f8493a3515546c69df0a956dd40a338783b6975a
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m256i          vfitab;
94     __m128i          vfitab_lo,vfitab_hi;
95     __m128i          ifour       = _mm_set1_epi32(4);
96     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
97     real             *vftab;
98     __m256           dummy_mask,cutoff_mask;
99     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
100     __m256           one     = _mm256_set1_ps(1.0);
101     __m256           two     = _mm256_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm256_set1_ps(fr->epsfac);
114     charge           = mdatoms->chargeA;
115
116     vftab            = kernel_data->table_elec->data;
117     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123     j_coord_offsetC = 0;
124     j_coord_offsetD = 0;
125     j_coord_offsetE = 0;
126     j_coord_offsetF = 0;
127     j_coord_offsetG = 0;
128     j_coord_offsetH = 0;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     for(iidx=0;iidx<4*DIM;iidx++)
134     {
135         scratch[iidx] = 0.0;
136     }
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
154
155         fix0             = _mm256_setzero_ps();
156         fiy0             = _mm256_setzero_ps();
157         fiz0             = _mm256_setzero_ps();
158
159         /* Load parameters for i particles */
160         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
161
162         /* Reset potential sums */
163         velecsum         = _mm256_setzero_ps();
164
165         /* Start inner kernel loop */
166         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
167         {
168
169             /* Get j neighbor index, and coordinate index */
170             jnrA             = jjnr[jidx];
171             jnrB             = jjnr[jidx+1];
172             jnrC             = jjnr[jidx+2];
173             jnrD             = jjnr[jidx+3];
174             jnrE             = jjnr[jidx+4];
175             jnrF             = jjnr[jidx+5];
176             jnrG             = jjnr[jidx+6];
177             jnrH             = jjnr[jidx+7];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180             j_coord_offsetC  = DIM*jnrC;
181             j_coord_offsetD  = DIM*jnrD;
182             j_coord_offsetE  = DIM*jnrE;
183             j_coord_offsetF  = DIM*jnrF;
184             j_coord_offsetG  = DIM*jnrG;
185             j_coord_offsetH  = DIM*jnrH;
186
187             /* load j atom coordinates */
188             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
189                                                  x+j_coord_offsetC,x+j_coord_offsetD,
190                                                  x+j_coord_offsetE,x+j_coord_offsetF,
191                                                  x+j_coord_offsetG,x+j_coord_offsetH,
192                                                  &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm256_sub_ps(ix0,jx0);
196             dy00             = _mm256_sub_ps(iy0,jy0);
197             dz00             = _mm256_sub_ps(iz0,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
201
202             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
206                                                                  charge+jnrC+0,charge+jnrD+0,
207                                                                  charge+jnrE+0,charge+jnrF+0,
208                                                                  charge+jnrG+0,charge+jnrH+0);
209
210             /**************************
211              * CALCULATE INTERACTIONS *
212              **************************/
213
214             r00              = _mm256_mul_ps(rsq00,rinv00);
215
216             /* Compute parameters for interactions between i and j atoms */
217             qq00             = _mm256_mul_ps(iq0,jq0);
218
219             /* Calculate table index by multiplying r with table scale and truncate to integer */
220             rt               = _mm256_mul_ps(r00,vftabscale);
221             vfitab           = _mm256_cvttps_epi32(rt);
222             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
223             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
224             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
225             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
226             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
227             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
228
229             /* CUBIC SPLINE TABLE ELECTROSTATICS */
230             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
231                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
232             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
233                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
234             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
235                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
236             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
237                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
238             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
239             Heps             = _mm256_mul_ps(vfeps,H);
240             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
241             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
242             velec            = _mm256_mul_ps(qq00,VV);
243             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
244             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             velecsum         = _mm256_add_ps(velecsum,velec);
248
249             fscal            = felec;
250
251             /* Calculate temporary vectorial force */
252             tx               = _mm256_mul_ps(fscal,dx00);
253             ty               = _mm256_mul_ps(fscal,dy00);
254             tz               = _mm256_mul_ps(fscal,dz00);
255
256             /* Update vectorial force */
257             fix0             = _mm256_add_ps(fix0,tx);
258             fiy0             = _mm256_add_ps(fiy0,ty);
259             fiz0             = _mm256_add_ps(fiz0,tz);
260
261             fjptrA             = f+j_coord_offsetA;
