Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_avx_256_single
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     real *           vdwioffsetptr3;
92     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
94     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256i          vfitab;
108     __m128i          vfitab_lo,vfitab_hi;
109     __m128i          ifour       = _mm_set1_epi32(4);
110     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
111     real             *vftab;
112     __m256           dummy_mask,cutoff_mask;
113     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
114     __m256           one     = _mm256_set1_ps(1.0);
115     __m256           two     = _mm256_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm256_set1_ps(fr->ic->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     vftab            = kernel_data->table_elec->data;
134     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
135
136     /* Setup water-specific parameters */
137     inr              = nlist->iinr[0];
138     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
139     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
140     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
141     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149     j_coord_offsetE = 0;
150     j_coord_offsetF = 0;
151     j_coord_offsetG = 0;
152     j_coord_offsetH = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
179
180         fix0             = _mm256_setzero_ps();
181         fiy0             = _mm256_setzero_ps();
182         fiz0             = _mm256_setzero_ps();
183         fix1             = _mm256_setzero_ps();
184         fiy1             = _mm256_setzero_ps();
185         fiz1             = _mm256_setzero_ps();
186         fix2             = _mm256_setzero_ps();
187         fiy2             = _mm256_setzero_ps();
188         fiz2             = _mm256_setzero_ps();
189         fix3             = _mm256_setzero_ps();
190         fiy3             = _mm256_setzero_ps();
191         fiz3             = _mm256_setzero_ps();
192
193         /* Reset potential sums */
194         velecsum         = _mm256_setzero_ps();
195         vvdwsum          = _mm256_setzero_ps();
196
197         /* Start inner kernel loop */
198         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
199         {
200
201             /* Get j neighbor index, and coordinate index */
202             jnrA             = jjnr[jidx];
203             jnrB             = jjnr[jidx+1];
204             jnrC             = jjnr[jidx+2];
205             jnrD             = jjnr[jidx+3];
206             jnrE             = jjnr[jidx+4];
207             jnrF             = jjnr[jidx+5];
208             jnrG             = jjnr[jidx+6];
209             jnrH             = jjnr[jidx+7];
210             j_coord_offsetA  = DIM*jnrA;
211             j_coord_offsetB  = DIM*jnrB;
212             j_coord_offsetC  = DIM*jnrC;
213             j_coord_offsetD  = DIM*jnrD;
214             j_coord_offsetE  = DIM*jnrE;
215             j_coord_offsetF  = DIM*jnrF;
216             j_coord_offsetG  = DIM*jnrG;
217             j_coord_offsetH  = DIM*jnrH;
218
219             /* load j atom coordinates */
220             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
221                                                  x+j_coord_offsetC,x+j_coord_offsetD,
222                                                  x+j_coord_offsetE,x+j_coord_offsetF,
223                                                  x+j_coord_offsetG,x+j_coord_offsetH,
224                                                  &jx0,&jy0,&jz0);
225
226             /* Calculate displacement vector */
227             dx00             = _mm256_sub_ps(ix0,jx0);
228             dy00             = _mm256_sub_ps(iy0,jy0);
229             dz00             = _mm256_sub_ps(iz0,jz0);
230             dx10             = _mm256_sub_ps(ix1,jx0);
231             dy10             = _mm256_sub_ps(iy1,jy0);
232             dz10             = _mm256_sub_ps(iz1,jz0);
233             dx20             = _mm256_sub_ps(ix2,jx0);
234             dy20             = _mm256_sub_ps(iy2,jy0);
235             dz20             = _mm256_sub_ps(iz2,jz0);
236             dx30             = _mm256_sub_ps(ix3,jx0);
237             dy30             = _mm256_sub_ps(iy3,jy0);
238             dz30             = _mm256_sub_ps(iz3,jz0);
239
240             /* Calculate squared distance and things based on it */
241             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
242             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
243             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
244             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
245
246             rinv10           = avx256_invsqrt_f(rsq10);
247             rinv20           = avx256_invsqrt_f(rsq20);
248             rinv30           = avx256_invsqrt_f(rsq30);
249
250             rinvsq00         = avx256_inv_f(rsq00);
251
252             /* Load parameters for j particles */
253             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
254                                                                  charge+jnrC+0,charge+jnrD+0,
255                                                                  charge+jnrE+0,charge+jnrF+0,
256                                                                  charge+jnrG+0,charge+jnrH+0);
257             vdwjidx0A        = 2*vdwtype[jnrA+0];
258             vdwjidx0B        = 2*vdwtype[jnrB+0];
259             vdwjidx0C        = 2*vdwtype[jnrC+0];
260             vdwjidx0D        = 2*vdwtype[jnrD+0];
261             vdwjidx0E        = 2*vdwtype[jnrE+0];
262             vdwjidx0F        = 2*vdwtype[jnrF+0];
263             vdwjidx0G        = 2*vdwtype[jnrG+0];
264             vdwjidx0H        = 2*vdwtype[jnrH+0];
265
266             fjx0             = _mm256_setzero_ps();
267             fjy0             = _mm256_setzero_ps();
268             fjz0             = _mm256_setzero_ps();
269
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             /* Compute parameters for interactions between i and j atoms */
275             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
276                                             vdwioffsetptr0+vdwjidx0B,
277                                             vdwioffsetptr0+vdwjidx0C,
278                                             vdwioffsetptr0+vdwjidx0D,
279                                             vdwioffsetptr0+vdwjidx0E,
280                                             vdwioffsetptr0+vdwjidx0F,
281                                             vdwioffsetptr0+vdwjidx0G,
282                                             vdwioffsetptr0+vdwjidx0H,
283                                             &c6_00,&c12_00);
284
285             /* LENNARD-JONES DISPERSION/REPULSION */
286
287             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
288             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
289             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
290             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
291             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
295
296             fscal            = fvdw;
297
298             /* Calculate temporary vectorial force */
299             tx               = _mm256_mul_ps(fscal,dx00);
300             ty               = _mm256_mul_ps(fscal,dy00);
301             tz               = _mm256_mul_ps(fscal,dz00);
302
303             /* Update vectorial force */
304             fix0             = _mm256_add_ps(fix0,tx);
305             fiy0             = _mm256_add_ps(fiy0,ty);
306             fiz0             = _mm256_add_ps(fiz0,tz);
307
308             fjx0             = _mm256_add_ps(fjx0,tx);
309             fjy0             = _mm256_add_ps(fjy0,ty);
310             fjz0             = _mm256_add_ps(fjz0,tz);
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             r10              = _mm256_mul_ps(rsq10,rinv10);
317
318             /* Compute parameters for interactions between i and j atoms */
319             qq10             = _mm256_mul_ps(iq1,jq0);
320
321             /* Calculate table index by multiplying r with table scale and truncate to integer */
322             rt               = _mm256_mul_ps(r10,vftabscale);
323             vfitab           = _mm256_cvttps_epi32(rt);
324             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
325             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
326             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
327             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
328             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
329             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
330
331             /* CUBIC SPLINE TABLE ELECTROSTATICS */
