord_offsetD  = DIM*jnrD;
181             j_coord_offsetE  = DIM*jnrE;
182             j_coord_offsetF  = DIM*jnrF;
183             j_coord_offsetG  = DIM*jnrG;
184             j_coord_offsetH  = DIM*jnrH;
185
186             /* load j atom coordinates */
187             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
188                                                  x+j_coord_offsetC,x+j_coord_offsetD,
189                                                  x+j_coord_offsetE,x+j_coord_offsetF,
190                                                  x+j_coord_offsetG,x+j_coord_offsetH,
191                                                  &jx0,&jy0,&jz0);
192
193             /* Calculate displacement vector */
194             dx00             = _mm256_sub_ps(ix0,jx0);
195             dy00             = _mm256_sub_ps(iy0,jy0);
196             dz00             = _mm256_sub_ps(iz0,jz0);
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
200
201             rinv00           = avx256_invsqrt_f(rsq00);
202
203             /* Load parameters for j particles */
204             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
205                                                                  charge+jnrC+0,charge+jnrD+0,
206                                                                  charge+jnrE+0,charge+jnrF+0,
207                                                                  charge+jnrG+0,charge+jnrH+0);
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             r00              = _mm256_mul_ps(rsq00,rinv00);
214
215             /* Compute parameters for interactions between i and j atoms */
216             qq00             = _mm256_mul_ps(iq0,jq0);
217
218             /* Calculate table index by multiplying r with table scale and truncate to integer */
219             rt               = _mm256_mul_ps(r00,vftabscale);
220             vfitab           = _mm256_cvttps_epi32(rt);
221             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
222             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
223             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
224             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
225             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
226             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
227
228             /* CUBIC SPLINE TABLE ELECTROSTATICS */
229             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
230                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
231             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
232                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
233             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
234                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
235             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
236                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
237             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
238             Heps             = _mm256_mul_ps(vfeps,H);
239             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
240             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
241             velec            = _mm256_mul_ps(qq00,VV);
242             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
243             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
244
245             /* Update potential sum for this i atom from the interaction with this j atom. */
246             velecsum         = _mm256_add_ps(velecsum,velec);
247
248             fscal            = felec;
249
250             /* Calculate temporary vectorial force */
251             tx               = _mm256_mul_ps(fscal,dx00);
252             ty               = _mm256_mul_ps(fscal,dy00);
253             tz               = _mm256_mul_ps(fscal,dz00);
254
255             /* Update vectorial force */
256             fix0             = _mm256_add_ps(fix0,tx);
257             fiy0             = _mm256_add_ps(fiy0,ty);
258             fiz0             = _mm256_add_ps(fiz0,tz);
259
260             fjptrA             = f+j_coord_offsetA;
261             fjptrB             = f+j_coord_offsetB;
262             fjptrC             = f+j_coord_offsetC;
263             fjptrD             = f+j_coord_offsetD;
264             fjptrE             = f+j_coord_offsetE;
265             fjptrF             = f+j_coord_offsetF;
266             fjptrG             = f+j_coord_offsetG;
267             fjptrH             = f+j_coord_offsetH;
268             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
269
270             /* Inner loop uses 43 flops */
271         }
272
273         if(jidx<j_index_end)
274         {
275
276             /* Get j neighbor index, and coordinate index */
277             jnrlistA         = jjnr[jidx];
278             jnrlistB         = jjnr[jidx+1];
279             jnrlistC         = jjnr[jidx+2];
280             jnrlistD         = jjnr[jidx+3];
281             jnrlistE         = jjnr[jidx+4];
282             jnrlistF         = jjnr[jidx+5];
283             jnrlistG         = jjnr[jidx+6];
284             jnrlistH         = jjnr[jidx+7];
285             /* Sign of each element will be negative for non-real atoms.