262             fjptrB             = f+j_coord_offsetB;
263             fjptrC             = f+j_coord_offsetC;
264             fjptrD             = f+j_coord_offsetD;
265             fjptrE             = f+j_coord_offsetE;
266             fjptrF             = f+j_coord_offsetF;
267             fjptrG             = f+j_coord_offsetG;
268             fjptrH             = f+j_coord_offsetH;
269             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
270
271             /* Inner loop uses 43 flops */
272         }
273
274         if(jidx<j_index_end)
275         {
276
277             /* Get j neighbor index, and coordinate index */
278             jnrlistA         = jjnr[jidx];
279             jnrlistB         = jjnr[jidx+1];
280             jnrlistC         = jjnr[jidx+2];
281             jnrlistD         = jjnr[jidx+3];
282             jnrlistE         = jjnr[jidx+4];
283             jnrlistF         = jjnr[jidx+5];
284             jnrlistG         = jjnr[jidx+6];
285             jnrlistH         = jjnr[jidx+7];
286             /* Sign of each element will be negative for non-real atoms.
287              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
288              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
289              */
290             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
291                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
292                                             
293             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
294             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
295             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
296             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
297             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
298             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
299             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
300             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
301             j_coord_offsetA  = DIM*jnrA;
302             j_coord_offsetB  = DIM*jnrB;
303             j_coord_offsetC  = DIM*jnrC;
304             j_coord_offsetD  = DIM*jnrD;
305             j_coord_offsetE  = DIM*jnrE;
306             j_coord_offsetF  = DIM*jnrF;
307             j_coord_offsetG  = DIM*jnrG;
308             j_coord_offsetH  = DIM*jnrH;
309
310             /* load j atom coordinates */
311             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
312                                                  x+j_coord_offsetC,x+j_coord_offsetD,
313                                                  x+j_coord_offsetE,x+j_coord_offsetF,
314                                                  x+j_coord_offsetG,x+j_coord_offsetH,
315                                                  &jx0,&jy0,&jz0);
316
317             /* Calculate displacement vector */
318             dx00             = _mm256_sub_ps(ix0,jx0);
319             dy00             = _mm256_sub_ps(iy0,jy0);
320             dz00             = _mm256_sub_ps(iz0,jz0);
321
322             /* Calculate squared distance and things based on it */
323             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
324
325             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
326
327             /* Load parameters for j particles */
328             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
329                                                                  charge+jnrC+0,charge+jnrD+0,
330                                                                  charge+jnrE+0,charge+jnrF+0,
331                                                                  charge+jnrG+0,charge+jnrH+0);
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             r00              = _mm256_mul_ps(rsq00,rinv00);
338             r00              = _mm256_andnot_ps(dummy_mask,r00);
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq00             = _mm256_mul_ps(iq0,jq0);
342
343             /* Calculate table index by multiplying r with table scale and truncate to integer */
344             rt               = _mm256_mul_ps(r00,vftabscale);
345             vfitab           = _mm256_cvttps_epi32(rt);
346             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
347             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
348             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
349             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
350             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
351             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
352
353             /* CUBIC SPLINE TABLE ELECTROSTATICS */
354             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
355                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
356             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
357                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
358             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
359                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
360             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
361                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
362             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
363             Heps             = _mm256_mul_ps(vfeps,H);
364             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
365             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
366             velec            = _mm256_mul_ps(qq00,VV);
367             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
368             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velec            = _mm256_andnot_ps(dummy_mask,velec);
372             velecsum         = _mm256_add_ps(velecsum,velec);
373
374             fscal            = felec;
375
376             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
377
378             /* Calculate temporary vectorial force */
379             tx               = _mm256_mul_ps(fscal,dx00);
380             ty               = _mm256_mul_ps(fscal,dy00);
