Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_single
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
92     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
103     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
104     __m256i          vfitab;
105     __m128i          vfitab_lo,vfitab_hi;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
108     real             *vftab;
109     __m256           dummy_mask,cutoff_mask;
110     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
111     __m256           one     = _mm256_set1_ps(1.0);
112     __m256           two     = _mm256_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm256_set1_ps(fr->ic->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_elec->data;
131     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
136     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
137     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
138     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146     j_coord_offsetE = 0;
147     j_coord_offsetF = 0;
148     j_coord_offsetG = 0;
149     j_coord_offsetH = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     for(iidx=0;iidx<4*DIM;iidx++)
155     {
156         scratch[iidx] = 0.0;
157     }
158
159     /* Start outer loop over neighborlists */
160     for(iidx=0; iidx<nri; iidx++)
161     {
162         /* Load shift vector for this list */
163         i_shift_offset   = DIM*shiftidx[iidx];
164
165         /* Load limits for loop over neighbors */
166         j_index_start    = jindex[iidx];
167         j_index_end      = jindex[iidx+1];
168
169         /* Get outer coordinate index */
170         inr              = iinr[iidx];
171         i_coord_offset   = DIM*inr;
172
173         /* Load i particle coords and add shift vector */
174         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
175                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
176
177         fix0             = _mm256_setzero_ps();
178         fiy0             = _mm256_setzero_ps();
179         fiz0             = _mm256_setzero_ps();
180         fix1             = _mm256_setzero_ps();
181         fiy1             = _mm256_setzero_ps();
182         fiz1             = _mm256_setzero_ps();
183         fix2             = _mm256_setzero_ps();
184         fiy2             = _mm256_setzero_ps();
185         fiz2             = _mm256_setzero_ps();
186
187         /* Reset potential sums */
188         velecsum         = _mm256_setzero_ps();
189         vvdwsum          = _mm256_setzero_ps();
190
191         /* Start inner kernel loop */
192         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
193         {
194
195             /* Get j neighbor index, and coordinate index */
196             jnrA             = jjnr[jidx];
197             jnrB             = jjnr[jidx+1];
198             jnrC             = jjnr[jidx+2];
199             jnrD             = jjnr[jidx+3];
200             jnrE             = jjnr[jidx+4];
201             jnrF             = jjnr[jidx+5];
202             jnrG             = jjnr[jidx+6];
203             jnrH             = jjnr[jidx+7];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206             j_coord_offsetC  = DIM*jnrC;
207             j_coord_offsetD  = DIM*jnrD;
208             j_coord_offsetE  = DIM*jnrE;
209             j_coord_offsetF  = DIM*jnrF;
210             j_coord_offsetG  = DIM*jnrG;
211             j_coord_offsetH  = DIM*jnrH;
212
213             /* load j atom coordinates */
214             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
215                                                  x+j_coord_offsetC,x+j_coord_offsetD,
216                                                  x+j_coord_offsetE,x+j_coord_offsetF,
217                                                  x+j_coord_offsetG,x+j_coord_offsetH,
218                                                  &jx0,&jy0,&jz0);
219
220             /* Calculate displacement vector */
221             dx00             = _mm256_sub_ps(ix0,jx0);
222             dy00             = _mm256_sub_ps(iy0,jy0);
223             dz00             = _mm256_sub_ps(iz0,jz0);
224             dx10             = _mm256_sub_ps(ix1,jx0);
225             dy10             = _mm256_sub_ps(iy1,jy0);
226             dz10             = _mm256_sub_ps(iz1,jz0);
227             dx20             = _mm256_sub_ps(ix2,jx0);
228             dy20             = _mm256_sub_ps(iy2,jy0);
229             dz20             = _mm256_sub_ps(iz2,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
233             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
234             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
235
236             rinv00           = avx256_invsqrt_f(rsq00);
237             rinv10           = avx256_invsqrt_f(rsq10);
238             rinv20           = avx256_invsqrt_f(rsq20);
239
240             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
241
242             /* Load parameters for j particles */
243             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
244                                                                  charge+jnrC+0,charge+jnrD+0,
245                                                                  charge+jnrE+0,charge+jnrF+0,
246                                                                  charge+jnrG+0,charge+jnrH+0);
247             vdwjidx0A        = 2*vdwtype[jnrA+0];
248             vdwjidx0B        = 2*vdwtype[jnrB+0];
249             vdwjidx0C        = 2*vdwtype[jnrC+0];
250             vdwjidx0D        = 2*vdwtype[jnrD+0];
251             vdwjidx0E        = 2*vdwtype[jnrE+0];
252             vdwjidx0F        = 2*vdwtype[jnrF+0];
253             vdwjidx0G        = 2*vdwtype[jnrG+0];
254             vdwjidx0H        = 2*vdwtype[jnrH+0];
255
256             fjx0             = _mm256_setzero_ps();
257             fjy0             = _mm256_setzero_ps();
258             fjz0             = _mm256_setzero_ps();
259
260             /**************************
261              * CALCULATE INTERACTIONS *
262              **************************/
263
264             r00              = _mm256_mul_ps(rsq00,rinv00);
265
266             /* Compute parameters for interactions between i and j atoms */
267             qq00             = _mm256_mul_ps(iq0,jq0);
268             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
269                                             vdwioffsetptr0+vdwjidx0B,
270                                             vdwioffsetptr0+vdwjidx0C,
271                                             vdwioffsetptr0+vdwjidx0D,
272                                             vdwioffsetptr0+vdwjidx0E,
273                                             vdwioffsetptr0+vdwjidx0F,
274                                             vdwioffsetptr0+vdwjidx0G,
275                                             vdwioffsetptr0+vdwjidx0H,
276                                             &c6_00,&c12_00);
277
278             /* Calculate table index by multiplying r with table scale and truncate to integer */
279             rt               = _mm256_mul_ps(r00,vftabscale);
280             vfitab           = _mm256_cvttps_epi32(rt);
281             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
282             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
283             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
284             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
285             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
