4f7c265ccd53bfd1e5c47851afc148ae26edc8c0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_avx_256_single
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
107     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
108     __m256i          vfitab;
109     __m128i          vfitab_lo,vfitab_hi;
110     __m128i          ifour       = _mm_set1_epi32(4);
111     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
112     real             *vftab;
113     __m256           dummy_mask,cutoff_mask;
114     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
115     __m256           one     = _mm256_set1_ps(1.0);
116     __m256           two     = _mm256_set1_ps(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm256_set1_ps(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133
134     vftab            = kernel_data->table_elec->data;
135     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
136
137     /* Setup water-specific parameters */
138     inr              = nlist->iinr[0];
139     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
140     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
141     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
142     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150     j_coord_offsetE = 0;
151     j_coord_offsetF = 0;
152     j_coord_offsetG = 0;
153     j_coord_offsetH = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
179                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
180
181         fix0             = _mm256_setzero_ps();
182         fiy0             = _mm256_setzero_ps();
183         fiz0             = _mm256_setzero_ps();
184         fix1             = _mm256_setzero_ps();
185         fiy1             = _mm256_setzero_ps();
186         fiz1             = _mm256_setzero_ps();
187         fix2             = _mm256_setzero_ps();
188         fiy2             = _mm256_setzero_ps();
189         fiz2             = _mm256_setzero_ps();
190         fix3             = _mm256_setzero_ps();
191         fiy3             = _mm256_setzero_ps();
192         fiz3             = _mm256_setzero_ps();
193
194         /* Reset potential sums */
195         velecsum         = _mm256_setzero_ps();
196         vvdwsum          = _mm256_setzero_ps();
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
200         {
201
202             /* Get j neighbor index, and coordinate index */
203             jnrA             = jjnr[jidx];
204             jnrB             = jjnr[jidx+1];
205             jnrC             = jjnr[jidx+2];
206             jnrD             = jjnr[jidx+3];
207             jnrE             = jjnr[jidx+4];
208             jnrF             = jjnr[jidx+5];
209             jnrG             = jjnr[jidx+6];
210             jnrH             = jjnr[jidx+7];
211             j_coord_offsetA  = DIM*jnrA;
212             j_coord_offsetB  = DIM*jnrB;
213             j_coord_offsetC  = DIM*jnrC;
214             j_coord_offsetD  = DIM*jnrD;
215             j_coord_offsetE  = DIM*jnrE;
216             j_coord_offsetF  = DIM*jnrF;
217             j_coord_offsetG  = DIM*jnrG;
218             j_coord_offsetH  = DIM*jnrH;
219
220             /* load j atom coordinates */
221             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
222                                                  x+j_coord_offsetC,x+j_coord_offsetD,
223                                                  x+j_coord_offsetE,x+j_coord_offsetF,
224                                                  x+j_coord_offsetG,x+j_coord_offsetH,
225                                                  &jx0,&jy0,&jz0);
226
227             /* Calculate displacement vector */
228             dx00             = _mm256_sub_ps(ix0,jx0);
229             dy00             = _mm256_sub_ps(iy0,jy0);
230             dz00             = _mm256_sub_ps(iz0,jz0);
231             dx10             = _mm256_sub_ps(ix1,jx0);
232             dy10             = _mm256_sub_ps(iy1,jy0);
233             dz10             = _mm256_sub_ps(iz1,jz0);
234             dx20             = _mm256_sub_ps(ix2,jx0);
235             dy20             = _mm256_sub_ps(iy2,jy0);
236             dz20             = _mm256_sub_ps(iz2,jz0);
237             dx30             = _mm256_sub_ps(ix3,jx0);
238             dy30             = _mm256_sub_ps(iy3,jy0);
239             dz30             = _mm256_sub_ps(iz3,jz0);
240
241             /* Calculate squared distance and things based on it */
242             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
243             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
244             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
245             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
246
247             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
248             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
249             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
250
251             rinvsq00         = gmx_mm256_inv_ps(rsq00);
252
253             /* Load parameters for j particles */
254             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
255                                                                  charge+jnrC+0,charge+jnrD+0,
256                                                                  charge+jnrE+0,charge+jnrF+0,
257                                                                  charge+jnrG+0,charge+jnrH+0);
258             vdwjidx0A        = 2*vdwtype[jnrA+0];
259             vdwjidx0B        = 2*vdwtype[jnrB+0];
260             vdwjidx0C        = 2*vdwtype[jnrC+0];
261             vdwjidx0D        = 2*vdwtype[jnrD+0];
262             vdwjidx0E        = 2*vdwtype[jnrE+0];
263             vdwjidx0F        = 2*vdwtype[jnrF+0];
264             vdwjidx0G        = 2*vdwtype[jnrG+0];
265             vdwjidx0H        = 2*vdwtype[jnrH+0];
266
267             fjx0             = _mm256_setzero_ps();
268             fjy0             = _mm256_setzero_ps();
269             fjz0             = _mm256_setzero_ps();
270
271             /**************************
272              * CALCULATE INTERACTIONS *
273              **************************/
274
275             /* Compute parameters for interactions between i and j atoms */
276             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
277                                             vdwioffsetptr0+vdwjidx0B,
278                                             vdwioffsetptr0+vdwjidx0C,
279                                             vdwioffsetptr0+vdwjidx0D,
280                                             vdwioffsetptr0+vdwjidx0E,
281                                             vdwioffsetptr0+vdwjidx0F,
282                                             vdwioffsetptr0+vdwjidx0G,
283                                             vdwioffsetptr0+vdwjidx0H,
284                                             &c6_00,&c12_00);
285
286             /* LENNARD-JONES DISPERSION/REPULSION */
287
288             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
289             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
290             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
291             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
292             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
296
297             fscal            = fvdw;
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm256_mul_ps(fscal,dx00);
301             ty               = _mm256_mul_ps(fscal,dy00);
302             tz               = _mm256_mul_ps(fscal,dz00);
303
304             /* Update vectorial force */
305             fix0             = _mm256_add_ps(fix0,tx);
306             fiy0             = _mm256_add_ps(fiy0,ty);
307             fiz0             = _mm256_add_ps(fiz0,tz);
308
309             fjx0             = _mm256_add_ps(fjx0,tx);
310             fjy0             = _mm256_add_ps(fjy0,ty);
311             fjz0             = _mm256_add_ps(fjz0,tz);
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             r10              = _mm256_mul_ps(rsq10,rinv10);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq10             = _mm256_mul_ps(iq1,jq0);
321
322             /* Calculate table index by multiplying r with table scale and truncate to integer */
323             rt               = _mm256_mul_ps(r10,vftabscale);
324             vfitab           = _mm256_cvttps_epi32(rt);
325             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
326             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
327             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
328             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
329             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
330             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
331
332             /* CUBIC SPLINE TABLE ELECTROSTATICS */