381             tz               = _mm256_mul_ps(fscal,dz00);
382
383             /* Update vectorial force */
384             fix0             = _mm256_add_ps(fix0,tx);
385             fiy0             = _mm256_add_ps(fiy0,ty);
386             fiz0             = _mm256_add_ps(fiz0,tz);
387
388             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
389             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
390             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
391             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
392             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
393             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
394             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
395             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
396             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
397
398             /* Inner loop uses 44 flops */
399         }
400
401         /* End of innermost loop */
402
403         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
404                                                  f+i_coord_offset,fshift+i_shift_offset);
405
406         ggid                        = gid[iidx];
407         /* Update potential energies */
408         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
409
410         /* Increment number of inner iterations */
411         inneriter                  += j_index_end - j_index_start;
412
413         /* Outer loop uses 8 flops */
414     }
415
416     /* Increment number of outer iterations */
417     outeriter        += nri;
418
419     /* Update outer/inner flops */
420
421     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*44);
422 }
423 /*
424  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_single
425  * Electrostatics interaction: CubicSplineTable
426  * VdW interaction:            None
427  * Geometry:                   Particle-Particle
428  * Calculate force/pot:        Force
429  */
430 void
431 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_single
432                     (t_nblist                    * gmx_restrict       nlist,
433                      rvec                        * gmx_restrict          xx,
434                      rvec                        * gmx_restrict          ff,
435                      t_forcerec                  * gmx_restrict          fr,
436                      t_mdatoms                   * gmx_restrict     mdatoms,
437                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
438                      t_nrnb                      * gmx_restrict        nrnb)
439 {
440     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
441      * just 0 for non-waters.
442      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
443      * jnr indices corresponding to data put in the four positions in the SIMD register.
444      */
445     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
446     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
447     int              jnrA,jnrB,jnrC,jnrD;
448     int              jnrE,jnrF,jnrG,jnrH;
449     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
450     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
451     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
452     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
453     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
454     real             rcutoff_scalar;
455     real             *shiftvec,*fshift,*x,*f;
456     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
457     real             scratch[4*DIM];
458     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
459     real *           vdwioffsetptr0;
460     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
461     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
462     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
463     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
464     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
465     real             *charge;
466     __m256i          vfitab;
467     __m128i          vfitab_lo,vfitab_hi;
468     __m128i          ifour       = _mm_set1_epi32(4);
469     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
470     real             *vftab;
471     __m256           dummy_mask,cutoff_mask;
472     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
473     __m256           one     = _mm256_set1_ps(1.0);
474     __m256           two     = _mm256_set1_ps(2.0);
475     x                = xx[0];
476     f                = ff[0];
477
478     nri              = nlist->nri;
479     iinr             = nlist->iinr;
480     jindex           = nlist->jindex;
481     jjnr             = nlist->jjnr;
482     shiftidx         = nlist->shift;
483     gid              = nlist->gid;
484     shiftvec         = fr->shift_vec[0];
485     fshift           = fr->fshift[0];
486     facel            = _mm256_set1_ps(fr->epsfac);
487     charge           = mdatoms->chargeA;
488
489     vftab            = kernel_data->table_elec->data;
490     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
491
492     /* Avoid stupid compiler warnings */
493     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
494     j_coord_offsetA = 0;
495     j_coord_offsetB = 0;
496     j_coord_offsetC = 0;
497     j_coord_offsetD = 0;
498     j_coord_offsetE = 0;
499     j_coord_offsetF = 0;
500     j_coord_offsetG = 0;
501     j_coord_offsetH = 0;
502
503     outeriter        = 0;
504     inneriter        = 0;
505
506     for(iidx=0;iidx<4*DIM;iidx++)
507     {
508         scratch[iidx] = 0.0;
509     }
510
511     /* Start outer loop over neighborlists */
512     for(iidx=0; iidx<nri; iidx++)
513     {
514         /* Load shift vector for this list */
515         i_shift_offset   = DIM*shiftidx[iidx];
516
517         /* Load limits for loop over neighbors */
518         j_index_start    = jindex[iidx];
519         j_index_end      = jindex[iidx+1];
520
521         /* Get outer coordinate index */
522         inr              = iinr[iidx];
523         i_coord_offset   = DIM*inr;
524
525         /* Load i particle coords and add shift vector */
