Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m256i          vfitab;
96     __m128i          vfitab_lo,vfitab_hi;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
99     real             *vftab;
100     __m256           dummy_mask,cutoff_mask;
101     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
102     __m256           one     = _mm256_set1_ps(1.0);
103     __m256           two     = _mm256_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm256_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117
118     vftab            = kernel_data->table_elec->data;
119     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125     j_coord_offsetC = 0;
126     j_coord_offsetD = 0;
127     j_coord_offsetE = 0;
128     j_coord_offsetF = 0;
129     j_coord_offsetG = 0;
130     j_coord_offsetH = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     for(iidx=0;iidx<4*DIM;iidx++)
136     {
137         scratch[iidx] = 0.0;
138     }
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
156
157         fix0             = _mm256_setzero_ps();
158         fiy0             = _mm256_setzero_ps();
159         fiz0             = _mm256_setzero_ps();
160
161         /* Load parameters for i particles */
162         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
163
164         /* Reset potential sums */
165         velecsum         = _mm256_setzero_ps();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             jnrC             = jjnr[jidx+2];
175             jnrD             = jjnr[jidx+3];
176             jnrE             = jjnr[jidx+4];
177             jnrF             = jjnr[jidx+5];
178             jnrG             = jjnr[jidx+6];
179             jnrH             = jjnr[jidx+7];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182             j_coord_offsetC  = DIM*jnrC;
183             j_coord_offsetD  = DIM*jnrD;
184             j_coord_offsetE  = DIM*jnrE;
185             j_coord_offsetF  = DIM*jnrF;
186             j_coord_offsetG  = DIM*jnrG;
187             j_coord_offsetH  = DIM*jnrH;
188
189             /* load j atom coordinates */
190             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
191                                                  x+j_coord_offsetC,x+j_coord_offsetD,
192                                                  x+j_coord_offsetE,x+j_coord_offsetF,
193                                                  x+j_coord_offsetG,x+j_coord_offsetH,
194                                                  &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm256_sub_ps(ix0,jx0);
198             dy00             = _mm256_sub_ps(iy0,jy0);
199             dz00             = _mm256_sub_ps(iz0,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
203
204             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
208                                                                  charge+jnrC+0,charge+jnrD+0,
209                                                                  charge+jnrE+0,charge+jnrF+0,
210                                                                  charge+jnrG+0,charge+jnrH+0);
211
212             /**************************
213              * CALCULATE INTERACTIONS *
214              **************************/
215
216             r00              = _mm256_mul_ps(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm256_mul_ps(iq0,jq0);
220
221             /* Calculate table index by multiplying r with table scale and truncate to integer */
222             rt               = _mm256_mul_ps(r00,vftabscale);
223             vfitab           = _mm256_cvttps_epi32(rt);
224             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
225             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
226             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
227             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
228             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
229             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
230
231             /* CUBIC SPLINE TABLE ELECTROSTATICS */
232             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
233                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
234             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
235                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
236             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
237                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
238             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
239                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
240             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
241             Heps             = _mm256_mul_ps(vfeps,H);
242             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
243             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
244             velec            = _mm256_mul_ps(qq00,VV);
245             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
246             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
247
248             /* Update potential sum for this i atom from the interaction with this j atom. */
249             velecsum         = _mm256_add_ps(velecsum,velec);
250
251             fscal            = felec;
252
253             /* Calculate temporary vectorial force */
254             tx               = _mm256_mul_ps(fscal,dx00);
255             ty               = _mm256_mul_ps(fscal,dy00);
256             tz               = _mm256_mul_ps(fscal,dz00);
257
258             /* Update vectorial force */
259             fix0             = _mm256_add_ps(fix0,tx);
260             fiy0             = _mm256_add_ps(fiy0,ty);
261             fiz0             = _mm256_add_ps(fiz0,tz);
262
263             fjptrA             = f+j_coord_offsetA;
264             fjptrB             = f+j_coord_offsetB;
265             fjptrC             = f+j_coord_offsetC;
266             fjptrD             = f+j_coord_offsetD;
267             fjptrE             = f+j_coord_offsetE;
268             fjptrF             = f+j_coord_offsetF;
269             fjptrG             = f+j_coord_offsetG;
270             fjptrH             = f+j_coord_offsetH;
271             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
272
273             /* Inner loop uses 43 flops */
274         }
275
276         if(jidx<j_index_end)
277         {
278
279             /* Get j neighbor index, and coordinate index */
280             jnrlistA         = jjnr[jidx];
281             jnrlistB         = jjnr[jidx+1];
282             jnrlistC         = jjnr[jidx+2];
283             jnrlistD         = jjnr[jidx+3];
284             jnrlistE         = jjnr[jidx+4];
285             jnrlistF         = jjnr[jidx+5];
286             jnrlistG         = jjnr[jidx+6];
287             jnrlistH         = jjnr[jidx+7];
288             /* Sign of each element will be negative for non-real atoms.