332             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
333                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
334             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
335                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
336             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
337                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
338             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
339                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
340             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
341             Heps             = _mm256_mul_ps(vfeps,H);
342             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
343             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
344             velec            = _mm256_mul_ps(qq10,VV);
345             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
346             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
347
348             /* Update potential sum for this i atom from the interaction with this j atom. */
349             velecsum         = _mm256_add_ps(velecsum,velec);
350
351             fscal            = felec;
352
353             /* Calculate temporary vectorial force */
354             tx               = _mm256_mul_ps(fscal,dx10);
355             ty               = _mm256_mul_ps(fscal,dy10);
356             tz               = _mm256_mul_ps(fscal,dz10);
357
358             /* Update vectorial force */
359             fix1             = _mm256_add_ps(fix1,tx);
360             fiy1             = _mm256_add_ps(fiy1,ty);
361             fiz1             = _mm256_add_ps(fiz1,tz);
362
363             fjx0             = _mm256_add_ps(fjx0,tx);
364             fjy0             = _mm256_add_ps(fjy0,ty);
365             fjz0             = _mm256_add_ps(fjz0,tz);
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             r20              = _mm256_mul_ps(rsq20,rinv20);
372
373             /* Compute parameters for interactions between i and j atoms */
374             qq20             = _mm256_mul_ps(iq2,jq0);
375
376             /* Calculate table index by multiplying r with table scale and truncate to integer */
377             rt               = _mm256_mul_ps(r20,vftabscale);
378             vfitab           = _mm256_cvttps_epi32(rt);
379             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
380             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
381             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
382             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
383             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
384             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
385
386             /* CUBIC SPLINE TABLE ELECTROSTATICS */
387             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
388                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
389             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
390                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
391             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
392                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
393             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
394                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
395             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
396             Heps             = _mm256_mul_ps(vfeps,H);
397             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
398             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
399             velec            = _mm256_mul_ps(qq20,VV);
400             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
401             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
402
403             /* Update potential sum for this i atom from the interaction with this j atom. */
404             velecsum         = _mm256_add_ps(velecsum,velec);
405
406             fscal            = felec;
407
408             /* Calculate temporary vectorial force */
409             tx               = _mm256_mul_ps(fscal,dx20);
410             ty               = _mm256_mul_ps(fscal,dy20);
411             tz               = _mm256_mul_ps(fscal,dz20);
412
413             /* Update vectorial force */
414             fix2             = _mm256_add_ps(fix2,tx);
415             fiy2             = _mm256_add_ps(fiy2,ty);
416             fiz2             = _mm256_add_ps(fiz2,tz);
417
418             fjx0             = _mm256_add_ps(fjx0,tx);
419             fjy0             = _mm256_add_ps(fjy0,ty);
420             fjz0             = _mm256_add_ps(fjz0,tz);
421
422             /**************************
423              * CALCULATE INTERACTIONS *
424              **************************/
425
426             r30              = _mm256_mul_ps(rsq30,rinv30);
427
428             /* Compute parameters for interactions between i and j atoms */
429             qq30             = _mm256_mul_ps(iq3,jq0);
430
431             /* Calculate table index by multiplying r with table scale and truncate to integer */
432             rt               = _mm256_mul_ps(r30,vftabscale);
433             vfitab           = _mm256_cvttps_epi32(rt);
434             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
435             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
436             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
437             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
438             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
439             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
440
441             /* CUBIC SPLINE TABLE ELECTROSTATICS */
442             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
443                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
444             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
445                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
446             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
447                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
448             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
449                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
450             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
451             Heps             = _mm256_mul_ps(vfeps,H);
452             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
453             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
454             velec            = _mm256_mul_ps(qq30,VV);
455             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
456             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
457
458             /* Update potential sum for this i atom from the interaction with this j atom. */
459             velecsum         = _mm256_add_ps(velecsum,velec);
460
461             fscal            = felec;
462
463             /* Calculate temporary vectorial force */
464             tx               = _mm256_mul_ps(fscal,dx30);
465             ty               = _mm256_mul_ps(fscal,dy30);
466             tz               = _mm256_mul_ps(fscal,dz30);
467
468             /* Update vectorial force */
469             fix3             = _mm256_add_ps(fix3,tx);
470             fiy3             = _mm256_add_ps(fiy3,ty);
471             fiz3             = _mm256_add_ps(fiz3,tz);
472
473             fjx0             = _mm256_add_ps(fjx0,tx);
474             fjy0             = _mm256_add_ps(fjy0,ty);
475             fjz0             = _mm256_add_ps(fjz0,tz);
476
477             fjptrA             = f+j_coord_offsetA;
478             fjptrB             = f+j_coord_offsetB;
479             fjptrC             = f+j_coord_offsetC;
480             fjptrD             = f+j_coord_offsetD;
481             fjptrE             = f+j_coord_offsetE;
482             fjptrF             = f+j_coord_offsetF;
483             fjptrG             = f+j_coord_offsetG;
484             fjptrH             = f+j_coord_offsetH;
485
486             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
487
488             /* Inner loop uses 164 flops */
489         }
490
491         if(jidx<j_index_end)
492         {
493
494             /* Get j neighbor index, and coordinate index */
495             jnrlistA         = jjnr[jidx];
496             jnrlistB         = jjnr[jidx+1];
497             jnrlistC         = jjnr[jidx+2];
498             jnrlistD         = jjnr[jidx+3];
499             jnrlistE         = jjnr[jidx+4];
500             jnrlistF         = jjnr[jidx+5];
501             jnrlistG         = jjnr[jidx+6];
502             jnrlistH         = jjnr[jidx+7];
503             /* Sign of each element will be negative for non-real atoms.