333             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
334                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
335             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
336                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
337             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
338                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
339             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
340                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
341             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
342             Heps             = _mm256_mul_ps(vfeps,H);
343             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
344             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
345             velec            = _mm256_mul_ps(qq10,VV);
346             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
347             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
348
349             /* Update potential sum for this i atom from the interaction with this j atom. */
350             velecsum         = _mm256_add_ps(velecsum,velec);
351
352             fscal            = felec;
353
354             /* Calculate temporary vectorial force */
355             tx               = _mm256_mul_ps(fscal,dx10);
356             ty               = _mm256_mul_ps(fscal,dy10);
357             tz               = _mm256_mul_ps(fscal,dz10);
358
359             /* Update vectorial force */
360             fix1             = _mm256_add_ps(fix1,tx);
361             fiy1             = _mm256_add_ps(fiy1,ty);
362             fiz1             = _mm256_add_ps(fiz1,tz);
363
364             fjx0             = _mm256_add_ps(fjx0,tx);
365             fjy0             = _mm256_add_ps(fjy0,ty);
366             fjz0             = _mm256_add_ps(fjz0,tz);
367
368             /**************************
369              * CALCULATE INTERACTIONS *
370              **************************/
371
372             r20              = _mm256_mul_ps(rsq20,rinv20);
373
374             /* Compute parameters for interactions between i and j atoms */
375             qq20             = _mm256_mul_ps(iq2,jq0);
376
377             /* Calculate table index by multiplying r with table scale and truncate to integer */
378             rt               = _mm256_mul_ps(r20,vftabscale);
379             vfitab           = _mm256_cvttps_epi32(rt);
380             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
381             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
382             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
383             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
384             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
385             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
386
387             /* CUBIC SPLINE TABLE ELECTROSTATICS */
388             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
389                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
390             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
391                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
392             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
393                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
394             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
395                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
396             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
397             Heps             = _mm256_mul_ps(vfeps,H);
398             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
399             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
400             velec            = _mm256_mul_ps(qq20,VV);
401             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
402             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velecsum         = _mm256_add_ps(velecsum,velec);
406
407             fscal            = felec;
408
409             /* Calculate temporary vectorial force */
410             tx               = _mm256_mul_ps(fscal,dx20);
411             ty               = _mm256_mul_ps(fscal,dy20);
412             tz               = _mm256_mul_ps(fscal,dz20);
413
414             /* Update vectorial force */
415             fix2             = _mm256_add_ps(fix2,tx);
416             fiy2             = _mm256_add_ps(fiy2,ty);
417             fiz2             = _mm256_add_ps(fiz2,tz);
418
419             fjx0             = _mm256_add_ps(fjx0,tx);
420             fjy0             = _mm256_add_ps(fjy0,ty);
421             fjz0             = _mm256_add_ps(fjz0,tz);
422
423             /**************************
424              * CALCULATE INTERACTIONS *
425              **************************/
426
427             r30              = _mm256_mul_ps(rsq30,rinv30);
428
429             /* Compute parameters for interactions between i and j atoms */
430             qq30             = _mm256_mul_ps(iq3,jq0);
431
432             /* Calculate table index by multiplying r with table scale and truncate to integer */
433             rt               = _mm256_mul_ps(r30,vftabscale);
434             vfitab           = _mm256_cvttps_epi32(rt);
435             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
436             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
437             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
438             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
439             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
440             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
441
442             /* CUBIC SPLINE TABLE ELECTROSTATICS */
443             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
444                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
445             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
446                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
447             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
448                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
449             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
450                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
451             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
452             Heps             = _mm256_mul_ps(vfeps,H);
453             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
454             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
455             velec            = _mm256_mul_ps(qq30,VV);
456             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
457             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
458
459             /* Update potential sum for this i atom from the interaction with this j atom. */
460             velecsum         = _mm256_add_ps(velecsum,velec);
461
462             fscal            = felec;
463
464             /* Calculate temporary vectorial force */
465             tx               = _mm256_mul_ps(fscal,dx30);
466             ty               = _mm256_mul_ps(fscal,dy30);
467             tz               = _mm256_mul_ps(fscal,dz30);
468
469             /* Update vectorial force */
470             fix3             = _mm256_add_ps(fix3,tx);
471             fiy3             = _mm256_add_ps(fiy3,ty);
472             fiz3             = _mm256_add_ps(fiz3,tz);
473
474             fjx0             = _mm256_add_ps(fjx0,tx);
475             fjy0             = _mm256_add_ps(fjy0,ty);
476             fjz0             = _mm256_add_ps(fjz0,tz);
477
478             fjptrA             = f+j_coord_offsetA;
479             fjptrB             = f+j_coord_offsetB;
480             fjptrC             = f+j_coord_offsetC;
481             fjptrD             = f+j_coord_offsetD;
482             fjptrE             = f+j_coord_offsetE;
483             fjptrF             = f+j_coord_offsetF;
484             fjptrG             = f+j_coord_offsetG;
485             fjptrH             = f+j_coord_offsetH;
486
487             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
488
489             /* Inner loop uses 164 flops */
490         }
491
492         if(jidx<j_index_end)
493         {
494
495             /* Get j neighbor index, and coordinate index */
496             jnrlistA         = jjnr[jidx];
497             jnrlistB         = jjnr[jidx+1];
498             jnrlistC         = jjnr[jidx+2];
499             jnrlistD         = jjnr[jidx+3];
500             jnrlistE         = jjnr[jidx+4];
501             jnrlistF         = jjnr[jidx+5];
502             jnrlistG         = jjnr[jidx+6];
503             jnrlistH         = jjnr[jidx+7];
504             /* Sign of each element will be negative for non-real atoms.