289              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
290              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
291              */
292             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
293                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
294                                             
295             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
296             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
297             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
298             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
299             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
300             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
301             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
302             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
303             j_coord_offsetA  = DIM*jnrA;
304             j_coord_offsetB  = DIM*jnrB;
305             j_coord_offsetC  = DIM*jnrC;
306             j_coord_offsetD  = DIM*jnrD;
307             j_coord_offsetE  = DIM*jnrE;
308             j_coord_offsetF  = DIM*jnrF;
309             j_coord_offsetG  = DIM*jnrG;
310             j_coord_offsetH  = DIM*jnrH;
311
312             /* load j atom coordinates */
313             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
314                                                  x+j_coord_offsetC,x+j_coord_offsetD,
315                                                  x+j_coord_offsetE,x+j_coord_offsetF,
316                                                  x+j_coord_offsetG,x+j_coord_offsetH,
317                                                  &jx0,&jy0,&jz0);
318
319             /* Calculate displacement vector */
320             dx00             = _mm256_sub_ps(ix0,jx0);
321             dy00             = _mm256_sub_ps(iy0,jy0);
322             dz00             = _mm256_sub_ps(iz0,jz0);
323
324             /* Calculate squared distance and things based on it */
325             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
326
327             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
328
329             /* Load parameters for j particles */
330             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
331                                                                  charge+jnrC+0,charge+jnrD+0,
332                                                                  charge+jnrE+0,charge+jnrF+0,
333                                                                  charge+jnrG+0,charge+jnrH+0);
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             r00              = _mm256_mul_ps(rsq00,rinv00);
340             r00              = _mm256_andnot_ps(dummy_mask,r00);
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq00             = _mm256_mul_ps(iq0,jq0);
344
345             /* Calculate table index by multiplying r with table scale and truncate to integer */
346             rt               = _mm256_mul_ps(r00,vftabscale);
347             vfitab           = _mm256_cvttps_epi32(rt);
348             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
349             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
350             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
351             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
352             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
353             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
354
355             /* CUBIC SPLINE TABLE ELECTROSTATICS */
356             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
357                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
358             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
359                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
360             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
361                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
362             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
363                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
364             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
365             Heps             = _mm256_mul_ps(vfeps,H);
366             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
367             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
368             velec            = _mm256_mul_ps(qq00,VV);
369             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
370             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velec            = _mm256_andnot_ps(dummy_mask,velec);
374             velecsum         = _mm256_add_ps(velecsum,velec);
375
376             fscal            = felec;
377
378             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
379
380             /* Calculate temporary vectorial force */
381             tx               = _mm256_mul_ps(fscal,dx00);
382             ty               = _mm256_mul_ps(fscal,dy00);
383             tz               = _mm256_mul_ps(fscal,dz00);
384
385             /* Update vectorial force */
386             fix0             = _mm256_add_ps(fix0,tx);
387             fiy0             = _mm256_add_ps(fiy0,ty);
388             fiz0             = _mm256_add_ps(fiz0,tz);
389
390             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
391             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
392             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
393             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
394             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
395             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
396             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