504              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
505              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
506              */
507             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
508                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
509                                             
510             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
511             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
512             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
513             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
514             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
515             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
516             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
517             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
518             j_coord_offsetA  = DIM*jnrA;
519             j_coord_offsetB  = DIM*jnrB;
520             j_coord_offsetC  = DIM*jnrC;
521             j_coord_offsetD  = DIM*jnrD;
522             j_coord_offsetE  = DIM*jnrE;
523             j_coord_offsetF  = DIM*jnrF;
524             j_coord_offsetG  = DIM*jnrG;
525             j_coord_offsetH  = DIM*jnrH;
526
527             /* load j atom coordinates */
528             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
529                                                  x+j_coord_offsetC,x+j_coord_offsetD,
530                                                  x+j_coord_offsetE,x+j_coord_offsetF,
531                                                  x+j_coord_offsetG,x+j_coord_offsetH,
532                                                  &jx0,&jy0,&jz0);
533
534             /* Calculate displacement vector */
535             dx00             = _mm256_sub_ps(ix0,jx0);
536             dy00             = _mm256_sub_ps(iy0,jy0);
537             dz00             = _mm256_sub_ps(iz0,jz0);
538             dx10             = _mm256_sub_ps(ix1,jx0);
539             dy10             = _mm256_sub_ps(iy1,jy0);
540             dz10             = _mm256_sub_ps(iz1,jz0);
541             dx20             = _mm256_sub_ps(ix2,jx0);
542             dy20             = _mm256_sub_ps(iy2,jy0);
543             dz20             = _mm256_sub_ps(iz2,jz0);
544             dx30             = _mm256_sub_ps(ix3,jx0);
545             dy30             = _mm256_sub_ps(iy3,jy0);
546             dz30             = _mm256_sub_ps(iz3,jz0);
547
548             /* Calculate squared distance and things based on it */
549             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
550             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
551             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
552             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
553
554             rinv10           = avx256_invsqrt_f(rsq10);
555             rinv20           = avx256_invsqrt_f(rsq20);
556             rinv30           = avx256_invsqrt_f(rsq30);
557
558             rinvsq00         = avx256_inv_f(rsq00);
559
560             /* Load parameters for j particles */
561             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
562                                                                  charge+jnrC+0,charge+jnrD+0,
563                                                                  charge+jnrE+0,charge+jnrF+0,
564                                                                  charge+jnrG+0,charge+jnrH+0);
565             vdwjidx0A        = 2*vdwtype[jnrA+0];
566             vdwjidx0B        = 2*vdwtype[jnrB+0];
567             vdwjidx0C        = 2*vdwtype[jnrC+0];
568             vdwjidx0D        = 2*vdwtype[jnrD+0];
569             vdwjidx0E        = 2*vdwtype[jnrE+0];
570             vdwjidx0F        = 2*vdwtype[jnrF+0];
571             vdwjidx0G        = 2*vdwtype[jnrG+0];
572             vdwjidx0H        = 2*vdwtype[jnrH+0];
573
574             fjx0             = _mm256_setzero_ps();
575             fjy0             = _mm256_setzero_ps();
576             fjz0             = _mm256_setzero_ps();
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             /* Compute parameters for interactions between i and j atoms */
583             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
584                                             vdwioffsetptr0+vdwjidx0B,
585                                             vdwioffsetptr0+vdwjidx0C,
586                                             vdwioffsetptr0+vdwjidx0D,
587                                             vdwioffsetptr0+vdwjidx0E,
588                                             vdwioffsetptr0+vdwjidx0F,
589                                             vdwioffsetptr0+vdwjidx0G,
590                                             vdwioffsetptr0+vdwjidx0H,
591                                             &c6_00,&c12_00);
592
593             /* LENNARD-JONES DISPERSION/REPULSION */
594
595             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
596             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
597             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
598             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
599             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
600
601             /* Update potential sum for this i atom from the interaction with this j atom. */
602             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
603             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
604
605             fscal            = fvdw;
606
607             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
608
609             /* Calculate temporary vectorial force */
610             tx               = _mm256_mul_ps(fscal,dx00);
611             ty               = _mm256_mul_ps(fscal,dy00);
612             tz               = _mm256_mul_ps(fscal,dz00);
613
614             /* Update vectorial force */
615             fix0             = _mm256_add_ps(fix0,tx);
616             fiy0             = _mm256_add_ps(fiy0,ty);
617             fiz0             = _mm256_add_ps(fiz0,tz);
618
619             fjx0             = _mm256_add_ps(fjx0,tx);
620             fjy0             = _mm256_add_ps(fjy0,ty);
621             fjz0             = _mm256_add_ps(fjz0,tz);
622
623             /**************************
624              * CALCULATE INTERACTIONS *
625              **************************/
626
627             r10              = _mm256_mul_ps(rsq10,rinv10);
628             r10              = _mm256_andnot_ps(dummy_mask,r10);
629
630             /* Compute parameters for interactions between i and j atoms */
631             qq10             = _mm256_mul_ps(iq1,jq0);
632
633             /* Calculate table index by multiplying r with table scale and truncate to integer */
634             rt               = _mm256_mul_ps(r10,vftabscale);
635             vfitab           = _mm256_cvttps_epi32(rt);
636             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
637             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
638             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
639             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
640             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
641             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
642
643             /* CUBIC SPLINE TABLE ELECTROSTATICS */
644             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
645                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
646             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
647                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
648             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
649                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
650             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
651                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
652             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
653             Heps             = _mm256_mul_ps(vfeps,H);
654             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
655             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
656             velec            = _mm256_mul_ps(qq10,VV);
657             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
658             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
659
660             /* Update potential sum for this i atom from the interaction with this j atom. */
661             velec            = _mm256_andnot_ps(dummy_mask,velec);
662             velecsum         = _mm256_add_ps(velecsum,velec);
663
664             fscal            = felec;
665
666             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
667
668             /* Calculate temporary vectorial force */
669             tx               = _mm256_mul_ps(fscal,dx10);
670             ty               = _mm256_mul_ps(fscal,dy10);
671             tz               = _mm256_mul_ps(fscal,dz10);
672
673             /* Update vectorial force */
674             fix1             = _mm256_add_ps(fix1,tx);
675             fiy1             = _mm256_add_ps(fiy1,ty);