505              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
506              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
507              */
508             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
509                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
510                                             
511             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
512             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
513             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
514             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
515             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
516             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
517             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
518             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
519             j_coord_offsetA  = DIM*jnrA;
520             j_coord_offsetB  = DIM*jnrB;
521             j_coord_offsetC  = DIM*jnrC;
522             j_coord_offsetD  = DIM*jnrD;
523             j_coord_offsetE  = DIM*jnrE;
524             j_coord_offsetF  = DIM*jnrF;
525             j_coord_offsetG  = DIM*jnrG;
526             j_coord_offsetH  = DIM*jnrH;
527
528             /* load j atom coordinates */
529             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
530                                                  x+j_coord_offsetC,x+j_coord_offsetD,
531                                                  x+j_coord_offsetE,x+j_coord_offsetF,
532                                                  x+j_coord_offsetG,x+j_coord_offsetH,
533                                                  &jx0,&jy0,&jz0);
534
535             /* Calculate displacement vector */
536             dx00             = _mm256_sub_ps(ix0,jx0);
537             dy00             = _mm256_sub_ps(iy0,jy0);
538             dz00             = _mm256_sub_ps(iz0,jz0);
539             dx10             = _mm256_sub_ps(ix1,jx0);
540             dy10             = _mm256_sub_ps(iy1,jy0);
541             dz10             = _mm256_sub_ps(iz1,jz0);
542             dx20             = _mm256_sub_ps(ix2,jx0);
543             dy20             = _mm256_sub_ps(iy2,jy0);
544             dz20             = _mm256_sub_ps(iz2,jz0);
545             dx30             = _mm256_sub_ps(ix3,jx0);
546             dy30             = _mm256_sub_ps(iy3,jy0);
547             dz30             = _mm256_sub_ps(iz3,jz0);
548
549             /* Calculate squared distance and things based on it */
550             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
551             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
552             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
553             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
554
555             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
556             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
557             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
558
559             rinvsq00         = gmx_mm256_inv_ps(rsq00);
560
561             /* Load parameters for j particles */
562             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
563                                                                  charge+jnrC+0,charge+jnrD+0,
564                                                                  charge+jnrE+0,charge+jnrF+0,
565                                                                  charge+jnrG+0,charge+jnrH+0);
566             vdwjidx0A        = 2*vdwtype[jnrA+0];
567             vdwjidx0B        = 2*vdwtype[jnrB+0];
568             vdwjidx0C        = 2*vdwtype[jnrC+0];
569             vdwjidx0D        = 2*vdwtype[jnrD+0];
570             vdwjidx0E        = 2*vdwtype[jnrE+0];
571             vdwjidx0F        = 2*vdwtype[jnrF+0];
572             vdwjidx0G        = 2*vdwtype[jnrG+0];
573             vdwjidx0H        = 2*vdwtype[jnrH+0];
574
575             fjx0             = _mm256_setzero_ps();
576             fjy0             = _mm256_setzero_ps();
577             fjz0             = _mm256_setzero_ps();
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             /* Compute parameters for interactions between i and j atoms */
584             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
585                                             vdwioffsetptr0+vdwjidx0B,
586                                             vdwioffsetptr0+vdwjidx0C,
587                                             vdwioffsetptr0+vdwjidx0D,
588                                             vdwioffsetptr0+vdwjidx0E,
589                                             vdwioffsetptr0+vdwjidx0F,
590                                             vdwioffsetptr0+vdwjidx0G,
591                                             vdwioffsetptr0+vdwjidx0H,
592                                             &c6_00,&c12_00);
593
594             /* LENNARD-JONES DISPERSION/REPULSION */
595
596             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
597             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
598             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
599             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
600             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
601
602             /* Update potential sum for this i atom from the interaction with this j atom. */
603             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
604             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
605
606             fscal            = fvdw;
607
608             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
609
610             /* Calculate temporary vectorial force */
611             tx               = _mm256_mul_ps(fscal,dx00);
612             ty               = _mm256_mul_ps(fscal,dy00);
613             tz               = _mm256_mul_ps(fscal,dz00);
614
615             /* Update vectorial force */
616             fix0             = _mm256_add_ps(fix0,tx);
617             fiy0             = _mm256_add_ps(fiy0,ty);
618             fiz0             = _mm256_add_ps(fiz0,tz);
619
620             fjx0             = _mm256_add_ps(fjx0,tx);
621             fjy0             = _mm256_add_ps(fjy0,ty);
622             fjz0             = _mm256_add_ps(fjz0,tz);
623
624             /**************************
625              * CALCULATE INTERACTIONS *
626              **************************/
627
628             r10              = _mm256_mul_ps(rsq10,rinv10);
629             r10              = _mm256_andnot_ps(dummy_mask,r10);
630
631             /* Compute parameters for interactions between i and j atoms */
632             qq10             = _mm256_mul_ps(iq1,jq0);
633
634             /* Calculate table index by multiplying r with table scale and truncate to integer */
635             rt               = _mm256_mul_ps(r10,vftabscale);
636             vfitab           = _mm256_cvttps_epi32(rt);
637             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
638             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
639             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
640             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
641             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
642             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
643
644             /* CUBIC SPLINE TABLE ELECTROSTATICS */
645             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
646                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
647             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
648                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
649             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
650                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
651             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
652                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
653             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
654             Heps             = _mm256_mul_ps(vfeps,H);
655             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
656             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
657             velec            = _mm256_mul_ps(qq10,VV);
658             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
659             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
660
661             /* Update potential sum for this i atom from the interaction with this j atom. */
662             velec            = _mm256_andnot_ps(dummy_mask,velec);
663             velecsum         = _mm256_add_ps(velecsum,velec);
664
665             fscal            = felec;
666
667             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
668
669             /* Calculate temporary vectorial force */
670             tx               = _mm256_mul_ps(fscal,dx10);
671             ty               = _mm256_mul_ps(fscal,dy10);
672             tz               = _mm256_mul_ps(fscal,dz10);
673
674             /* Update vectorial force */
675             fix1             = _mm256_add_ps(fix1,tx);
676             fiy1             = _mm256_add_ps(fiy1,ty);