286             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
287
288             /* CUBIC SPLINE TABLE ELECTROSTATICS */
289             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
290                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
291             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
292                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
293             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
294                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
295             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
296                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
297             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
298             Heps             = _mm256_mul_ps(vfeps,H);
299             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
300             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
301             velec            = _mm256_mul_ps(qq00,VV);
302             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
303             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
304
305             /* LENNARD-JONES DISPERSION/REPULSION */
306
307             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
308             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
309             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
310             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
311             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
312
313             /* Update potential sum for this i atom from the interaction with this j atom. */
314             velecsum         = _mm256_add_ps(velecsum,velec);
315             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
316
317             fscal            = _mm256_add_ps(felec,fvdw);
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm256_mul_ps(fscal,dx00);
321             ty               = _mm256_mul_ps(fscal,dy00);
322             tz               = _mm256_mul_ps(fscal,dz00);
323
324             /* Update vectorial force */
325             fix0             = _mm256_add_ps(fix0,tx);
326             fiy0             = _mm256_add_ps(fiy0,ty);
327             fiz0             = _mm256_add_ps(fiz0,tz);
328
329             fjx0             = _mm256_add_ps(fjx0,tx);
330             fjy0             = _mm256_add_ps(fjy0,ty);
331             fjz0             = _mm256_add_ps(fjz0,tz);
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             r10              = _mm256_mul_ps(rsq10,rinv10);
338
339             /* Compute parameters for interactions between i and j atoms */
340             qq10             = _mm256_mul_ps(iq1,jq0);
341
342             /* Calculate table index by multiplying r with table scale and truncate to integer */
343             rt               = _mm256_mul_ps(r10,vftabscale);
344             vfitab           = _mm256_cvttps_epi32(rt);
345             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
346             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
347             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
348             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
349             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
350             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
351
352             /* CUBIC SPLINE TABLE ELECTROSTATICS */
353             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
354                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
355             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
356                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
357             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
358                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
359             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
360                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
361             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
362             Heps             = _mm256_mul_ps(vfeps,H);
363             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
364             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
365             velec            = _mm256_mul_ps(qq10,VV);
366             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
367             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velecsum         = _mm256_add_ps(velecsum,velec);
371
372             fscal            = felec;
373
374             /* Calculate temporary vectorial force */
375             tx               = _mm256_mul_ps(fscal,dx10);
376             ty               = _mm256_mul_ps(fscal,dy10);
377             tz               = _mm256_mul_ps(fscal,dz10);
378
379             /* Update vectorial force */
380             fix1             = _mm256_add_ps(fix1,tx);
381             fiy1             = _mm256_add_ps(fiy1,ty);
382             fiz1             = _mm256_add_ps(fiz1,tz);
383
384             fjx0             = _mm256_add_ps(fjx0,tx);
385             fjy0             = _mm256_add_ps(fjy0,ty);
386             fjz0             = _mm256_add_ps(fjz0,tz);
387
388             /**************************
389              * CALCULATE INTERACTIONS *
390              **************************/
391
392             r20              = _mm256_mul_ps(rsq20,rinv20);
393
394             /* Compute parameters for interactions between i and j atoms */
395             qq20             = _mm256_mul_ps(iq2,jq0);
396
397             /* Calculate table index by multiplying r with table scale and truncate to integer */
398             rt               = _mm256_mul_ps(r20,vftabscale);
399             vfitab           = _mm256_cvttps_epi32(rt);
400             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
401             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
402             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
403             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
404             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
405             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
406
407             /* CUBIC SPLINE TABLE ELECTROSTATICS */
408             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
409                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
410             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
411                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
412             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
413                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
414             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
415                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
416             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
417             Heps             = _mm256_mul_ps(vfeps,H);
418             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
419             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
420             velec            = _mm256_mul_ps(qq20,VV);
421             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
422             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
423
424             /* Update potential sum for this i atom from the interaction with this j atom. */
425             velecsum         = _mm256_add_ps(velecsum,velec);
426
427             fscal            = felec;