676             fiz1             = _mm256_add_ps(fiz1,tz);
677
678             fjx0             = _mm256_add_ps(fjx0,tx);
679             fjy0             = _mm256_add_ps(fjy0,ty);
680             fjz0             = _mm256_add_ps(fjz0,tz);
681
682             /**************************
683              * CALCULATE INTERACTIONS *
684              **************************/
685
686             r20              = _mm256_mul_ps(rsq20,rinv20);
687             r20              = _mm256_andnot_ps(dummy_mask,r20);
688
689             /* Compute parameters for interactions between i and j atoms */
690             qq20             = _mm256_mul_ps(iq2,jq0);
691
692             /* Calculate table index by multiplying r with table scale and truncate to integer */
693             rt               = _mm256_mul_ps(r20,vftabscale);
694             vfitab           = _mm256_cvttps_epi32(rt);
695             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
696             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
697             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
698             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
699             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
700             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
701
702             /* CUBIC SPLINE TABLE ELECTROSTATICS */
703             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
704                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
705             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
706                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
707             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
708                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
709             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
710                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
711             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
712             Heps             = _mm256_mul_ps(vfeps,H);
713             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
714             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
715             velec            = _mm256_mul_ps(qq20,VV);
716             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
717             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
718
719             /* Update potential sum for this i atom from the interaction with this j atom. */
720             velec            = _mm256_andnot_ps(dummy_mask,velec);
721             velecsum         = _mm256_add_ps(velecsum,velec);
722
723             fscal            = felec;
724
725             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
726
727             /* Calculate temporary vectorial force */
728             tx               = _mm256_mul_ps(fscal,dx20);
729             ty               = _mm256_mul_ps(fscal,dy20);
730             tz               = _mm256_mul_ps(fscal,dz20);
731
732             /* Update vectorial force */
733             fix2             = _mm256_add_ps(fix2,tx);
734             fiy2             = _mm256_add_ps(fiy2,ty);
735             fiz2             = _mm256_add_ps(fiz2,tz);
736
737             fjx0             = _mm256_add_ps(fjx0,tx);
738             fjy0             = _mm256_add_ps(fjy0,ty);
739             fjz0             = _mm256_add_ps(fjz0,tz);
740
741             /**************************
742              * CALCULATE INTERACTIONS *
743              **************************/
744
745             r30              = _mm256_mul_ps(rsq30,rinv30);
746             r30              = _mm256_andnot_ps(dummy_mask,r30);
747
748             /* Compute parameters for interactions between i and j atoms */
749             qq30             = _mm256_mul_ps(iq3,jq0);
750
751             /* Calculate table index by multiplying r with table scale and truncate to integer */
752             rt               = _mm256_mul_ps(r30,vftabscale);
753             vfitab           = _mm256_cvttps_epi32(rt);
754             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
755             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
756             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
757             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
758             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
759             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
760
761             /* CUBIC SPLINE TABLE ELECTROSTATICS */
762             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
763                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
764             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
765                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
766             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
767                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
768             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
769                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
770             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
771             Heps             = _mm256_mul_ps(vfeps,H);
772             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
773             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
774             velec            = _mm256_mul_ps(qq30,VV);
775             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
776             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
777
778             /* Update potential sum for this i atom from the interaction with this j atom. */
779             velec            = _mm256_andnot_ps(dummy_mask,velec);
780             velecsum         = _mm256_add_ps(velecsum,velec);
781
782             fscal            = felec;
783
784             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
785
786             /* Calculate temporary vectorial force */
787             tx               = _mm256_mul_ps(fscal,dx30);
788             ty               = _mm256_mul_ps(fscal,dy30);
789             tz               = _mm256_mul_ps(fscal,dz30);
790
791             /* Update vectorial force */
792             fix3             = _mm256_add_ps(fix3,tx);
793             fiy3             = _mm256_add_ps(fiy3,ty);
794             fiz3             = _mm256_add_ps(fiz3,tz);
795
796             fjx0             = _mm256_add_ps(fjx0,tx);
797             fjy0             = _mm256_add_ps(fjy0,ty);
798             fjz0             = _mm256_add_ps(fjz0,tz);
799
800             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
801             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
802             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
803             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
804             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
805             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
806             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
807             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
808
809             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
810
811             /* Inner loop uses 167 flops */
812         }
813
814         /* End of innermost loop */
815
816         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
817                                                  f+i_coord_offset,fshift+i_shift_offset);
818
819         ggid                        = gid[iidx];
820         /* Update potential energies */
821         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
822         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
823
824         /* Increment number of inner iterations */
825         inneriter                  += j_index_end - j_index_start;
826
827         /* Outer loop uses 26 flops */
828     }
829
830     /* Increment number of outer iterations */
831     outeriter        += nri;
832
833     /* Update outer/inner flops */
834
835     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*167);
836 }
837 /*
838  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_avx_256_single
839  * Electrostatics interaction: CubicSplineTable
840  * VdW interaction:            LennardJones
841  * Geometry:                   Water4-Particle
842  * Calculate force/pot:        Force
843  */
844 void
845 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_avx_256_single
846                     (t_nblist                    * gmx_restrict       nlist,
847                      rvec                        * gmx_restrict          xx,
848                      rvec                        * gmx_restrict          ff,
849                      struct t_forcerec           * gmx_restrict          fr,
850                      t_mdatoms                   * gmx_restrict     mdatoms,
851                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
852                      t_nrnb                      * gmx_restrict        nrnb)
853 {
854     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
855      * just 0 for non-waters.
856      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
857      * jnr indices corresponding to data put in the four positions in the SIMD register.