677             fiz1             = _mm256_add_ps(fiz1,tz);
678
679             fjx0             = _mm256_add_ps(fjx0,tx);
680             fjy0             = _mm256_add_ps(fjy0,ty);
681             fjz0             = _mm256_add_ps(fjz0,tz);
682
683             /**************************
684              * CALCULATE INTERACTIONS *
685              **************************/
686
687             r20              = _mm256_mul_ps(rsq20,rinv20);
688             r20              = _mm256_andnot_ps(dummy_mask,r20);
689
690             /* Compute parameters for interactions between i and j atoms */
691             qq20             = _mm256_mul_ps(iq2,jq0);
692
693             /* Calculate table index by multiplying r with table scale and truncate to integer */
694             rt               = _mm256_mul_ps(r20,vftabscale);
695             vfitab           = _mm256_cvttps_epi32(rt);
696             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
697             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
698             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
699             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
700             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
701             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
702
703             /* CUBIC SPLINE TABLE ELECTROSTATICS */
704             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
705                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
706             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
707                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
708             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
709                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
710             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
711                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
712             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
713             Heps             = _mm256_mul_ps(vfeps,H);
714             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
715             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
716             velec            = _mm256_mul_ps(qq20,VV);
717             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
718             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
719
720             /* Update potential sum for this i atom from the interaction with this j atom. */
721             velec            = _mm256_andnot_ps(dummy_mask,velec);
722             velecsum         = _mm256_add_ps(velecsum,velec);
723
724             fscal            = felec;
725
726             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
727
728             /* Calculate temporary vectorial force */
729             tx               = _mm256_mul_ps(fscal,dx20);
730             ty               = _mm256_mul_ps(fscal,dy20);
731             tz               = _mm256_mul_ps(fscal,dz20);
732
733             /* Update vectorial force */
734             fix2             = _mm256_add_ps(fix2,tx);
735             fiy2             = _mm256_add_ps(fiy2,ty);
736             fiz2             = _mm256_add_ps(fiz2,tz);
737
738             fjx0             = _mm256_add_ps(fjx0,tx);
739             fjy0             = _mm256_add_ps(fjy0,ty);
740             fjz0             = _mm256_add_ps(fjz0,tz);
741
742             /**************************
743              * CALCULATE INTERACTIONS *
744              **************************/
745
746             r30              = _mm256_mul_ps(rsq30,rinv30);
747             r30              = _mm256_andnot_ps(dummy_mask,r30);
748
749             /* Compute parameters for interactions between i and j atoms */
750             qq30             = _mm256_mul_ps(iq3,jq0);
751
752             /* Calculate table index by multiplying r with table scale and truncate to integer */
753             rt               = _mm256_mul_ps(r30,vftabscale);
754             vfitab           = _mm256_cvttps_epi32(rt);
755             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
756             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
757             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
758             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
759             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
760             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
761
762             /* CUBIC SPLINE TABLE ELECTROSTATICS */
763             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
764                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
765             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
766                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
767             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
768                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
769             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
770                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
771             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
772             Heps             = _mm256_mul_ps(vfeps,H);
773             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
774             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
775             velec            = _mm256_mul_ps(qq30,VV);
776             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
777             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
778
779             /* Update potential sum for this i atom from the interaction with this j atom. */
780             velec            = _mm256_andnot_ps(dummy_mask,velec);
781             velecsum         = _mm256_add_ps(velecsum,velec);
782
783             fscal            = felec;
784
785             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
786
787             /* Calculate temporary vectorial force */
788             tx               = _mm256_mul_ps(fscal,dx30);
789             ty               = _mm256_mul_ps(fscal,dy30);
790             tz               = _mm256_mul_ps(fscal,dz30);
791
792             /* Update vectorial force */
793             fix3             = _mm256_add_ps(fix3,tx);
794             fiy3             = _mm256_add_ps(fiy3,ty);
795             fiz3             = _mm256_add_ps(fiz3,tz);
796
797             fjx0             = _mm256_add_ps(fjx0,tx);
798             fjy0             = _mm256_add_ps(fjy0,ty);
799             fjz0             = _mm256_add_ps(fjz0,tz);
800
801             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
802             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
803             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
804             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
805             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
806             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
807             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
808             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
809
810             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
811
812             /* Inner loop uses 167 flops */
813         }
814
815         /* End of innermost loop */
816
817         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
818                                                  f+i_coord_offset,fshift+i_shift_offset);
819
820         ggid                        = gid[iidx];
821         /* Update potential energies */
822         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
823         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
824
825         /* Increment number of inner iterations */
826         inneriter                  += j_index_end - j_index_start;
827
828         /* Outer loop uses 26 flops */
829     }
830
831     /* Increment number of outer iterations */
832     outeriter        += nri;
833
834     /* Update outer/inner flops */
835
836     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*167);
837 }
838 /*
839  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_avx_256_single
840  * Electrostatics interaction: CubicSplineTable
841  * VdW interaction:            LennardJones
842  * Geometry:                   Water4-Particle
843  * Calculate force/pot:        Force
844  */
845 void
846 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_avx_256_single
847                     (t_nblist                    * gmx_restrict       nlist,
848                      rvec                        * gmx_restrict          xx,
849                      rvec                        * gmx_restrict          ff,
850                      t_forcerec                  * gmx_restrict          fr,
851                      t_mdatoms                   * gmx_restrict     mdatoms,
852                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
853                      t_nrnb                      * gmx_restrict        nrnb)
854 {
855     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
856      * just 0 for non-waters.
857      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
858      * jnr indices corresponding to data put in the four positions in the SIMD register.