428
429             /* Calculate temporary vectorial force */
430             tx               = _mm256_mul_ps(fscal,dx20);
431             ty               = _mm256_mul_ps(fscal,dy20);
432             tz               = _mm256_mul_ps(fscal,dz20);
433
434             /* Update vectorial force */
435             fix2             = _mm256_add_ps(fix2,tx);
436             fiy2             = _mm256_add_ps(fiy2,ty);
437             fiz2             = _mm256_add_ps(fiz2,tz);
438
439             fjx0             = _mm256_add_ps(fjx0,tx);
440             fjy0             = _mm256_add_ps(fjy0,ty);
441             fjz0             = _mm256_add_ps(fjz0,tz);
442
443             fjptrA             = f+j_coord_offsetA;
444             fjptrB             = f+j_coord_offsetB;
445             fjptrC             = f+j_coord_offsetC;
446             fjptrD             = f+j_coord_offsetD;
447             fjptrE             = f+j_coord_offsetE;
448             fjptrF             = f+j_coord_offsetF;
449             fjptrG             = f+j_coord_offsetG;
450             fjptrH             = f+j_coord_offsetH;
451
452             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
453
454             /* Inner loop uses 145 flops */
455         }
456
457         if(jidx<j_index_end)
458         {
459
460             /* Get j neighbor index, and coordinate index */
461             jnrlistA         = jjnr[jidx];
462             jnrlistB         = jjnr[jidx+1];
463             jnrlistC         = jjnr[jidx+2];
464             jnrlistD         = jjnr[jidx+3];
465             jnrlistE         = jjnr[jidx+4];
466             jnrlistF         = jjnr[jidx+5];
467             jnrlistG         = jjnr[jidx+6];
468             jnrlistH         = jjnr[jidx+7];
469             /* Sign of each element will be negative for non-real atoms.
470              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
471              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
472              */
473             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
474                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
475                                             
476             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
477             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
478             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
479             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
480             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
481             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
482             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
483             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
484             j_coord_offsetA  = DIM*jnrA;
485             j_coord_offsetB  = DIM*jnrB;
486             j_coord_offsetC  = DIM*jnrC;
487             j_coord_offsetD  = DIM*jnrD;
488             j_coord_offsetE  = DIM*jnrE;
489             j_coord_offsetF  = DIM*jnrF;
490             j_coord_offsetG  = DIM*jnrG;
491             j_coord_offsetH  = DIM*jnrH;
492
493             /* load j atom coordinates */
494             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
495                                                  x+j_coord_offsetC,x+j_coord_offsetD,
496                                                  x+j_coord_offsetE,x+j_coord_offsetF,
497                                                  x+j_coord_offsetG,x+j_coord_offsetH,
498                                                  &jx0,&jy0,&jz0);
499
500             /* Calculate displacement vector */
501             dx00             = _mm256_sub_ps(ix0,jx0);
502             dy00             = _mm256_sub_ps(iy0,jy0);
503             dz00             = _mm256_sub_ps(iz0,jz0);
504             dx10             = _mm256_sub_ps(ix1,jx0);
505             dy10             = _mm256_sub_ps(iy1,jy0);
506             dz10             = _mm256_sub_ps(iz1,jz0);
507             dx20             = _mm256_sub_ps(ix2,jx0);
508             dy20             = _mm256_sub_ps(iy2,jy0);
509             dz20             = _mm256_sub_ps(iz2,jz0);
510
511             /* Calculate squared distance and things based on it */
512             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
513             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
514             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
515
516             rinv00           = avx256_invsqrt_f(rsq00);
517             rinv10           = avx256_invsqrt_f(rsq10);
518             rinv20           = avx256_invsqrt_f(rsq20);
519
520             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
521
522             /* Load parameters for j particles */
523             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
524                                                                  charge+jnrC+0,charge+jnrD+0,
525                                                                  charge+jnrE+0,charge+jnrF+0,
526                                                                  charge+jnrG+0,charge+jnrH+0);
527             vdwjidx0A        = 2*vdwtype[jnrA+0];
528             vdwjidx0B        = 2*vdwtype[jnrB+0];
529             vdwjidx0C        = 2*vdwtype[jnrC+0];
530             vdwjidx0D        = 2*vdwtype[jnrD+0];
531             vdwjidx0E        = 2*vdwtype[jnrE+0];
532             vdwjidx0F        = 2*vdwtype[jnrF+0];
533             vdwjidx0G        = 2*vdwtype[jnrG+0];
534             vdwjidx0H        = 2*vdwtype[jnrH+0];
535
536             fjx0             = _mm256_setzero_ps();
537             fjy0             = _mm256_setzero_ps();
538             fjz0             = _mm256_setzero_ps();
539
540             /**************************
541              * CALCULATE INTERACTIONS *
542              **************************/
543
544             r00              = _mm256_mul_ps(rsq00,rinv00);
545             r00              = _mm256_andnot_ps(dummy_mask,r00);
546
547             /* Compute parameters for interactions between i and j atoms */
548             qq00             = _mm256_mul_ps(iq0,jq0);
549             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
550                                             vdwioffsetptr0+vdwjidx0B,
551                                             vdwioffsetptr0+vdwjidx0C,
552                                             vdwioffsetptr0+vdwjidx0D,
553                                             vdwioffsetptr0+vdwjidx0E,
554                                             vdwioffsetptr0+vdwjidx0F,
555                                             vdwioffsetptr0+vdwjidx0G,
556                                             vdwioffsetptr0+vdwjidx0H,
557                                             &c6_00,&c12_00);
558
559             /* Calculate table index by multiplying r with table scale and truncate to integer */
560             rt               = _mm256_mul_ps(r00,vftabscale);
561             vfitab           = _mm256_cvttps_epi32(rt);
562             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
563             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
564             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
565             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
566             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
567             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
568
569             /* CUBIC SPLINE TABLE ELECTROSTATICS */
570             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