858      */
859     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
860     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
861     int              jnrA,jnrB,jnrC,jnrD;
862     int              jnrE,jnrF,jnrG,jnrH;
863     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
864     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
865     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
866     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
867     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
868     real             rcutoff_scalar;
869     real             *shiftvec,*fshift,*x,*f;
870     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
871     real             scratch[4*DIM];
872     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
873     real *           vdwioffsetptr0;
874     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
875     real *           vdwioffsetptr1;
876     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
877     real *           vdwioffsetptr2;
878     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
879     real *           vdwioffsetptr3;
880     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
881     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
882     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
883     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
884     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
885     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
886     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
887     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
888     real             *charge;
889     int              nvdwtype;
890     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
891     int              *vdwtype;
892     real             *vdwparam;
893     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
894     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
895     __m256i          vfitab;
896     __m128i          vfitab_lo,vfitab_hi;
897     __m128i          ifour       = _mm_set1_epi32(4);
898     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
899     real             *vftab;
900     __m256           dummy_mask,cutoff_mask;
901     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
902     __m256           one     = _mm256_set1_ps(1.0);
903     __m256           two     = _mm256_set1_ps(2.0);
904     x                = xx[0];
905     f                = ff[0];
906
907     nri              = nlist->nri;
908     iinr             = nlist->iinr;
909     jindex           = nlist->jindex;
910     jjnr             = nlist->jjnr;
911     shiftidx         = nlist->shift;
912     gid              = nlist->gid;
913     shiftvec         = fr->shift_vec[0];
914     fshift           = fr->fshift[0];
915     facel            = _mm256_set1_ps(fr->ic->epsfac);
916     charge           = mdatoms->chargeA;
917     nvdwtype         = fr->ntype;
918     vdwparam         = fr->nbfp;
919     vdwtype          = mdatoms->typeA;
920
921     vftab            = kernel_data->table_elec->data;
922     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
923
924     /* Setup water-specific parameters */
925     inr              = nlist->iinr[0];
926     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
927     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
928     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
929     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
930
931     /* Avoid stupid compiler warnings */
932     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
933     j_coord_offsetA = 0;
934     j_coord_offsetB = 0;
935     j_coord_offsetC = 0;
936     j_coord_offsetD = 0;
937     j_coord_offsetE = 0;
938     j_coord_offsetF = 0;
939     j_coord_offsetG = 0;
940     j_coord_offsetH = 0;
941
942     outeriter        = 0;
943     inneriter        = 0;
944
945     for(iidx=0;iidx<4*DIM;iidx++)
946     {
947         scratch[iidx] = 0.0;
948     }
949
950     /* Start outer loop over neighborlists */
951     for(iidx=0; iidx<nri; iidx++)
952     {
953         /* Load shift vector for this list */
954         i_shift_offset   = DIM*shiftidx[iidx];
955
956         /* Load limits for loop over neighbors */
957         j_index_start    = jindex[iidx];
958         j_index_end      = jindex[iidx+1];
959
960         /* Get outer coordinate index */
961         inr              = iinr[iidx];
962         i_coord_offset   = DIM*inr;
963
964         /* Load i particle coords and add shift vector */
965         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
966                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
967
968         fix0             = _mm256_setzero_ps();
969         fiy0             = _mm256_setzero_ps();
970         fiz0             = _mm256_setzero_ps();
971         fix1             = _mm256_setzero_ps();
972         fiy1             = _mm256_setzero_ps();
973         fiz1             = _mm256_setzero_ps();
974         fix2             = _mm256_setzero_ps();
975         fiy2             = _mm256_setzero_ps();
976         fiz2             = _mm256_setzero_ps();
977         fix3             = _mm256_setzero_ps();
978         fiy3             = _mm256_setzero_ps();
979         fiz3             = _mm256_setzero_ps();
980
981         /* Start inner kernel loop */
982         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
983         {
984
985             /* Get j neighbor index, and coordinate index */
986             jnrA             = jjnr[jidx];
987             jnrB             = jjnr[jidx+1];
988             jnrC             = jjnr[jidx+2];
989             jnrD             = jjnr[jidx+3];
990             jnrE             = jjnr[jidx+4];
991             jnrF             = jjnr[jidx+5];
992             jnrG             = jjnr[jidx+6];
993             jnrH             = jjnr[jidx+7];
994             j_coord_offsetA  = DIM*jnrA;
995             j_coord_offsetB  = DIM*jnrB;
996             j_coord_offsetC  = DIM*jnrC;
997             j_coord_offsetD  = DIM*jnrD;
998             j_coord_offsetE  = DIM*jnrE;
999             j_coord_offsetF  = DIM*jnrF;
1000             j_coord_offsetG  = DIM*jnrG;
1001             j_coord_offsetH  = DIM*jnrH;
1002
1003             /* load j atom coordinates */
1004             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1005                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1006                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1007                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1008                                                  &jx0,&jy0,&jz0);
1009
1010             /* Calculate displacement vector */
1011             dx00             = _mm256_sub_ps(ix0,jx0);
1012             dy00             = _mm256_sub_ps(iy0,jy0);
1013             dz00             = _mm256_sub_ps(iz0,jz0);
1014             dx10             = _mm256_sub_ps(ix1,jx0);
1015             dy10             = _mm256_sub_ps(iy1,jy0);
1016             dz10             = _mm256_sub_ps(iz1,jz0);
1017             dx20             = _mm256_sub_ps(ix2,jx0);
1018             dy20             = _mm256_sub_ps(iy2,jy0);
1019             dz20             = _mm256_sub_ps(iz2,jz0);
1020             dx30             = _mm256_sub_ps(ix3,jx0);
1021             dy30             = _mm256_sub_ps(iy3,jy0);
1022             dz30             = _mm256_sub_ps(iz3,jz0);
1023
1024             /* Calculate squared distance and things based on it */
1025             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1026             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1027             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1028             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1029
1030             rinv10           = avx256_invsqrt_f(rsq10);
1031             rinv20           = avx256_invsqrt_f(rsq20);
1032             rinv30           = avx256_invsqrt_f(rsq30);
1033
1034             rinvsq00         = avx256_inv_f(rsq00);
1035
1036             /* Load parameters for j particles */
1037             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1038                                                                  charge+jnrC+0,charge+jnrD+0,
1039                                                                  charge+jnrE+0,charge+jnrF+0,
1040                                                                  charge+jnrG+0,charge+jnrH+0);
1041             vdwjidx0A        = 2*vdwtype[jnrA+0];
1042             vdwjidx0B        = 2*vdwtype[jnrB+0];
1043             vdwjidx0C        = 2*vdwtype[jnrC+0];
1044             vdwjidx0D        = 2*vdwtype[jnrD+0];
1045             vdwjidx0E        = 2*vdwtype[jnrE+0];
1046             vdwjidx0F        = 2*vdwtype[jnrF+0];
1047             vdwjidx0G        = 2*vdwtype[jnrG+0];
1048             vdwjidx0H        = 2*vdwtype[jnrH+0];
1049
1050             fjx0             = _mm256_setzero_ps();