859      */
860     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
861     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
862     int              jnrA,jnrB,jnrC,jnrD;
863     int              jnrE,jnrF,jnrG,jnrH;
864     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
865     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
866     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
867     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
868     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
869     real             rcutoff_scalar;
870     real             *shiftvec,*fshift,*x,*f;
871     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
872     real             scratch[4*DIM];
873     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
874     real *           vdwioffsetptr0;
875     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
876     real *           vdwioffsetptr1;
877     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
878     real *           vdwioffsetptr2;
879     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
880     real *           vdwioffsetptr3;
881     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
882     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
883     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
884     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
885     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
886     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
887     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
888     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
889     real             *charge;
890     int              nvdwtype;
891     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
892     int              *vdwtype;
893     real             *vdwparam;
894     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
895     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
896     __m256i          vfitab;
897     __m128i          vfitab_lo,vfitab_hi;
898     __m128i          ifour       = _mm_set1_epi32(4);
899     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
900     real             *vftab;
901     __m256           dummy_mask,cutoff_mask;
902     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
903     __m256           one     = _mm256_set1_ps(1.0);
904     __m256           two     = _mm256_set1_ps(2.0);
905     x                = xx[0];
906     f                = ff[0];
907
908     nri              = nlist->nri;
909     iinr             = nlist->iinr;
910     jindex           = nlist->jindex;
911     jjnr             = nlist->jjnr;
912     shiftidx         = nlist->shift;
913     gid              = nlist->gid;
914     shiftvec         = fr->shift_vec[0];
915     fshift           = fr->fshift[0];
916     facel            = _mm256_set1_ps(fr->epsfac);
917     charge           = mdatoms->chargeA;
918     nvdwtype         = fr->ntype;
919     vdwparam         = fr->nbfp;
920     vdwtype          = mdatoms->typeA;
921
922     vftab            = kernel_data->table_elec->data;
923     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
924
925     /* Setup water-specific parameters */
926     inr              = nlist->iinr[0];
927     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
928     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
929     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
930     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
931
932     /* Avoid stupid compiler warnings */
933     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
934     j_coord_offsetA = 0;
935     j_coord_offsetB = 0;
936     j_coord_offsetC = 0;
937     j_coord_offsetD = 0;
938     j_coord_offsetE = 0;
939     j_coord_offsetF = 0;
940     j_coord_offsetG = 0;
941     j_coord_offsetH = 0;
942
943     outeriter        = 0;
944     inneriter        = 0;
945
946     for(iidx=0;iidx<4*DIM;iidx++)
947     {
948         scratch[iidx] = 0.0;
949     }
950
951     /* Start outer loop over neighborlists */
952     for(iidx=0; iidx<nri; iidx++)
953     {
954         /* Load shift vector for this list */
955         i_shift_offset   = DIM*shiftidx[iidx];
956
957         /* Load limits for loop over neighbors */
958         j_index_start    = jindex[iidx];
959         j_index_end      = jindex[iidx+1];
960
961         /* Get outer coordinate index */
962         inr              = iinr[iidx];
963         i_coord_offset   = DIM*inr;
964
965         /* Load i particle coords and add shift vector */
966         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
967                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
968
969         fix0             = _mm256_setzero_ps();
970         fiy0             = _mm256_setzero_ps();
971         fiz0             = _mm256_setzero_ps();
972         fix1             = _mm256_setzero_ps();
973         fiy1             = _mm256_setzero_ps();
974         fiz1             = _mm256_setzero_ps();
975         fix2             = _mm256_setzero_ps();
976         fiy2             = _mm256_setzero_ps();
977         fiz2             = _mm256_setzero_ps();
978         fix3             = _mm256_setzero_ps();
979         fiy3             = _mm256_setzero_ps();
980         fiz3             = _mm256_setzero_ps();
981
982         /* Start inner kernel loop */
983         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
984         {
985
986             /* Get j neighbor index, and coordinate index */
987             jnrA             = jjnr[jidx];
988             jnrB             = jjnr[jidx+1];
989             jnrC             = jjnr[jidx+2];
990             jnrD             = jjnr[jidx+3];
991             jnrE             = jjnr[jidx+4];
992             jnrF             = jjnr[jidx+5];
993             jnrG             = jjnr[jidx+6];
994             jnrH             = jjnr[jidx+7];
995             j_coord_offsetA  = DIM*jnrA;
996             j_coord_offsetB  = DIM*jnrB;
997             j_coord_offsetC  = DIM*jnrC;
998             j_coord_offsetD  = DIM*jnrD;
999             j_coord_offsetE  = DIM*jnrE;
1000             j_coord_offsetF  = DIM*jnrF;
1001             j_coord_offsetG  = DIM*jnrG;
1002             j_coord_offsetH  = DIM*jnrH;
1003
1004             /* load j atom coordinates */
1005             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1006                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1007                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1008                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1009                                                  &jx0,&jy0,&jz0);
1010
1011             /* Calculate displacement vector */
1012             dx00             = _mm256_sub_ps(ix0,jx0);
1013             dy00             = _mm256_sub_ps(iy0,jy0);
1014             dz00             = _mm256_sub_ps(iz0,jz0);
1015             dx10             = _mm256_sub_ps(ix1,jx0);
1016             dy10             = _mm256_sub_ps(iy1,jy0);
1017             dz10             = _mm256_sub_ps(iz1,jz0);
1018             dx20             = _mm256_sub_ps(ix2,jx0);
1019             dy20             = _mm256_sub_ps(iy2,jy0);
1020             dz20             = _mm256_sub_ps(iz2,jz0);
1021             dx30             = _mm256_sub_ps(ix3,jx0);
1022             dy30             = _mm256_sub_ps(iy3,jy0);
1023             dz30             = _mm256_sub_ps(iz3,jz0);
1024
1025             /* Calculate squared distance and things based on it */
1026             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1027             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1028             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1029             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1030
1031             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1032             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1033             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1034
1035             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1036
1037             /* Load parameters for j particles */
1038             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1039                                                                  charge+jnrC+0,charge+jnrD+0,
1040                                                                  charge+jnrE+0,charge+jnrF+0,
1041                                                                  charge+jnrG+0,charge+jnrH+0);
1042             vdwjidx0A        = 2*vdwtype[jnrA+0];
1043             vdwjidx0B        = 2*vdwtype[jnrB+0];
1044             vdwjidx0C        = 2*vdwtype[jnrC+0];
1045             vdwjidx0D        = 2*vdwtype[jnrD+0];
1046             vdwjidx0E        = 2*vdwtype[jnrE+0];
1047             vdwjidx0F        = 2*vdwtype[jnrF+0];
1048             vdwjidx0G        = 2*vdwtype[jnrG+0];
1049             vdwjidx0H        = 2*vdwtype[jnrH+0];
1050
1051             fjx0             = _mm256_setzero_ps();
1052             fjy0             = _mm256_setzero_ps();