526         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
527
528         fix0             = _mm256_setzero_ps();
529         fiy0             = _mm256_setzero_ps();
530         fiz0             = _mm256_setzero_ps();
531
532         /* Load parameters for i particles */
533         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
534
535         /* Start inner kernel loop */
536         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
537         {
538
539             /* Get j neighbor index, and coordinate index */
540             jnrA             = jjnr[jidx];
541             jnrB             = jjnr[jidx+1];
542             jnrC             = jjnr[jidx+2];
543             jnrD             = jjnr[jidx+3];
544             jnrE             = jjnr[jidx+4];
545             jnrF             = jjnr[jidx+5];
546             jnrG             = jjnr[jidx+6];
547             jnrH             = jjnr[jidx+7];
548             j_coord_offsetA  = DIM*jnrA;
549             j_coord_offsetB  = DIM*jnrB;
550             j_coord_offsetC  = DIM*jnrC;
551             j_coord_offsetD  = DIM*jnrD;
552             j_coord_offsetE  = DIM*jnrE;
553             j_coord_offsetF  = DIM*jnrF;
554             j_coord_offsetG  = DIM*jnrG;
555             j_coord_offsetH  = DIM*jnrH;
556
557             /* load j atom coordinates */
558             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
559                                                  x+j_coord_offsetC,x+j_coord_offsetD,
560                                                  x+j_coord_offsetE,x+j_coord_offsetF,
561                                                  x+j_coord_offsetG,x+j_coord_offsetH,
562                                                  &jx0,&jy0,&jz0);
563
564             /* Calculate displacement vector */
565             dx00             = _mm256_sub_ps(ix0,jx0);
566             dy00             = _mm256_sub_ps(iy0,jy0);
567             dz00             = _mm256_sub_ps(iz0,jz0);
568
569             /* Calculate squared distance and things based on it */
570             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
571
572             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
573
574             /* Load parameters for j particles */
575             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
576                                                                  charge+jnrC+0,charge+jnrD+0,
577                                                                  charge+jnrE+0,charge+jnrF+0,
578                                                                  charge+jnrG+0,charge+jnrH+0);
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             r00              = _mm256_mul_ps(rsq00,rinv00);
585
586             /* Compute parameters for interactions between i and j atoms */
587             qq00             = _mm256_mul_ps(iq0,jq0);
588
589             /* Calculate table index by multiplying r with table scale and truncate to integer */
590             rt               = _mm256_mul_ps(r00,vftabscale);
591             vfitab           = _mm256_cvttps_epi32(rt);
592             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
593             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
594             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
595             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
596             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
597             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
598
599             /* CUBIC SPLINE TABLE ELECTROSTATICS */
600             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
601                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
602             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
603                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
604             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
605                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
606             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
607                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
608             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
609             Heps             = _mm256_mul_ps(vfeps,H);
610             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
611             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
612             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
613
614             fscal            = felec;
615
616             /* Calculate temporary vectorial force */
617             tx               = _mm256_mul_ps(fscal,dx00);
618             ty               = _mm256_mul_ps(fscal,dy00);
619             tz               = _mm256_mul_ps(fscal,dz00);
620
621             /* Update vectorial force */
622             fix0             = _mm256_add_ps(fix0,tx);
623             fiy0             = _mm256_add_ps(fiy0,ty);
624             fiz0             = _mm256_add_ps(fiz0,tz);
625
626             fjptrA             = f+j_coord_offsetA;
627             fjptrB             = f+j_coord_offsetB;
628             fjptrC             = f+j_coord_offsetC;
629             fjptrD             = f+j_coord_offsetD;
630             fjptrE             = f+j_coord_offsetE;
631             fjptrF             = f+j_coord_offsetF;
632             fjptrG             = f+j_coord_offsetG;
633             fjptrH             = f+j_coord_offsetH;
634             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
635
636             /* Inner loop uses 39 flops */
637         }
638
639         if(jidx<j_index_end)
640         {
641
642             /* Get j neighbor index, and coordinate index */
643             jnrlistA         = jjnr[jidx];
644             jnrlistB         = jjnr[jidx+1];
645             jnrlistC         = jjnr[jidx+2];
646             jnrlistD         = jjnr[jidx+3];
647             jnrlistE         = jjnr[jidx+4];
648             jnrlistF         = jjnr[jidx+5];
649             jnrlistG         = jjnr[jidx+6];
650             jnrlistH         = jjnr[jidx+7];
651             /* Sign of each element will be negative for non-real atoms.