1051             fjy0             = _mm256_setzero_ps();
1052             fjz0             = _mm256_setzero_ps();
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             /* Compute parameters for interactions between i and j atoms */
1059             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1060                                             vdwioffsetptr0+vdwjidx0B,
1061                                             vdwioffsetptr0+vdwjidx0C,
1062                                             vdwioffsetptr0+vdwjidx0D,
1063                                             vdwioffsetptr0+vdwjidx0E,
1064                                             vdwioffsetptr0+vdwjidx0F,
1065                                             vdwioffsetptr0+vdwjidx0G,
1066                                             vdwioffsetptr0+vdwjidx0H,
1067                                             &c6_00,&c12_00);
1068
1069             /* LENNARD-JONES DISPERSION/REPULSION */
1070
1071             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1072             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1073
1074             fscal            = fvdw;
1075
1076             /* Calculate temporary vectorial force */
1077             tx               = _mm256_mul_ps(fscal,dx00);
1078             ty               = _mm256_mul_ps(fscal,dy00);
1079             tz               = _mm256_mul_ps(fscal,dz00);
1080
1081             /* Update vectorial force */
1082             fix0             = _mm256_add_ps(fix0,tx);
1083             fiy0             = _mm256_add_ps(fiy0,ty);
1084             fiz0             = _mm256_add_ps(fiz0,tz);
1085
1086             fjx0             = _mm256_add_ps(fjx0,tx);
1087             fjy0             = _mm256_add_ps(fjy0,ty);
1088             fjz0             = _mm256_add_ps(fjz0,tz);
1089
1090             /**************************
1091              * CALCULATE INTERACTIONS *
1092              **************************/
1093
1094             r10              = _mm256_mul_ps(rsq10,rinv10);
1095
1096             /* Compute parameters for interactions between i and j atoms */
1097             qq10             = _mm256_mul_ps(iq1,jq0);
1098
1099             /* Calculate table index by multiplying r with table scale and truncate to integer */
1100             rt               = _mm256_mul_ps(r10,vftabscale);
1101             vfitab           = _mm256_cvttps_epi32(rt);
1102             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1103             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1104             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1105             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1106             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1107             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1108
1109             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1110             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1111                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1112             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1113                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1114             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1115                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1116             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1117                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1118             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1119             Heps             = _mm256_mul_ps(vfeps,H);
1120             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1121             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1122             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1123
1124             fscal            = felec;
1125
1126             /* Calculate temporary vectorial force */
1127             tx               = _mm256_mul_ps(fscal,dx10);
1128             ty               = _mm256_mul_ps(fscal,dy10);
1129             tz               = _mm256_mul_ps(fscal,dz10);
1130
1131             /* Update vectorial force */
1132             fix1             = _mm256_add_ps(fix1,tx);
1133             fiy1             = _mm256_add_ps(fiy1,ty);
1134             fiz1             = _mm256_add_ps(fiz1,tz);
1135
1136             fjx0             = _mm256_add_ps(fjx0,tx);
1137             fjy0             = _mm256_add_ps(fjy0,ty);
1138             fjz0             = _mm256_add_ps(fjz0,tz);
1139
1140             /**************************
1141              * CALCULATE INTERACTIONS *
1142              **************************/
1143
1144             r20              = _mm256_mul_ps(rsq20,rinv20);
1145
1146             /* Compute parameters for interactions between i and j atoms */
1147             qq20             = _mm256_mul_ps(iq2,jq0);
1148
1149             /* Calculate table index by multiplying r with table scale and truncate to integer */
1150             rt               = _mm256_mul_ps(r20,vftabscale);
1151             vfitab           = _mm256_cvttps_epi32(rt);
1152             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1153             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1154             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1155             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1156             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1157             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1158
1159             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1160             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1161                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1162             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1163                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1164             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1165                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1166             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1167                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1168             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1169             Heps             = _mm256_mul_ps(vfeps,H);
1170             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1171             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1172             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1173
1174             fscal            = felec;
1175
1176             /* Calculate temporary vectorial force */
1177             tx               = _mm256_mul_ps(fscal,dx20);
1178             ty               = _mm256_mul_ps(fscal,dy20);
1179             tz               = _mm256_mul_ps(fscal,dz20);
1180
1181             /* Update vectorial force */
1182             fix2             = _mm256_add_ps(fix2,tx);
1183             fiy2             = _mm256_add_ps(fiy2,ty);
1184             fiz2             = _mm256_add_ps(fiz2,tz);
1185
1186             fjx0             = _mm256_add_ps(fjx0,tx);
1187             fjy0             = _mm256_add_ps(fjy0,ty);
1188             fjz0             = _mm256_add_ps(fjz0,tz);
1189
1190             /**************************
1191              * CALCULATE INTERACTIONS *
1192              **************************/
1193
1194             r30              = _mm256_mul_ps(rsq30,rinv30);
1195
1196             /* Compute parameters for interactions between i and j atoms */
1197             qq30             = _mm256_mul_ps(iq3,jq0);
1198
1199             /* Calculate table index by multiplying r with table scale and truncate to integer */
1200             rt               = _mm256_mul_ps(r30,vftabscale);
1201             vfitab           = _mm256_cvttps_epi32(rt);
1202             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1203             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1204             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1205             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1206             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1207             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1208
1209             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1210             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1211                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1212             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1213                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1214             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1215                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1216             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1217                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1218             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1219             Heps             = _mm256_mul_ps(vfeps,H);