571                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
572             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
573                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
574             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
575                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
576             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
577                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
578             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
579             Heps             = _mm256_mul_ps(vfeps,H);
580             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
581             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
582             velec            = _mm256_mul_ps(qq00,VV);
583             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
584             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
585
586             /* LENNARD-JONES DISPERSION/REPULSION */
587
588             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
589             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
590             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
591             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
592             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
593
594             /* Update potential sum for this i atom from the interaction with this j atom. */
595             velec            = _mm256_andnot_ps(dummy_mask,velec);
596             velecsum         = _mm256_add_ps(velecsum,velec);
597             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
598             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
599
600             fscal            = _mm256_add_ps(felec,fvdw);
601
602             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
603
604             /* Calculate temporary vectorial force */
605             tx               = _mm256_mul_ps(fscal,dx00);
606             ty               = _mm256_mul_ps(fscal,dy00);
607             tz               = _mm256_mul_ps(fscal,dz00);
608
609             /* Update vectorial force */
610             fix0             = _mm256_add_ps(fix0,tx);
611             fiy0             = _mm256_add_ps(fiy0,ty);
612             fiz0             = _mm256_add_ps(fiz0,tz);
613
614             fjx0             = _mm256_add_ps(fjx0,tx);
615             fjy0             = _mm256_add_ps(fjy0,ty);
616             fjz0             = _mm256_add_ps(fjz0,tz);
617
618             /**************************
619              * CALCULATE INTERACTIONS *
620              **************************/
621
622             r10              = _mm256_mul_ps(rsq10,rinv10);
623             r10              = _mm256_andnot_ps(dummy_mask,r10);
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq10             = _mm256_mul_ps(iq1,jq0);
627
628             /* Calculate table index by multiplying r with table scale and truncate to integer */
629             rt               = _mm256_mul_ps(r10,vftabscale);
630             vfitab           = _mm256_cvttps_epi32(rt);
631             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
632             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
633             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
634             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
635             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
636             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
637
638             /* CUBIC SPLINE TABLE ELECTROSTATICS */
639             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
640                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
641             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
642                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
643             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
644                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
645             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
646                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
647             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
648             Heps             = _mm256_mul_ps(vfeps,H);
649             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
650             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
651             velec            = _mm256_mul_ps(qq10,VV);
652             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
653             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
654
655             /* Update potential sum for this i atom from the interaction with this j atom. */
656             velec            = _mm256_andnot_ps(dummy_mask,velec);
657             velecsum         = _mm256_add_ps(velecsum,velec);
658
659             fscal            = felec;
660
661             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
662
663             /* Calculate temporary vectorial force */
664             tx               = _mm256_mul_ps(fscal,dx10);
665             ty               = _mm256_mul_ps(fscal,dy10);
666             tz               = _mm256_mul_ps(fscal,dz10);
667
668             /* Update vectorial force */
669             fix1             = _mm256_add_ps(fix1,tx);
670             fiy1             = _mm256_add_ps(fiy1,ty);
671             fiz1             = _mm256_add_ps(fiz1,tz);
672
673             fjx0             = _mm256_add_ps(fjx0,tx);
674             fjy0             = _mm256_add_ps(fjy0,ty);
675             fjz0             = _mm256_add_ps(fjz0,tz);
676
677             /**************************
678              * CALCULATE INTERACTIONS *
679              **************************/
680
681             r20              = _mm256_mul_ps(rsq20,rinv20);
682             r20              = _mm256_andnot_ps(dummy_mask,r20);
683
684             /* Compute parameters for interactions between i and j atoms */
685             qq20             = _mm256_mul_ps(iq2,jq0);
686
687             /* Calculate table index by multiplying r with table scale and truncate to integer */
688             rt               = _mm256_mul_ps(r20,vftabscale);
689             vfitab           = _mm256_cvttps_epi32(rt);
690             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
691             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
692             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
693             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
694             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
695             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
696
697             /* CUBIC SPLINE TABLE ELECTROSTATICS */
698             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
699                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
700             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
701                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
702             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
703                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
704             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
705                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
706             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
707             Heps             = _mm256_mul_ps(vfeps,H);
708             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