397             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
398             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
399
400             /* Inner loop uses 44 flops */
401         }
402
403         /* End of innermost loop */
404
405         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
406                                                  f+i_coord_offset,fshift+i_shift_offset);
407
408         ggid                        = gid[iidx];
409         /* Update potential energies */
410         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
411
412         /* Increment number of inner iterations */
413         inneriter                  += j_index_end - j_index_start;
414
415         /* Outer loop uses 8 flops */
416     }
417
418     /* Increment number of outer iterations */
419     outeriter        += nri;
420
421     /* Update outer/inner flops */
422
423     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*44);
424 }
425 /*
426  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_single
427  * Electrostatics interaction: CubicSplineTable
428  * VdW interaction:            None
429  * Geometry:                   Particle-Particle
430  * Calculate force/pot:        Force
431  */
432 void
433 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_single
434                     (t_nblist                    * gmx_restrict       nlist,
435                      rvec                        * gmx_restrict          xx,
436                      rvec                        * gmx_restrict          ff,
437                      t_forcerec                  * gmx_restrict          fr,
438                      t_mdatoms                   * gmx_restrict     mdatoms,
439                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
440                      t_nrnb                      * gmx_restrict        nrnb)
441 {
442     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
443      * just 0 for non-waters.
444      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
445      * jnr indices corresponding to data put in the four positions in the SIMD register.
446      */
447     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
448     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
449     int              jnrA,jnrB,jnrC,jnrD;
450     int              jnrE,jnrF,jnrG,jnrH;
451     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
452     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
453     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
454     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
455     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
456     real             rcutoff_scalar;
457     real             *shiftvec,*fshift,*x,*f;
458     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
459     real             scratch[4*DIM];
460     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
461     real *           vdwioffsetptr0;
462     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
463     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
464     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
465     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
466     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
467     real             *charge;
468     __m256i          vfitab;
469     __m128i          vfitab_lo,vfitab_hi;
470     __m128i          ifour       = _mm_set1_epi32(4);
471     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
472     real             *vftab;
473     __m256           dummy_mask,cutoff_mask;
474     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
475     __m256           one     = _mm256_set1_ps(1.0);
476     __m256           two     = _mm256_set1_ps(2.0);
477     x                = xx[0];
478     f                = ff[0];
479
480     nri              = nlist->nri;
481     iinr             = nlist->iinr;
482     jindex           = nlist->jindex;
483     jjnr             = nlist->jjnr;
484     shiftidx         = nlist->shift;
485     gid              = nlist->gid;
486     shiftvec         = fr->shift_vec[0];
487     fshift           = fr->fshift[0];
488     facel            = _mm256_set1_ps(fr->epsfac);
489     charge           = mdatoms->chargeA;
490
491     vftab            = kernel_data->table_elec->data;
492     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
493
494     /* Avoid stupid compiler warnings */
495     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
496     j_coord_offsetA = 0;
497     j_coord_offsetB = 0;
498     j_coord_offsetC = 0;
499     j_coord_offsetD = 0;
500     j_coord_offsetE = 0;
501     j_coord_offsetF = 0;
502     j_coord_offsetG = 0;
503     j_coord_offsetH = 0;
504
505     outeriter        = 0;
506     inneriter        = 0;
507
508     for(iidx=0;iidx<4*DIM;iidx++)
509     {
510         scratch[iidx] = 0.0;
511     }
512
513     /* Start outer loop over neighborlists */
514     for(iidx=0; iidx<nri; iidx++)
515     {
516         /* Load shift vector for this list */
517         i_shift_offset   = DIM*shiftidx[iidx];
518
519         /* Load limits for loop over neighbors */
520         j_index_start    = jindex[iidx];
521         j_index_end      = jindex[iidx+1];
522
523         /* Get outer coordinate index */
524         inr              = iinr[iidx];
525         i_coord_offset   = DIM*inr;
526
527         /* Load i particle coords and add shift vector */
528         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
529
530         fix0             = _mm256_setzero_ps();
531         fiy0             = _mm256_setzero_ps();
532         fiz0             = _mm256_setzero_ps();
533
534         /* Load parameters for i particles */
535         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
536
537         /* Start inner kernel loop */
538         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