1220             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1221             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1222             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
1223
1224             fscal            = felec;
1225
1226             /* Calculate temporary vectorial force */
1227             tx               = _mm256_mul_ps(fscal,dx30);
1228             ty               = _mm256_mul_ps(fscal,dy30);
1229             tz               = _mm256_mul_ps(fscal,dz30);
1230
1231             /* Update vectorial force */
1232             fix3             = _mm256_add_ps(fix3,tx);
1233             fiy3             = _mm256_add_ps(fiy3,ty);
1234             fiz3             = _mm256_add_ps(fiz3,tz);
1235
1236             fjx0             = _mm256_add_ps(fjx0,tx);
1237             fjy0             = _mm256_add_ps(fjy0,ty);
1238             fjz0             = _mm256_add_ps(fjz0,tz);
1239
1240             fjptrA             = f+j_coord_offsetA;
1241             fjptrB             = f+j_coord_offsetB;
1242             fjptrC             = f+j_coord_offsetC;
1243             fjptrD             = f+j_coord_offsetD;
1244             fjptrE             = f+j_coord_offsetE;
1245             fjptrF             = f+j_coord_offsetF;
1246             fjptrG             = f+j_coord_offsetG;
1247             fjptrH             = f+j_coord_offsetH;
1248
1249             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1250
1251             /* Inner loop uses 147 flops */
1252         }
1253
1254         if(jidx<j_index_end)
1255         {
1256
1257             /* Get j neighbor index, and coordinate index */
1258             jnrlistA         = jjnr[jidx];
1259             jnrlistB         = jjnr[jidx+1];
1260             jnrlistC         = jjnr[jidx+2];
1261             jnrlistD         = jjnr[jidx+3];
1262             jnrlistE         = jjnr[jidx+4];
1263             jnrlistF         = jjnr[jidx+5];
1264             jnrlistG         = jjnr[jidx+6];
1265             jnrlistH         = jjnr[jidx+7];
1266             /* Sign of each element will be negative for non-real atoms.
1267              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1268              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1269              */
1270             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1271                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1272                                             
1273             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1274             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1275             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1276             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1277             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1278             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1279             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1280             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1281             j_coord_offsetA  = DIM*jnrA;
1282             j_coord_offsetB  = DIM*jnrB;
1283             j_coord_offsetC  = DIM*jnrC;
1284             j_coord_offsetD  = DIM*jnrD;
1285             j_coord_offsetE  = DIM*jnrE;
1286             j_coord_offsetF  = DIM*jnrF;
1287             j_coord_offsetG  = DIM*jnrG;
1288             j_coord_offsetH  = DIM*jnrH;
1289
1290             /* load j atom coordinates */
1291             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1292                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1293                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1294                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1295                                                  &jx0,&jy0,&jz0);
1296
1297             /* Calculate displacement vector */
1298             dx00             = _mm256_sub_ps(ix0,jx0);
1299             dy00             = _mm256_sub_ps(iy0,jy0);
1300             dz00             = _mm256_sub_ps(iz0,jz0);
1301             dx10             = _mm256_sub_ps(ix1,jx0);
1302             dy10             = _mm256_sub_ps(iy1,jy0);
1303             dz10             = _mm256_sub_ps(iz1,jz0);
1304             dx20             = _mm256_sub_ps(ix2,jx0);
1305             dy20             = _mm256_sub_ps(iy2,jy0);
1306             dz20             = _mm256_sub_ps(iz2,jz0);
1307             dx30             = _mm256_sub_ps(ix3,jx0);
1308             dy30             = _mm256_sub_ps(iy3,jy0);
1309             dz30             = _mm256_sub_ps(iz3,jz0);
1310
1311             /* Calculate squared distance and things based on it */
1312             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1313             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1314             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1315             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1316
1317             rinv10           = avx256_invsqrt_f(rsq10);
1318             rinv20           = avx256_invsqrt_f(rsq20);
1319             rinv30           = avx256_invsqrt_f(rsq30);
1320
1321             rinvsq00         = avx256_inv_f(rsq00);
1322
1323             /* Load parameters for j particles */
1324             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1325                                                                  charge+jnrC+0,charge+jnrD+0,
1326                                                                  charge+jnrE+0,charge+jnrF+0,
1327                                                                  charge+jnrG+0,charge+jnrH+0);
1328             vdwjidx0A        = 2*vdwtype[jnrA+0];
1329             vdwjidx0B        = 2*vdwtype[jnrB+0];
1330             vdwjidx0C        = 2*vdwtype[jnrC+0];
1331             vdwjidx0D        = 2*vdwtype[jnrD+0];
1332             vdwjidx0E        = 2*vdwtype[jnrE+0];
1333             vdwjidx0F        = 2*vdwtype[jnrF+0];
1334             vdwjidx0G        = 2*vdwtype[jnrG+0];
1335             vdwjidx0H        = 2*vdwtype[jnrH+0];
1336
1337             fjx0             = _mm256_setzero_ps();
1338             fjy0             = _mm256_setzero_ps();
1339             fjz0             = _mm256_setzero_ps();
1340
1341             /**************************
1342              * CALCULATE INTERACTIONS *
1343              **************************/
1344
1345             /* Compute parameters for interactions between i and j atoms */
1346             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1347                                             vdwioffsetptr0+vdwjidx0B,
1348                                             vdwioffsetptr0+vdwjidx0C,
1349                                             vdwioffsetptr0+vdwjidx0D,
1350                                             vdwioffsetptr0+vdwjidx0E,
1351                                             vdwioffsetptr0+vdwjidx0F,
1352                                             vdwioffsetptr0+vdwjidx0G,
1353                                             vdwioffsetptr0+vdwjidx0H,
1354                                             &c6_00,&c12_00);
1355
1356             /* LENNARD-JONES DISPERSION/REPULSION */
1357
1358             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1359             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1360
1361             fscal            = fvdw;
1362
1363             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1364
1365             /* Calculate temporary vectorial force */
1366             tx               = _mm256_mul_ps(fscal,dx00);
1367             ty               = _mm256_mul_ps(fscal,dy00);
1368             tz               = _mm256_mul_ps(fscal,dz00);
1369
1370             /* Update vectorial force */
1371             fix0             = _mm256_add_ps(fix0,tx);
1372             fiy0             = _mm256_add_ps(fiy0,ty);
1373             fiz0             = _mm256_add_ps(fiz0,tz);
1374
1375             fjx0             = _mm256_add_ps(fjx0,tx);
1376             fjy0             = _mm256_add_ps(fjy0,ty);
1377             fjz0             = _mm256_add_ps(fjz0,tz);
1378
1379             /**************************
1380              * CALCULATE INTERACTIONS *
1381              **************************/
1382
1383             r10              = _mm256_mul_ps(rsq10,rinv10);
1384             r10              = _mm256_andnot_ps(dummy_mask,r10);
1385
1386             /* Compute parameters for interactions between i and j atoms */
1387             qq10             = _mm256_mul_ps(iq1,jq0);
1388
1389             /* Calculate table index by multiplying r with table scale and truncate to integer */
1390             rt               = _mm256_mul_ps(r10,vftabscale);
1391             vfitab           = _mm256_cvttps_epi32(rt);
1392             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1393             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1394             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1395             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1396             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1397             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1398