286              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
287              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
288              */
289             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
290                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
291                                             
292             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
293             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
294             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
295             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
296             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
297             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
298             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
299             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
300             j_coord_offsetA  = DIM*jnrA;
301             j_coord_offsetB  = DIM*jnrB;
302             j_coord_offsetC  = DIM*jnrC;
303             j_coord_offsetD  = DIM*jnrD;
304             j_coord_offsetE  = DIM*jnrE;
305             j_coord_offsetF  = DIM*jnrF;
306             j_coord_offsetG  = DIM*jnrG;
307             j_coord_offsetH  = DIM*jnrH;
308
309             /* load j atom coordinates */
310             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
311                                                  x+j_coord_offsetC,x+j_coord_offsetD,
312                                                  x+j_coord_offsetE,x+j_coord_offsetF,
313                                                  x+j_coord_offsetG,x+j_coord_offsetH,
314                                                  &jx0,&jy0,&jz0);
315
316             /* Calculate displacement vector */
317             dx00             = _mm256_sub_ps(ix0,jx0);
318             dy00             = _mm256_sub_ps(iy0,jy0);
319             dz00             = _mm256_sub_ps(iz0,jz0);
320
321             /* Calculate squared distance and things based on it */
322             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
323
324             rinv00           = avx256_invsqrt_f(rsq00);
325
326             /* Load parameters for j particles */
327             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
328                                                                  charge+jnrC+0,charge+jnrD+0,
329                                                                  charge+jnrE+0,charge+jnrF+0,
330                                                                  charge+jnrG+0,charge+jnrH+0);
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             r00              = _mm256_mul_ps(rsq00,rinv00);
337             r00              = _mm256_andnot_ps(dummy_mask,r00);
338
339             /* Compute parameters for interactions between i and j atoms */
340             qq00             = _mm256_mul_ps(iq0,jq0);
341
342             /* Calculate table index by multiplying r with table scale and truncate to integer */
343             rt               = _mm256_mul_ps(r00,vftabscale);
344             vfitab           = _mm256_cvttps_epi32(rt);
345             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
346             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
347             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
348             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
349             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
350             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
351
352             /* CUBIC SPLINE TABLE ELECTROSTATICS */
353             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
354                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
355             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
356                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
357             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
358                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
359             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
360                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
361             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
362             Heps             = _mm256_mul_ps(vfeps,H);
363             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
364             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
365             velec            = _mm256_mul_ps(qq00,VV);
366             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
367             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velec            = _mm256_andnot_ps(dummy_mask,velec);
371             velecsum         = _mm256_add_ps(velecsum,velec);
372
373             fscal            = felec;
374
375             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
376
377             /* Calculate temporary vectorial force */
378             tx               = _mm256_mul_ps(fscal,dx00);
379             ty               = _mm256_mul_ps(fscal,dy00);
380             tz               = _mm256_mul_ps(fscal,dz00);
381
382             /* Update vectorial force */
383             fix0             = _mm256_add_ps(fix0,tx);
384             fiy0             = _mm256_add_ps(fiy0,ty);
385             fiz0             = _mm256_add_ps(fiz0,tz);
386
387             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
388             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
389             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
390             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
391             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
392             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
393             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
394             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
395             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
396
397             /* Inner loop uses 44 flops */
398         }
399
400         /* End of innermost loop */
401
402         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
403                                                  f+i_coord_offset,fshift+i_shift_offset);
404
405         ggid                        = gid[iidx];
406         /* Update potential energies */
407         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
408
409         /* Increment number of inner iterations */
410         inneriter                  += j_index_end - j_index_start;
411
412         /* Outer loop uses 8 flops */
413     }
414
415     /* Increment number of outer iterations */
416     outeriter        += nri;
417
418     /* Update outer/inner flops */
419
420     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*44);
421 }
422 /*
423  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_single
424  * Electrostatics interaction: CubicSplineTable
425  * VdW interaction:            None
426  * Geometry:                   Particle-Particle
427  * Calculate force/pot:        Force
428  */
429 void
430 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_single
431                     (t_nblist                    * gmx_restrict       nlist,
432                      rvec                        * gmx_restrict          xx,
433                      rvec                        * gmx_restrict          ff,
434                      struct t_forcerec           * gmx_restrict          fr,
435                      t_mdatoms                   * gmx_restrict     mdatoms,
436                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
437                      t_nrnb                      * gmx_restrict        nrnb)
438 {
439     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
440      * just 0 for non-waters.
441      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
442      * jnr indices corresponding to data put in the four positions in the SIMD register.