539         {
540
541             /* Get j neighbor index, and coordinate index */
542             jnrA             = jjnr[jidx];
543             jnrB             = jjnr[jidx+1];
544             jnrC             = jjnr[jidx+2];
545             jnrD             = jjnr[jidx+3];
546             jnrE             = jjnr[jidx+4];
547             jnrF             = jjnr[jidx+5];
548             jnrG             = jjnr[jidx+6];
549             jnrH             = jjnr[jidx+7];
550             j_coord_offsetA  = DIM*jnrA;
551             j_coord_offsetB  = DIM*jnrB;
552             j_coord_offsetC  = DIM*jnrC;
553             j_coord_offsetD  = DIM*jnrD;
554             j_coord_offsetE  = DIM*jnrE;
555             j_coord_offsetF  = DIM*jnrF;
556             j_coord_offsetG  = DIM*jnrG;
557             j_coord_offsetH  = DIM*jnrH;
558
559             /* load j atom coordinates */
560             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
561                                                  x+j_coord_offsetC,x+j_coord_offsetD,
562                                                  x+j_coord_offsetE,x+j_coord_offsetF,
563                                                  x+j_coord_offsetG,x+j_coord_offsetH,
564                                                  &jx0,&jy0,&jz0);
565
566             /* Calculate displacement vector */
567             dx00             = _mm256_sub_ps(ix0,jx0);
568             dy00             = _mm256_sub_ps(iy0,jy0);
569             dz00             = _mm256_sub_ps(iz0,jz0);
570
571             /* Calculate squared distance and things based on it */
572             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
573
574             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
575
576             /* Load parameters for j particles */
577             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
578                                                                  charge+jnrC+0,charge+jnrD+0,
579                                                                  charge+jnrE+0,charge+jnrF+0,
580                                                                  charge+jnrG+0,charge+jnrH+0);
581
582             /**************************
583              * CALCULATE INTERACTIONS *
584              **************************/
585
586             r00              = _mm256_mul_ps(rsq00,rinv00);
587
588             /* Compute parameters for interactions between i and j atoms */
589             qq00             = _mm256_mul_ps(iq0,jq0);
590
591             /* Calculate table index by multiplying r with table scale and truncate to integer */
592             rt               = _mm256_mul_ps(r00,vftabscale);
593             vfitab           = _mm256_cvttps_epi32(rt);
594             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
595             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
596             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
597             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
598             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
599             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
600
601             /* CUBIC SPLINE TABLE ELECTROSTATICS */
602             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
603                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
604             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
605                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
606             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
607                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
608             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
609                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
610             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
611             Heps             = _mm256_mul_ps(vfeps,H);
612             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
613             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
614             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
615
616             fscal            = felec;
617
618             /* Calculate temporary vectorial force */
619             tx               = _mm256_mul_ps(fscal,dx00);
620             ty               = _mm256_mul_ps(fscal,dy00);
621             tz               = _mm256_mul_ps(fscal,dz00);
622
623             /* Update vectorial force */
624             fix0             = _mm256_add_ps(fix0,tx);
625             fiy0             = _mm256_add_ps(fiy0,ty);
626             fiz0             = _mm256_add_ps(fiz0,tz);
627
628             fjptrA             = f+j_coord_offsetA;
629             fjptrB             = f+j_coord_offsetB;
630             fjptrC             = f+j_coord_offsetC;
631             fjptrD             = f+j_coord_offsetD;
632             fjptrE             = f+j_coord_offsetE;
633             fjptrF             = f+j_coord_offsetF;
634             fjptrG             = f+j_coord_offsetG;
635             fjptrH             = f+j_coord_offsetH;
636             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
637
638             /* Inner loop uses 39 flops */
639         }
640
641         if(jidx<j_index_end)
642         {
643
644             /* Get j neighbor index, and coordinate index */
645             jnrlistA         = jjnr[jidx];
646             jnrlistB         = jjnr[jidx+1];
647             jnrlistC         = jjnr[jidx+2];
648             jnrlistD         = jjnr[jidx+3];
649             jnrlistE         = jjnr[jidx+4];
650             jnrlistF         = jjnr[jidx+5];
651             jnrlistG         = jjnr[jidx+6];
652             jnrlistH         = jjnr[jidx+7];
653             /* Sign of each element will be negative for non-real atoms.