1399             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1400             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1401                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1402             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1403                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1404             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1405                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1406             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1407                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1408             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1409             Heps             = _mm256_mul_ps(vfeps,H);
1410             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1411             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1412             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1413
1414             fscal            = felec;
1415
1416             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1417
1418             /* Calculate temporary vectorial force */
1419             tx               = _mm256_mul_ps(fscal,dx10);
1420             ty               = _mm256_mul_ps(fscal,dy10);
1421             tz               = _mm256_mul_ps(fscal,dz10);
1422
1423             /* Update vectorial force */
1424             fix1             = _mm256_add_ps(fix1,tx);
1425             fiy1             = _mm256_add_ps(fiy1,ty);
1426             fiz1             = _mm256_add_ps(fiz1,tz);
1427
1428             fjx0             = _mm256_add_ps(fjx0,tx);
1429             fjy0             = _mm256_add_ps(fjy0,ty);
1430             fjz0             = _mm256_add_ps(fjz0,tz);
1431
1432             /**************************
1433              * CALCULATE INTERACTIONS *
1434              **************************/
1435
1436             r20              = _mm256_mul_ps(rsq20,rinv20);
1437             r20              = _mm256_andnot_ps(dummy_mask,r20);
1438
1439             /* Compute parameters for interactions between i and j atoms */
1440             qq20             = _mm256_mul_ps(iq2,jq0);
1441
1442             /* Calculate table index by multiplying r with table scale and truncate to integer */
1443             rt               = _mm256_mul_ps(r20,vftabscale);
1444             vfitab           = _mm256_cvttps_epi32(rt);
1445             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1446             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1447             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1448             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1449             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1450             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1451
1452             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1453             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1454                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1455             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1456                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1457             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1458                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1459             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1460                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1461             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1462             Heps             = _mm256_mul_ps(vfeps,H);
1463             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1464             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1465             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1466
1467             fscal            = felec;
1468
1469             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1470
1471             /* Calculate temporary vectorial force */
1472             tx               = _mm256_mul_ps(fscal,dx20);
1473             ty               = _mm256_mul_ps(fscal,dy20);
1474             tz               = _mm256_mul_ps(fscal,dz20);
1475
1476             /* Update vectorial force */
1477             fix2             = _mm256_add_ps(fix2,tx);
1478             fiy2             = _mm256_add_ps(fiy2,ty);
1479             fiz2             = _mm256_add_ps(fiz2,tz);
1480
1481             fjx0             = _mm256_add_ps(fjx0,tx);
1482             fjy0             = _mm256_add_ps(fjy0,ty);
1483             fjz0             = _mm256_add_ps(fjz0,tz);
1484
1485             /**************************
1486              * CALCULATE INTERACTIONS *
1487              **************************/
1488
1489             r30              = _mm256_mul_ps(rsq30,rinv30);
1490             r30              = _mm256_andnot_ps(dummy_mask,r30);
1491
1492             /* Compute parameters for interactions between i and j atoms */
1493             qq30             = _mm256_mul_ps(iq3,jq0);
1494
1495             /* Calculate table index by multiplying r with table scale and truncate to integer */
1496             rt               = _mm256_mul_ps(r30,vftabscale);
1497             vfitab           = _mm256_cvttps_epi32(rt);
1498             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1499             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1500             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1501             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1502             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1503             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1504
1505             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1506             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1507                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1508             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1509                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1510             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1511                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1512             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1513                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1514             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1515             Heps             = _mm256_mul_ps(vfeps,H);
1516             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1517             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1518             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
1519
1520             fscal            = felec;
1521
1522             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1523
1524             /* Calculate temporary vectorial force */
1525             tx               = _mm256_mul_ps(fscal,dx30);
1526             ty               = _mm256_mul_ps(fscal,dy30);
1527             tz               = _mm256_mul_ps(fscal,dz30);
1528
1529             /* Update vectorial force */
1530             fix3             = _mm256_add_ps(fix3,tx);
1531             fiy3             = _mm256_add_ps(fiy3,ty);
1532             fiz3             = _mm256_add_ps(fiz3,tz);
1533
1534             fjx0             = _mm256_add_ps(fjx0,tx);
1535             fjy0             = _mm256_add_ps(fjy0,ty);
1536             fjz0             = _mm256_add_ps(fjz0,tz);
1537
1538             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1539             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1540             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1541             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1542             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1543             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1544             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1545             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1546
1547             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1548
1549             /* Inner loop uses 150 flops */
1550         }
1551
1552         /* End of innermost loop */
1553
1554         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1555                                                  f+i_coord_offset,fshift+i_shift_offset);
1556
1557         /* Increment number of inner iterations */
1558         inneriter                  += j_index_end - j_index_start;
1559
1560         /* Outer loop uses 24 flops */
1561     }
1562
1563     /* Increment number of outer iterations */
1564     outeriter        += nri;
1565
1566     /* Update outer/inner flops */
1567
1568     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*150);
1569 }