1053             fjz0             = _mm256_setzero_ps();
1054
1055             /**************************
1056              * CALCULATE INTERACTIONS *
1057              **************************/
1058
1059             /* Compute parameters for interactions between i and j atoms */
1060             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1061                                             vdwioffsetptr0+vdwjidx0B,
1062                                             vdwioffsetptr0+vdwjidx0C,
1063                                             vdwioffsetptr0+vdwjidx0D,
1064                                             vdwioffsetptr0+vdwjidx0E,
1065                                             vdwioffsetptr0+vdwjidx0F,
1066                                             vdwioffsetptr0+vdwjidx0G,
1067                                             vdwioffsetptr0+vdwjidx0H,
1068                                             &c6_00,&c12_00);
1069
1070             /* LENNARD-JONES DISPERSION/REPULSION */
1071
1072             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1073             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1074
1075             fscal            = fvdw;
1076
1077             /* Calculate temporary vectorial force */
1078             tx               = _mm256_mul_ps(fscal,dx00);
1079             ty               = _mm256_mul_ps(fscal,dy00);
1080             tz               = _mm256_mul_ps(fscal,dz00);
1081
1082             /* Update vectorial force */
1083             fix0             = _mm256_add_ps(fix0,tx);
1084             fiy0             = _mm256_add_ps(fiy0,ty);
1085             fiz0             = _mm256_add_ps(fiz0,tz);
1086
1087             fjx0             = _mm256_add_ps(fjx0,tx);
1088             fjy0             = _mm256_add_ps(fjy0,ty);
1089             fjz0             = _mm256_add_ps(fjz0,tz);
1090
1091             /**************************
1092              * CALCULATE INTERACTIONS *
1093              **************************/
1094
1095             r10              = _mm256_mul_ps(rsq10,rinv10);
1096
1097             /* Compute parameters for interactions between i and j atoms */
1098             qq10             = _mm256_mul_ps(iq1,jq0);
1099
1100             /* Calculate table index by multiplying r with table scale and truncate to integer */
1101             rt               = _mm256_mul_ps(r10,vftabscale);
1102             vfitab           = _mm256_cvttps_epi32(rt);
1103             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1104             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1105             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1106             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1107             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1108             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1109
1110             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1111             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1112                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1113             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1114                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1115             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1116                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1117             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1118                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1119             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1120             Heps             = _mm256_mul_ps(vfeps,H);
1121             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1122             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1123             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1124
1125             fscal            = felec;
1126
1127             /* Calculate temporary vectorial force */
1128             tx               = _mm256_mul_ps(fscal,dx10);
1129             ty               = _mm256_mul_ps(fscal,dy10);
1130             tz               = _mm256_mul_ps(fscal,dz10);
1131
1132             /* Update vectorial force */
1133             fix1             = _mm256_add_ps(fix1,tx);
1134             fiy1             = _mm256_add_ps(fiy1,ty);
1135             fiz1             = _mm256_add_ps(fiz1,tz);
1136
1137             fjx0             = _mm256_add_ps(fjx0,tx);
1138             fjy0             = _mm256_add_ps(fjy0,ty);
1139             fjz0             = _mm256_add_ps(fjz0,tz);
1140
1141             /**************************
1142              * CALCULATE INTERACTIONS *
1143              **************************/
1144
1145             r20              = _mm256_mul_ps(rsq20,rinv20);
1146
1147             /* Compute parameters for interactions between i and j atoms */
1148             qq20             = _mm256_mul_ps(iq2,jq0);
1149
1150             /* Calculate table index by multiplying r with table scale and truncate to integer */
1151             rt               = _mm256_mul_ps(r20,vftabscale);
1152             vfitab           = _mm256_cvttps_epi32(rt);
1153             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1154             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1155             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1156             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1157             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1158             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1159
1160             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1161             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1162                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1163             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1164                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1165             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1166                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1167             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1168                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1169             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1170             Heps             = _mm256_mul_ps(vfeps,H);
1171             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1172             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1173             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1174
1175             fscal            = felec;
1176
1177             /* Calculate temporary vectorial force */
1178             tx               = _mm256_mul_ps(fscal,dx20);
1179             ty               = _mm256_mul_ps(fscal,dy20);
1180             tz               = _mm256_mul_ps(fscal,dz20);
1181
1182             /* Update vectorial force */
1183             fix2             = _mm256_add_ps(fix2,tx);
1184             fiy2             = _mm256_add_ps(fiy2,ty);
1185             fiz2             = _mm256_add_ps(fiz2,tz);
1186
1187             fjx0             = _mm256_add_ps(fjx0,tx);
1188             fjy0             = _mm256_add_ps(fjy0,ty);
1189             fjz0             = _mm256_add_ps(fjz0,tz);
1190
1191             /**************************
1192              * CALCULATE INTERACTIONS *
1193              **************************/
1194
1195             r30              = _mm256_mul_ps(rsq30,rinv30);
1196
1197             /* Compute parameters for interactions between i and j atoms */
1198             qq30             = _mm256_mul_ps(iq3,jq0);
1199
1200             /* Calculate table index by multiplying r with table scale and truncate to integer */
1201             rt               = _mm256_mul_ps(r30,vftabscale);
1202             vfitab           = _mm256_cvttps_epi32(rt);
1203             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1204             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1205             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1206             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1207             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1208             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1209
1210             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1211             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1212                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1213             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1214                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1215             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1216                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1217             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1218                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1219             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1220             Heps             = _mm256_mul_ps(vfeps,H);