709             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
710             velec            = _mm256_mul_ps(qq20,VV);
711             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
712             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
713
714             /* Update potential sum for this i atom from the interaction with this j atom. */
715             velec            = _mm256_andnot_ps(dummy_mask,velec);
716             velecsum         = _mm256_add_ps(velecsum,velec);
717
718             fscal            = felec;
719
720             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
721
722             /* Calculate temporary vectorial force */
723             tx               = _mm256_mul_ps(fscal,dx20);
724             ty               = _mm256_mul_ps(fscal,dy20);
725             tz               = _mm256_mul_ps(fscal,dz20);
726
727             /* Update vectorial force */
728             fix2             = _mm256_add_ps(fix2,tx);
729             fiy2             = _mm256_add_ps(fiy2,ty);
730             fiz2             = _mm256_add_ps(fiz2,tz);
731
732             fjx0             = _mm256_add_ps(fjx0,tx);
733             fjy0             = _mm256_add_ps(fjy0,ty);
734             fjz0             = _mm256_add_ps(fjz0,tz);
735
736             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
737             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
738             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
739             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
740             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
741             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
742             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
743             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
744
745             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
746
747             /* Inner loop uses 148 flops */
748         }
749
750         /* End of innermost loop */
751
752         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
753                                                  f+i_coord_offset,fshift+i_shift_offset);
754
755         ggid                        = gid[iidx];
756         /* Update potential energies */
757         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
758         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
759
760         /* Increment number of inner iterations */
761         inneriter                  += j_index_end - j_index_start;
762
763         /* Outer loop uses 20 flops */
764     }
765
766     /* Increment number of outer iterations */
767     outeriter        += nri;
768
769     /* Update outer/inner flops */
770
771     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*148);
772 }
773 /*
774  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_single
775  * Electrostatics interaction: CubicSplineTable
776  * VdW interaction:            LennardJones
777  * Geometry:                   Water3-Particle
778  * Calculate force/pot:        Force
779  */
780 void
781 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_single
782                     (t_nblist                    * gmx_restrict       nlist,
783                      rvec                        * gmx_restrict          xx,
784                      rvec                        * gmx_restrict          ff,
785                      struct t_forcerec           * gmx_restrict          fr,
786                      t_mdatoms                   * gmx_restrict     mdatoms,
787                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
788                      t_nrnb                      * gmx_restrict        nrnb)
789 {
790     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
791      * just 0 for non-waters.
792      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
793      * jnr indices corresponding to data put in the four positions in the SIMD register.
794      */
795     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
796     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
797     int              jnrA,jnrB,jnrC,jnrD;
798     int              jnrE,jnrF,jnrG,jnrH;
799     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
800     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
801     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
802     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
803     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
804     real             rcutoff_scalar;
805     real             *shiftvec,*fshift,*x,*f;
806     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
807     real             scratch[4*DIM];
808     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
809     real *           vdwioffsetptr0;
810     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
811     real *           vdwioffsetptr1;
812     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
813     real *           vdwioffsetptr2;
814     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
815     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
816     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
817     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
818     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
819     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
820     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
821     real             *charge;
822     int              nvdwtype;
823     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
824     int              *vdwtype;
825     real             *vdwparam;
826     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
827     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
828     __m256i          vfitab;
829     __m128i          vfitab_lo,vfitab_hi;
830     __m128i          ifour       = _mm_set1_epi32(4);
831     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
832     real             *vftab;
833     __m256           dummy_mask,cutoff_mask;
834     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
835     __m256           one     = _mm256_set1_ps(1.0);
836     __m256           two     = _mm256_set1_ps(2.0);
837     x                = xx[0];
838     f                = ff[0];
839
840     nri              = nlist->nri;
841     iinr             = nlist->iinr;
842     jindex           = nlist->jindex;
843     jjnr             = nlist->jjnr;
844     shiftidx         = nlist->shift;
845     gid              = nlist->gid;
846     shiftvec         = fr->shift_vec[0];
847     fshift           = fr->fshift[0];
848     facel            = _mm256_set1_ps(fr->ic->epsfac);
849     charge           = mdatoms->chargeA;
850     nvdwtype         = fr->ntype;
851     vdwparam         = fr->nbfp;
852     vdwtype          = mdatoms->typeA;
853
854     vftab            = kernel_data->table_elec->data;
855     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
856
857     /* Setup water-specific parameters */
858     inr              = nlist->iinr[0];
859     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
860     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
861     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
862     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
863
864     /* Avoid stupid compiler warnings */
865     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
866     j_coord_offsetA = 0;
867     j_coord_offsetB = 0;
868     j_coord_offsetC = 0;
869     j_coord_offsetD = 0;