443      */
444     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
445     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
446     int              jnrA,jnrB,jnrC,jnrD;
447     int              jnrE,jnrF,jnrG,jnrH;
448     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
449     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
450     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
451     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
452     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
453     real             rcutoff_scalar;
454     real             *shiftvec,*fshift,*x,*f;
455     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
456     real             scratch[4*DIM];
457     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
458     real *           vdwioffsetptr0;
459     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
460     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
461     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
462     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
463     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
464     real             *charge;
465     __m256i          vfitab;
466     __m128i          vfitab_lo,vfitab_hi;
467     __m128i          ifour       = _mm_set1_epi32(4);
468     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
469     real             *vftab;
470     __m256           dummy_mask,cutoff_mask;
471     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
472     __m256           one     = _mm256_set1_ps(1.0);
473     __m256           two     = _mm256_set1_ps(2.0);
474     x                = xx[0];
475     f                = ff[0];
476
477     nri              = nlist->nri;
478     iinr             = nlist->iinr;
479     jindex           = nlist->jindex;
480     jjnr             = nlist->jjnr;
481     shiftidx         = nlist->shift;
482     gid              = nlist->gid;
483     shiftvec         = fr->shift_vec[0];
484     fshift           = fr->fshift[0];
485     facel            = _mm256_set1_ps(fr->ic->epsfac);
486     charge           = mdatoms->chargeA;
487
488     vftab            = kernel_data->table_elec->data;
489     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
490
491     /* Avoid stupid compiler warnings */
492     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
493     j_coord_offsetA = 0;
494     j_coord_offsetB = 0;
495     j_coord_offsetC = 0;
496     j_coord_offsetD = 0;
497     j_coord_offsetE = 0;
498     j_coord_offsetF = 0;
499     j_coord_offsetG = 0;
500     j_coord_offsetH = 0;
501
502     outeriter        = 0;
503     inneriter        = 0;
504
505     for(iidx=0;iidx<4*DIM;iidx++)
506     {
507         scratch[iidx] = 0.0;
508     }
509
510     /* Start outer loop over neighborlists */
511     for(iidx=0; iidx<nri; iidx++)
512     {
513         /* Load shift vector for this list */
514         i_shift_offset   = DIM*shiftidx[iidx];
515
516         /* Load limits for loop over neighbors */
517         j_index_start    = jindex[iidx];
518         j_index_end      = jindex[iidx+1];
519
520         /* Get outer coordinate index */
521         inr              = iinr[iidx];
522         i_coord_offset   = DIM*inr;
523
524         /* Load i particle coords and add shift vector */
525         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
526
527         fix0             = _mm256_setzero_ps();
528         fiy0             = _mm256_setzero_ps();
529         fiz0             = _mm256_setzero_ps();
530
531         /* Load parameters for i particles */
532         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
533
534         /* Start inner kernel loop */
535         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
536         {
537
538             /* Get j neighbor index, and coordinate index */
539             jnrA             = jjnr[jidx];
540             jnrB             = jjnr[jidx+1];
541             jnrC             = jjnr[jidx+2];
542             jnrD             = jjnr[jidx+3];
543             jnrE             = jjnr[jidx+4];
544             jnrF             = jjnr[jidx+5];
545             jnrG             = jjnr[jidx+6];
546             jnrH             = jjnr[jidx+7];
547             j_coord_offsetA  = DIM*jnrA;
548             j_coord_offsetB  = DIM*jnrB;
549             j_coord_offsetC  = DIM*jnrC;
550             j_coord_offsetD  = DIM*jnrD;
551             j_coord_offsetE  = DIM*jnrE;
552             j_coord_offsetF  = DIM*jnrF;
553             j_coord_offsetG  = DIM*jnrG;
554             j_coord_offsetH  = DIM*jnrH;
555
556             /* load j atom coordinates */
557             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
558                                                  x+j_coord_offsetC,x+j_coord_offsetD,
559                                                  x+j_coord_offsetE,x+j_coord_offsetF,
560                                                  x+j_coord_offsetG,x+j_coord_offsetH,
561                                                  &jx0,&jy0,&jz0);
562
563             /* Calculate displacement vector */
564             dx00             = _mm256_sub_ps(ix0,jx0);
565             dy00             = _mm256_sub_ps(iy0,jy0);
566             dz00             = _mm256_sub_ps(iz0,jz0);
567
568             /* Calculate squared distance and things based on it */
569             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
570
571             rinv00           = avx256_invsqrt_f(rsq00);
572
573             /* Load parameters for j particles */
574             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
575                                                                  charge+jnrC+0,charge+jnrD+0,
576                                                                  charge+jnrE+0,charge+jnrF+0,
577                                                                  charge+jnrG+0,charge+jnrH+0);
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             r00              = _mm256_mul_ps(rsq00,rinv00);
584
585             /* Compute parameters for interactions between i and j atoms */
586             qq00             = _mm256_mul_ps(iq0,jq0);
587
588             /* Calculate table index by multiplying r with table scale and truncate to integer */
589             rt               = _mm256_mul_ps(r00,vftabscale);
590             vfitab           = _mm256_cvttps_epi32(rt);
591             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
592             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
593             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
594             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
595             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
596             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
597
598             /* CUBIC SPLINE TABLE ELECTROSTATICS */
599             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
600                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
601             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
602                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
603             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
604                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
605             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
606                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
607             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
608             Heps             = _mm256_mul_ps(vfeps,H);
609             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
610             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
611             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
612
613             fscal            = felec;
614
615             /* Calculate temporary vectorial force */
616             tx               = _mm256_mul_ps(fscal,dx00);
617             ty               = _mm256_mul_ps(fscal,dy00);
618             tz               = _mm256_mul_ps(fscal,dz00);
619
620             /* Update vectorial force */
621             fix0             = _mm256_add_ps(fix0,tx);
622             fiy0             = _mm256_add_ps(fiy0,ty);
623             fiz0             = _mm256_add_ps(fiz0,tz);
624
625             fjptrA             = f+j_coord_offsetA;
626             fjptrB             = f+j_coord_offsetB;
627             fjptrC             = f+j_coord_offsetC;
628             fjptrD             = f+j_coord_offsetD;
629             fjptrE             = f+j_coord_offsetE;
630             fjptrF             = f+j_coord_offsetF;
631             fjptrG             = f+j_coord_offsetG;
632             fjptrH             = f+j_coord_offsetH;
633             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
634
635             /* Inner loop uses 39 flops */
636         }
637
638         if(jidx<j_index_end)
639         {
640
641             /* Get j neighbor index, and coordinate index */
642             jnrlistA         = jjnr[jidx];
643             jnrlistB         = jjnr[jidx+1];
644             jnrlistC         = jjnr[jidx+2];
645             jnrlistD         = jjnr[jidx+3];
646             jnrlistE         = jjnr[jidx+4];
647             jnrlistF         = jjnr[jidx+5];
648             jnrlistG         = jjnr[jidx+6];
649             jnrlistH         = jjnr[jidx+7];
650             /* Sign of each element will be negative for non-real atoms.