1221             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1222             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1223             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
1224
1225             fscal            = felec;
1226
1227             /* Calculate temporary vectorial force */
1228             tx               = _mm256_mul_ps(fscal,dx30);
1229             ty               = _mm256_mul_ps(fscal,dy30);
1230             tz               = _mm256_mul_ps(fscal,dz30);
1231
1232             /* Update vectorial force */
1233             fix3             = _mm256_add_ps(fix3,tx);
1234             fiy3             = _mm256_add_ps(fiy3,ty);
1235             fiz3             = _mm256_add_ps(fiz3,tz);
1236
1237             fjx0             = _mm256_add_ps(fjx0,tx);
1238             fjy0             = _mm256_add_ps(fjy0,ty);
1239             fjz0             = _mm256_add_ps(fjz0,tz);
1240
1241             fjptrA             = f+j_coord_offsetA;
1242             fjptrB             = f+j_coord_offsetB;
1243             fjptrC             = f+j_coord_offsetC;
1244             fjptrD             = f+j_coord_offsetD;
1245             fjptrE             = f+j_coord_offsetE;
1246             fjptrF             = f+j_coord_offsetF;
1247             fjptrG             = f+j_coord_offsetG;
1248             fjptrH             = f+j_coord_offsetH;
1249
1250             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1251
1252             /* Inner loop uses 147 flops */
1253         }
1254
1255         if(jidx<j_index_end)
1256         {
1257
1258             /* Get j neighbor index, and coordinate index */
1259             jnrlistA         = jjnr[jidx];
1260             jnrlistB         = jjnr[jidx+1];
1261             jnrlistC         = jjnr[jidx+2];
1262             jnrlistD         = jjnr[jidx+3];
1263             jnrlistE         = jjnr[jidx+4];
1264             jnrlistF         = jjnr[jidx+5];
1265             jnrlistG         = jjnr[jidx+6];
1266             jnrlistH         = jjnr[jidx+7];
1267             /* Sign of each element will be negative for non-real atoms.
1268              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1269              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1270              */
1271             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1272                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1273                                             
1274             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1275             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1276             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1277             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1278             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1279             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1280             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1281             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1282             j_coord_offsetA  = DIM*jnrA;
1283             j_coord_offsetB  = DIM*jnrB;
1284             j_coord_offsetC  = DIM*jnrC;
1285             j_coord_offsetD  = DIM*jnrD;
1286             j_coord_offsetE  = DIM*jnrE;
1287             j_coord_offsetF  = DIM*jnrF;
1288             j_coord_offsetG  = DIM*jnrG;
1289             j_coord_offsetH  = DIM*jnrH;
1290
1291             /* load j atom coordinates */
1292             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1293                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1294                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1295                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1296                                                  &jx0,&jy0,&jz0);
1297
1298             /* Calculate displacement vector */
1299             dx00             = _mm256_sub_ps(ix0,jx0);
1300             dy00             = _mm256_sub_ps(iy0,jy0);
1301             dz00             = _mm256_sub_ps(iz0,jz0);
1302             dx10             = _mm256_sub_ps(ix1,jx0);
1303             dy10             = _mm256_sub_ps(iy1,jy0);
1304             dz10             = _mm256_sub_ps(iz1,jz0);
1305             dx20             = _mm256_sub_ps(ix2,jx0);
1306             dy20             = _mm256_sub_ps(iy2,jy0);
1307             dz20             = _mm256_sub_ps(iz2,jz0);
1308             dx30             = _mm256_sub_ps(ix3,jx0);
1309             dy30             = _mm256_sub_ps(iy3,jy0);
1310             dz30             = _mm256_sub_ps(iz3,jz0);
1311
1312             /* Calculate squared distance and things based on it */
1313             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1314             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1315             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1316             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1317
1318             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1319             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1320             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1321
1322             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1323
1324             /* Load parameters for j particles */
1325             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1326                                                                  charge+jnrC+0,charge+jnrD+0,
1327                                                                  charge+jnrE+0,charge+jnrF+0,
1328                                                                  charge+jnrG+0,charge+jnrH+0);
1329             vdwjidx0A        = 2*vdwtype[jnrA+0];
1330             vdwjidx0B        = 2*vdwtype[jnrB+0];
1331             vdwjidx0C        = 2*vdwtype[jnrC+0];
1332             vdwjidx0D        = 2*vdwtype[jnrD+0];
1333             vdwjidx0E        = 2*vdwtype[jnrE+0];
1334             vdwjidx0F        = 2*vdwtype[jnrF+0];
1335             vdwjidx0G        = 2*vdwtype[jnrG+0];
1336             vdwjidx0H        = 2*vdwtype[jnrH+0];
1337
1338             fjx0             = _mm256_setzero_ps();
1339             fjy0             = _mm256_setzero_ps();
1340             fjz0             = _mm256_setzero_ps();
1341
1342             /**************************
1343              * CALCULATE INTERACTIONS *
1344              **************************/
1345
1346             /* Compute parameters for interactions between i and j atoms */
1347             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1348                                             vdwioffsetptr0+vdwjidx0B,
1349                                             vdwioffsetptr0+vdwjidx0C,
1350                                             vdwioffsetptr0+vdwjidx0D,
1351                                             vdwioffsetptr0+vdwjidx0E,
1352                                             vdwioffsetptr0+vdwjidx0F,
1353                                             vdwioffsetptr0+vdwjidx0G,
1354                                             vdwioffsetptr0+vdwjidx0H,
1355                                             &c6_00,&c12_00);
1356
1357             /* LENNARD-JONES DISPERSION/REPULSION */
1358
1359             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1360             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1361
1362             fscal            = fvdw;
1363
1364             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1365
1366             /* Calculate temporary vectorial force */
1367             tx               = _mm256_mul_ps(fscal,dx00);
1368             ty               = _mm256_mul_ps(fscal,dy00);
1369             tz               = _mm256_mul_ps(fscal,dz00);
1370
1371             /* Update vectorial force */
1372             fix0             = _mm256_add_ps(fix0,tx);
1373             fiy0             = _mm256_add_ps(fiy0,ty);
1374             fiz0             = _mm256_add_ps(fiz0,tz);
1375
1376             fjx0             = _mm256_add_ps(fjx0,tx);
1377             fjy0             = _mm256_add_ps(fjy0,ty);
1378             fjz0             = _mm256_add_ps(fjz0,tz);
1379
1380             /**************************
1381              * CALCULATE INTERACTIONS *
1382              **************************/
1383
1384             r10              = _mm256_mul_ps(rsq10,rinv10);
1385             r10              = _mm256_andnot_ps(dummy_mask,r10);
1386
1387             /* Compute parameters for interactions between i and j atoms */
1388             qq10             = _mm256_mul_ps(iq1,jq0);
1389
1390             /* Calculate table index by multiplying r with table scale and truncate to integer */
1391             rt               = _mm256_mul_ps(r10,vftabscale);
1392             vfitab           = _mm256_cvttps_epi32(rt);