652              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
653              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
654              */
655             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
656                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
657                                             
658             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
659             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
660             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
661             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
662             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
663             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
664             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
665             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
666             j_coord_offsetA  = DIM*jnrA;
667             j_coord_offsetB  = DIM*jnrB;
668             j_coord_offsetC  = DIM*jnrC;
669             j_coord_offsetD  = DIM*jnrD;
670             j_coord_offsetE  = DIM*jnrE;
671             j_coord_offsetF  = DIM*jnrF;
672             j_coord_offsetG  = DIM*jnrG;
673             j_coord_offsetH  = DIM*jnrH;
674
675             /* load j atom coordinates */
676             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
677                                                  x+j_coord_offsetC,x+j_coord_offsetD,
678                                                  x+j_coord_offsetE,x+j_coord_offsetF,
679                                                  x+j_coord_offsetG,x+j_coord_offsetH,
680                                                  &jx0,&jy0,&jz0);
681
682             /* Calculate displacement vector */
683             dx00             = _mm256_sub_ps(ix0,jx0);
684             dy00             = _mm256_sub_ps(iy0,jy0);
685             dz00             = _mm256_sub_ps(iz0,jz0);
686
687             /* Calculate squared distance and things based on it */
688             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
689
690             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
691
692             /* Load parameters for j particles */
693             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
694                                                                  charge+jnrC+0,charge+jnrD+0,
695                                                                  charge+jnrE+0,charge+jnrF+0,
696                                                                  charge+jnrG+0,charge+jnrH+0);
697
698             /**************************
699              * CALCULATE INTERACTIONS *
700              **************************/
701
702             r00              = _mm256_mul_ps(rsq00,rinv00);
703             r00              = _mm256_andnot_ps(dummy_mask,r00);
704
705             /* Compute parameters for interactions between i and j atoms */
706             qq00             = _mm256_mul_ps(iq0,jq0);
707
708             /* Calculate table index by multiplying r with table scale and truncate to integer */
709             rt               = _mm256_mul_ps(r00,vftabscale);
710             vfitab           = _mm256_cvttps_epi32(rt);
711             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
712             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
713             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
714             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
715             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
716             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
717
718             /* CUBIC SPLINE TABLE ELECTROSTATICS */
719             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
720                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
721             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
722                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
723             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
724                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
725             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
726                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
727             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
728             Heps             = _mm256_mul_ps(vfeps,H);
729             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
730             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
731             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
732
733             fscal            = felec;
734
735             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
736
737             /* Calculate temporary vectorial force */
738             tx               = _mm256_mul_ps(fscal,dx00);
739             ty               = _mm256_mul_ps(fscal,dy00);
740             tz               = _mm256_mul_ps(fscal,dz00);
741
742             /* Update vectorial force */
743             fix0             = _mm256_add_ps(fix0,tx);
744             fiy0             = _mm256_add_ps(fiy0,ty);
745             fiz0             = _mm256_add_ps(fiz0,tz);
746
747             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
748             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
749             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
750             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
751             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
752             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
753             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
754             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
755             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
756
757             /* Inner loop uses 40 flops */
758         }
759
760         /* End of innermost loop */
761
762         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
763                                                  f+i_coord_offset,fshift+i_shift_offset);
764
765         /* Increment number of inner iterations */
766         inneriter                  += j_index_end - j_index_start;
767
768         /* Outer loop uses 7 flops */
769     }
770
771     /* Increment number of outer iterations */
772     outeriter        += nri;
773
774     /* Update outer/inner flops */
775
776     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*40);
777 }