651              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
652              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
653              */
654             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
655                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
656                                             
657             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
658             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
659             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
660             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
661             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
662             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
663             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
664             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
665             j_coord_offsetA  = DIM*jnrA;
666             j_coord_offsetB  = DIM*jnrB;
667             j_coord_offsetC  = DIM*jnrC;
668             j_coord_offsetD  = DIM*jnrD;
669             j_coord_offsetE  = DIM*jnrE;
670             j_coord_offsetF  = DIM*jnrF;
671             j_coord_offsetG  = DIM*jnrG;
672             j_coord_offsetH  = DIM*jnrH;
673
674             /* load j atom coordinates */
675             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
676                                                  x+j_coord_offsetC,x+j_coord_offsetD,
677                                                  x+j_coord_offsetE,x+j_coord_offsetF,
678                                                  x+j_coord_offsetG,x+j_coord_offsetH,
679                                                  &jx0,&jy0,&jz0);
680
681             /* Calculate displacement vector */
682             dx00             = _mm256_sub_ps(ix0,jx0);
683             dy00             = _mm256_sub_ps(iy0,jy0);
684             dz00             = _mm256_sub_ps(iz0,jz0);
685
686             /* Calculate squared distance and things based on it */
687             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
688
689             rinv00           = avx256_invsqrt_f(rsq00);
690
691             /* Load parameters for j particles */
692             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
693                                                                  charge+jnrC+0,charge+jnrD+0,
694                                                                  charge+jnrE+0,charge+jnrF+0,
695                                                                  charge+jnrG+0,charge+jnrH+0);
696
697             /**************************
698              * CALCULATE INTERACTIONS *
699              **************************/
700
701             r00              = _mm256_mul_ps(rsq00,rinv00);
702             r00              = _mm256_andnot_ps(dummy_mask,r00);
703
704             /* Compute parameters for interactions between i and j atoms */
705             qq00             = _mm256_mul_ps(iq0,jq0);
706
707             /* Calculate table index by multiplying r with table scale and truncate to integer */
708             rt               = _mm256_mul_ps(r00,vftabscale);
709             vfitab           = _mm256_cvttps_epi32(rt);
710             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
711             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
712             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
713             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
714             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
715             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
716
717             /* CUBIC SPLINE TABLE ELECTROSTATICS */
718             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
719                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
720             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
721                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
722             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
723                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
724             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
725                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
726             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
727             Heps             = _mm256_mul_ps(vfeps,H);
728             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
729             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
730             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
731
732             fscal            = felec;
733
734             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
735
736             /* Calculate temporary vectorial force */
737             tx               = _mm256_mul_ps(fscal,dx00);
738             ty               = _mm256_mul_ps(fscal,dy00);
739             tz               = _mm256_mul_ps(fscal,dz00);
740
741             /* Update vectorial force */
742             fix0             = _mm256_add_ps(fix0,tx);
743             fiy0             = _mm256_add_ps(fiy0,ty);
744             fiz0             = _mm256_add_ps(fiz0,tz);
745
746             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
747             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
748             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
749             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
750             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
751             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
752             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
753             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
754             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
755
756             /* Inner loop uses 40 flops */
757         }
758
759         /* End of innermost loop */
760
761         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
762                                                  f+i_coord_offset,fshift+i_shift_offset);
763
764         /* Increment number of inner iterations */
765         inneriter                  += j_index_end - j_index_start;
766
767         /* Outer loop uses 7 flops */
768     }
769
770     /* Increment number of outer iterations */
771     outeriter        += nri;
772
773     /* Update outer/inner flops */
774
775     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*40);
776 }