1393             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1394             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1395             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1396             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1397             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1398             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1399
1400             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1401             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1402                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1403             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1404                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1405             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1406                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1407             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1408                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1409             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1410             Heps             = _mm256_mul_ps(vfeps,H);
1411             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1412             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1413             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1414
1415             fscal            = felec;
1416
1417             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1418
1419             /* Calculate temporary vectorial force */
1420             tx               = _mm256_mul_ps(fscal,dx10);
1421             ty               = _mm256_mul_ps(fscal,dy10);
1422             tz               = _mm256_mul_ps(fscal,dz10);
1423
1424             /* Update vectorial force */
1425             fix1             = _mm256_add_ps(fix1,tx);
1426             fiy1             = _mm256_add_ps(fiy1,ty);
1427             fiz1             = _mm256_add_ps(fiz1,tz);
1428
1429             fjx0             = _mm256_add_ps(fjx0,tx);
1430             fjy0             = _mm256_add_ps(fjy0,ty);
1431             fjz0             = _mm256_add_ps(fjz0,tz);
1432
1433             /**************************
1434              * CALCULATE INTERACTIONS *
1435              **************************/
1436
1437             r20              = _mm256_mul_ps(rsq20,rinv20);
1438             r20              = _mm256_andnot_ps(dummy_mask,r20);
1439
1440             /* Compute parameters for interactions between i and j atoms */
1441             qq20             = _mm256_mul_ps(iq2,jq0);
1442
1443             /* Calculate table index by multiplying r with table scale and truncate to integer */
1444             rt               = _mm256_mul_ps(r20,vftabscale);
1445             vfitab           = _mm256_cvttps_epi32(rt);
1446             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1447             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1448             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1449             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1450             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1451             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1452
1453             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1454             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1455                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1456             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1457                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1458             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1459                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1460             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1461                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1462             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1463             Heps             = _mm256_mul_ps(vfeps,H);
1464             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1465             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1466             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1467
1468             fscal            = felec;
1469
1470             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1471
1472             /* Calculate temporary vectorial force */
1473             tx               = _mm256_mul_ps(fscal,dx20);
1474             ty               = _mm256_mul_ps(fscal,dy20);
1475             tz               = _mm256_mul_ps(fscal,dz20);
1476
1477             /* Update vectorial force */
1478             fix2             = _mm256_add_ps(fix2,tx);
1479             fiy2             = _mm256_add_ps(fiy2,ty);
1480             fiz2             = _mm256_add_ps(fiz2,tz);
1481
1482             fjx0             = _mm256_add_ps(fjx0,tx);
1483             fjy0             = _mm256_add_ps(fjy0,ty);
1484             fjz0             = _mm256_add_ps(fjz0,tz);
1485
1486             /**************************
1487              * CALCULATE INTERACTIONS *
1488              **************************/
1489
1490             r30              = _mm256_mul_ps(rsq30,rinv30);
1491             r30              = _mm256_andnot_ps(dummy_mask,r30);
1492
1493             /* Compute parameters for interactions between i and j atoms */
1494             qq30             = _mm256_mul_ps(iq3,jq0);
1495
1496             /* Calculate table index by multiplying r with table scale and truncate to integer */
1497             rt               = _mm256_mul_ps(r30,vftabscale);
1498             vfitab           = _mm256_cvttps_epi32(rt);
1499             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1500             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1501             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1502             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1503             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1504             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1505
1506             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1507             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1508                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1509             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1510                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1511             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1512                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1513             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1514                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1515             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1516             Heps             = _mm256_mul_ps(vfeps,H);
1517             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1518             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1519             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
1520
1521             fscal            = felec;
1522
1523             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1524
1525             /* Calculate temporary vectorial force */
1526             tx               = _mm256_mul_ps(fscal,dx30);
1527             ty               = _mm256_mul_ps(fscal,dy30);
1528             tz               = _mm256_mul_ps(fscal,dz30);
1529
1530             /* Update vectorial force */
1531             fix3             = _mm256_add_ps(fix3,tx);
1532             fiy3             = _mm256_add_ps(fiy3,ty);
1533             fiz3             = _mm256_add_ps(fiz3,tz);
1534
1535             fjx0             = _mm256_add_ps(fjx0,tx);
1536             fjy0             = _mm256_add_ps(fjy0,ty);
1537             fjz0             = _mm256_add_ps(fjz0,tz);
1538
1539             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1540             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1541             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1542             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1543             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1544             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1545             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1546             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1547
1548             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1549
1550             /* Inner loop uses 150 flops */
1551         }
1552
1553         /* End of innermost loop */
1554
1555         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1556                                                  f+i_coord_offset,fshift+i_shift_offset);
1557
1558         /* Increment number of inner iterations */
1559         inneriter                  += j_index_end - j_index_start;
1560
1561         /* Outer loop uses 24 flops */
1562     }
1563
1564     /* Increment number of outer iterations */
1565     outeriter        += nri;
1566
1567     /* Update outer/inner flops */
1568
1569     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*150);
1570 }