870     j_coord_offsetE = 0;
871     j_coord_offsetF = 0;
872     j_coord_offsetG = 0;
873     j_coord_offsetH = 0;
874
875     outeriter        = 0;
876     inneriter        = 0;
877
878     for(iidx=0;iidx<4*DIM;iidx++)
879     {
880         scratch[iidx] = 0.0;
881     }
882
883     /* Start outer loop over neighborlists */
884     for(iidx=0; iidx<nri; iidx++)
885     {
886         /* Load shift vector for this list */
887         i_shift_offset   = DIM*shiftidx[iidx];
888
889         /* Load limits for loop over neighbors */
890         j_index_start    = jindex[iidx];
891         j_index_end      = jindex[iidx+1];
892
893         /* Get outer coordinate index */
894         inr              = iinr[iidx];
895         i_coord_offset   = DIM*inr;
896
897         /* Load i particle coords and add shift vector */
898         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
899                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
900
901         fix0             = _mm256_setzero_ps();
902         fiy0             = _mm256_setzero_ps();
903         fiz0             = _mm256_setzero_ps();
904         fix1             = _mm256_setzero_ps();
905         fiy1             = _mm256_setzero_ps();
906         fiz1             = _mm256_setzero_ps();
907         fix2             = _mm256_setzero_ps();
908         fiy2             = _mm256_setzero_ps();
909         fiz2             = _mm256_setzero_ps();
910
911         /* Start inner kernel loop */
912         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
913         {
914
915             /* Get j neighbor index, and coordinate index */
916             jnrA             = jjnr[jidx];
917             jnrB             = jjnr[jidx+1];
918             jnrC             = jjnr[jidx+2];
919             jnrD             = jjnr[jidx+3];
920             jnrE             = jjnr[jidx+4];
921             jnrF             = jjnr[jidx+5];
922             jnrG             = jjnr[jidx+6];
923             jnrH             = jjnr[jidx+7];
924             j_coord_offsetA  = DIM*jnrA;
925             j_coord_offsetB  = DIM*jnrB;
926             j_coord_offsetC  = DIM*jnrC;
927             j_coord_offsetD  = DIM*jnrD;
928             j_coord_offsetE  = DIM*jnrE;
929             j_coord_offsetF  = DIM*jnrF;
930             j_coord_offsetG  = DIM*jnrG;
931             j_coord_offsetH  = DIM*jnrH;
932
933             /* load j atom coordinates */
934             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
935                                                  x+j_coord_offsetC,x+j_coord_offsetD,
936                                                  x+j_coord_offsetE,x+j_coord_offsetF,
937                                                  x+j_coord_offsetG,x+j_coord_offsetH,
938                                                  &jx0,&jy0,&jz0);
939
940             /* Calculate displacement vector */
941             dx00             = _mm256_sub_ps(ix0,jx0);
942             dy00             = _mm256_sub_ps(iy0,jy0);
943             dz00             = _mm256_sub_ps(iz0,jz0);
944             dx10             = _mm256_sub_ps(ix1,jx0);
945             dy10             = _mm256_sub_ps(iy1,jy0);
946             dz10             = _mm256_sub_ps(iz1,jz0);
947             dx20             = _mm256_sub_ps(ix2,jx0);
948             dy20             = _mm256_sub_ps(iy2,jy0);
949             dz20             = _mm256_sub_ps(iz2,jz0);
950
951             /* Calculate squared distance and things based on it */
952             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
953             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
954             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
955
956             rinv00           = avx256_invsqrt_f(rsq00);
957             rinv10           = avx256_invsqrt_f(rsq10);
958             rinv20           = avx256_invsqrt_f(rsq20);
959
960             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
961
962             /* Load parameters for j particles */
963             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
964                                                                  charge+jnrC+0,charge+jnrD+0,
965                                                                  charge+jnrE+0,charge+jnrF+0,
966                                                                  charge+jnrG+0,charge+jnrH+0);
967             vdwjidx0A        = 2*vdwtype[jnrA+0];
968             vdwjidx0B        = 2*vdwtype[jnrB+0];
969             vdwjidx0C        = 2*vdwtype[jnrC+0];
970             vdwjidx0D        = 2*vdwtype[jnrD+0];
971             vdwjidx0E        = 2*vdwtype[jnrE+0];
972             vdwjidx0F        = 2*vdwtype[jnrF+0];
973             vdwjidx0G        = 2*vdwtype[jnrG+0];
974             vdwjidx0H        = 2*vdwtype[jnrH+0];
975
976             fjx0             = _mm256_setzero_ps();
977             fjy0             = _mm256_setzero_ps();
978             fjz0             = _mm256_setzero_ps();
979
980             /**************************
981              * CALCULATE INTERACTIONS *
982              **************************/
983
984             r00              = _mm256_mul_ps(rsq00,rinv00);
985
986             /* Compute parameters for interactions between i and j atoms */
987             qq00             = _mm256_mul_ps(iq0,jq0);
988             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
989                                             vdwioffsetptr0+vdwjidx0B,
990                                             vdwioffsetptr0+vdwjidx0C,
991                                             vdwioffsetptr0+vdwjidx0D,
992                                             vdwioffsetptr0+vdwjidx0E,
993                                             vdwioffsetptr0+vdwjidx0F,
994                                             vdwioffsetptr0+vdwjidx0G,
995                                             vdwioffsetptr0+vdwjidx0H,
996                                             &c6_00,&c12_00);
997
998             /* Calculate table index by multiplying r with table scale and truncate to integer */
999             rt               = _mm256_mul_ps(r00,vftabscale);
1000             vfitab           = _mm256_cvttps_epi32(rt);
1001             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1002             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1003             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1004             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1005             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1006             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1007
1008             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1009             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1010                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1011             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1012                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1013             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1014                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1015             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1016                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1017             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1018             Heps             = _mm256_mul_ps(vfeps,H);
1019             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1020             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1021             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