654              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
655              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
656              */
657             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
658                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
659                                             
660             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
661             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
662             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
663             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
664             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
665             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
666             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
667             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
668             j_coord_offsetA  = DIM*jnrA;
669             j_coord_offsetB  = DIM*jnrB;
670             j_coord_offsetC  = DIM*jnrC;
671             j_coord_offsetD  = DIM*jnrD;
672             j_coord_offsetE  = DIM*jnrE;
673             j_coord_offsetF  = DIM*jnrF;
674             j_coord_offsetG  = DIM*jnrG;
675             j_coord_offsetH  = DIM*jnrH;
676
677             /* load j atom coordinates */
678             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
679                                                  x+j_coord_offsetC,x+j_coord_offsetD,
680                                                  x+j_coord_offsetE,x+j_coord_offsetF,
681                                                  x+j_coord_offsetG,x+j_coord_offsetH,
682                                                  &jx0,&jy0,&jz0);
683
684             /* Calculate displacement vector */
685             dx00             = _mm256_sub_ps(ix0,jx0);
686             dy00             = _mm256_sub_ps(iy0,jy0);
687             dz00             = _mm256_sub_ps(iz0,jz0);
688
689             /* Calculate squared distance and things based on it */
690             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
691
692             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
693
694             /* Load parameters for j particles */
695             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
696                                                                  charge+jnrC+0,charge+jnrD+0,
697                                                                  charge+jnrE+0,charge+jnrF+0,
698                                                                  charge+jnrG+0,charge+jnrH+0);
699
700             /**************************
701              * CALCULATE INTERACTIONS *
702              **************************/
703
704             r00              = _mm256_mul_ps(rsq00,rinv00);
705             r00              = _mm256_andnot_ps(dummy_mask,r00);
706
707             /* Compute parameters for interactions between i and j atoms */
708             qq00             = _mm256_mul_ps(iq0,jq0);
709
710             /* Calculate table index by multiplying r with table scale and truncate to integer */
711             rt               = _mm256_mul_ps(r00,vftabscale);
712             vfitab           = _mm256_cvttps_epi32(rt);
713             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
714             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
715             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
716             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
717             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
718             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
719
720             /* CUBIC SPLINE TABLE ELECTROSTATICS */
721             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
722                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
723             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
724                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
725             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
726                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
727             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
728                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
729             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
730             Heps             = _mm256_mul_ps(vfeps,H);
731             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
732             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
733             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
734
735             fscal            = felec;
736
737             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
738
739             /* Calculate temporary vectorial force */
740             tx               = _mm256_mul_ps(fscal,dx00);
741             ty               = _mm256_mul_ps(fscal,dy00);
742             tz               = _mm256_mul_ps(fscal,dz00);
743
744             /* Update vectorial force */
745             fix0             = _mm256_add_ps(fix0,tx);
746             fiy0             = _mm256_add_ps(fiy0,ty);
747             fiz0             = _mm256_add_ps(fiz0,tz);
748
749             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
750             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
751             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
752             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
753             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
754             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
755             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
756             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
757             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
758
759             /* Inner loop uses 40 flops */
760         }
761
762         /* End of innermost loop */
763
764         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
765                                                  f+i_coord_offset,fshift+i_shift_offset);
766
767         /* Increment number of inner iterations */
768         inneriter                  += j_index_end - j_index_start;
769
770         /* Outer loop uses 7 flops */
771     }
772
773     /* Increment number of outer iterations */
774     outeriter        += nri;
775
776     /* Update outer/inner flops */
777
778     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*40);
779 }