1022
1023             /* LENNARD-JONES DISPERSION/REPULSION */
1024
1025             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1026             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1027
1028             fscal            = _mm256_add_ps(felec,fvdw);
1029
1030             /* Calculate temporary vectorial force */
1031             tx               = _mm256_mul_ps(fscal,dx00);
1032             ty               = _mm256_mul_ps(fscal,dy00);
1033             tz               = _mm256_mul_ps(fscal,dz00);
1034
1035             /* Update vectorial force */
1036             fix0             = _mm256_add_ps(fix0,tx);
1037             fiy0             = _mm256_add_ps(fiy0,ty);
1038             fiz0             = _mm256_add_ps(fiz0,tz);
1039
1040             fjx0             = _mm256_add_ps(fjx0,tx);
1041             fjy0             = _mm256_add_ps(fjy0,ty);
1042             fjz0             = _mm256_add_ps(fjz0,tz);
1043
1044             /**************************
1045              * CALCULATE INTERACTIONS *
1046              **************************/
1047
1048             r10              = _mm256_mul_ps(rsq10,rinv10);
1049
1050             /* Compute parameters for interactions between i and j atoms */
1051             qq10             = _mm256_mul_ps(iq1,jq0);
1052
1053             /* Calculate table index by multiplying r with table scale and truncate to integer */
1054             rt               = _mm256_mul_ps(r10,vftabscale);
1055             vfitab           = _mm256_cvttps_epi32(rt);
1056             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1057             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1058             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1059             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1060             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1061             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1062
1063             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1064             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1065                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1066             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1067                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1068             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1069                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1070             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1071                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1072             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1073             Heps             = _mm256_mul_ps(vfeps,H);
1074             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1075             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1076             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1077
1078             fscal            = felec;
1079
1080             /* Calculate temporary vectorial force */
1081             tx               = _mm256_mul_ps(fscal,dx10);
1082             ty               = _mm256_mul_ps(fscal,dy10);
1083             tz               = _mm256_mul_ps(fscal,dz10);
1084
1085             /* Update vectorial force */
1086             fix1             = _mm256_add_ps(fix1,tx);
1087             fiy1             = _mm256_add_ps(fiy1,ty);
1088             fiz1             = _mm256_add_ps(fiz1,tz);
1089
1090             fjx0             = _mm256_add_ps(fjx0,tx);
1091             fjy0             = _mm256_add_ps(fjy0,ty);
1092             fjz0             = _mm256_add_ps(fjz0,tz);
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             r20              = _mm256_mul_ps(rsq20,rinv20);
1099
1100             /* Compute parameters for interactions between i and j atoms */
1101             qq20             = _mm256_mul_ps(iq2,jq0);
1102
1103             /* Calculate table index by multiplying r with table scale and truncate to integer */
1104             rt               = _mm256_mul_ps(r20,vftabscale);
1105             vfitab           = _mm256_cvttps_epi32(rt);
1106             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1107             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1108             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1109             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1110             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1111             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1112
1113             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1114             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1115                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1116             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1117                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1118             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1119                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1120             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1121                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1122             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1123             Heps             = _mm256_mul_ps(vfeps,H);
1124             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1125             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1126             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1127
1128             fscal            = felec;
1129
1130             /* Calculate temporary vectorial force */
1131             tx               = _mm256_mul_ps(fscal,dx20);
1132             ty               = _mm256_mul_ps(fscal,dy20);
1133             tz               = _mm256_mul_ps(fscal,dz20);
1134
1135             /* Update vectorial force */
1136             fix2             = _mm256_add_ps(fix2,tx);
1137             fiy2             = _mm256_add_ps(fiy2,ty);
1138             fiz2             = _mm256_add_ps(fiz2,tz);
1139
1140             fjx0             = _mm256_add_ps(fjx0,tx);
1141             fjy0             = _mm256_add_ps(fjy0,ty);
1142             fjz0             = _mm256_add_ps(fjz0,tz);
1143
1144             fjptrA             = f+j_coord_offsetA;
1145             fjptrB             = f+j_coord_offsetB;
1146             fjptrC             = f+j_coord_offsetC;
1147             fjptrD             = f+j_coord_offsetD;
1148             fjptrE             = f+j_coord_offsetE;
1149             fjptrF             = f+j_coord_offsetF;
1150             fjptrG             = f+j_coord_offsetG;
1151             fjptrH             = f+j_coord_offsetH;
1152
1153             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1154
1155             /* Inner loop uses 128 flops */
1156         }
1157
1158         if(jidx<j_index_end)
1159         {
1160
1161             /* Get j neighbor index, and coordinate index */
1162             jnrlistA         = jjnr[jidx];
1163             jnrlistB         = jjnr[jidx+1];
1164             jnrlistC         = jjnr[jidx+2];
1165             jnrlistD         = jjnr[jidx+3];
1166             jnrlistE         = jjnr[jidx+4];
1167             jnrlistF         = jjnr[jidx+5];
1168             jnrlistG         = jjnr[jidx+6];
1169             jnrlistH         = jjnr[jidx+7];
1170             /* Sign of each element will be negative for non-real atoms.
1171              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1172              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1173              */
1174             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1175                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1176                                             
1177             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1178             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1179             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1180             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1181             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1182             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1183             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1184             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1185             j_coord_offsetA  = DIM*jnrA;
1186             j_coord_offsetB  = DIM*jnrB;
1187             j_coord_offsetC  = DIM*jnrC;
1188             j_coord_offsetD  = DIM*jnrD;
1189             j_coord_offsetE  = DIM*jnrE;
1190             j_coord_offsetF  = DIM*jnrF;
1191             j_coord_offsetG  = DIM*jnrG;
1192             j_coord_offsetH  = DIM*jnrH;
1193
1194             /* load j atom coordinates */
1195             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1196                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1197                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1198                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1199                                                  &jx0,&jy0,&jz0);
1200
1201             /* Calculate displacement vector */
1202             dx00             = _mm256_sub_ps(ix0,jx0);
1203             dy00             = _mm256_sub_ps(iy0,jy0);
1204             dz00             = _mm256_sub_ps(iz0,jz0);
1205             dx10             = _mm256_sub_ps(ix1,jx0);
1206             dy10             = _mm256_sub_ps(iy1,jy0);
1207             dz10             = _mm256_sub_ps(iz1,jz0);
1208             dx20             = _mm256_sub_ps(ix2,jx0);
1209             dy20             = _mm256_sub_ps(iy2,jy0);
1210             dz20             = _mm256_sub_ps(iz2,jz0);
1211
1212             /* Calculate squared distance and things based on it */
1213             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1214             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1215             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1216
1217             rinv00           = avx256_invsqrt_f(rsq00);
1218             rinv10           = avx256_invsqrt_f(rsq10);
1219             rinv20           = avx256_invsqrt_f(rsq20);
1220
1221             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1222
1223             /* Load parameters for j particles */
1224             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1225                                                                  charge+jnrC+0,charge+jnrD+0,
1226                                                                  charge+jnrE+0,charge+jnrF+0,
1227                                                                  charge+jnrG+0,charge+jnrH+0);
1228             vdwjidx0A        = 2*vdwtype[jnrA+0];
1229             vdwjidx0B        = 2*vdwtype[jnrB+0];
1230             vdwjidx0C        = 2*vdwtype[jnrC+0];
1231             vdwjidx0D        = 2*vdwtype[jnrD+0];
1232             vdwjidx0E        = 2*vdwtype[jnrE+0];
1233             vdwjidx0F        = 2*vdwtype[jnrF+0];
1234             vdwjidx0G        = 2*vdwtype[jnrG+0];
1235             vdwjidx0H        = 2*vdwtype[jnrH+0];
1236
1237             fjx0             = _mm256_setzero_ps();
1238             fjy0             = _mm256_setzero_ps();
1239             fjz0             = _mm256_setzero_ps();
1240
1241             /**************************
1242              * CALCULATE INTERACTIONS *
1243              **************************/
1244
1245             r00              = _mm256_mul_ps(rsq00,rinv00);
1246             r00              = _mm256_andnot_ps(dummy_mask,r00);
1247
1248             /* Compute parameters for interactions between i and j atoms */
1249             qq00             = _mm256_mul_ps(iq0,jq0);
1250             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1251                                             vdwioffsetptr0+vdwjidx0B,
1252                                             vdwioffsetptr0+vdwjidx0C,
1253                                             vdwioffsetptr0+vdwjidx0D,
1254                                             vdwioffsetptr0+vdwjidx0E,
1255                                             vdwioffsetptr0+vdwjidx0F,
1256                                             vdwioffsetptr0+vdwjidx0G,
1257                                             vdwioffsetptr0+vdwjidx0H,
1258                                             &c6_00,&c12_00);
1259
1260             /* Calculate table index by multiplying r with table scale and truncate to integer */
1261             rt               = _mm256_mul_ps(r00,vftabscale);
1262             vfitab           = _mm256_cvttps_epi32(rt);
1263             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1264             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1265             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1266             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1267             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1268             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1269
1270             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1271             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1272                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1273             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1274                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1275             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1276                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1277             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1278                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1279             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1280             Heps             = _mm256_mul_ps(vfeps,H);
1281             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1282             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1283             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
1284
1285             /* LENNARD-JONES DISPERSION/REPULSION */
1286
1287             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1288             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1289
1290             fscal            = _mm256_add_ps(felec,fvdw);
1291
1292             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1293
1294             /* Calculate temporary vectorial force */
1295             tx               = _mm256_mul_ps(fscal,dx00);
1296             ty               = _mm256_mul_ps(fscal,dy00);
1297             tz               = _mm256_mul_ps(fscal,dz00);
1298
1299             /* Update vectorial force */
1300             fix0             = _mm256_add_ps(fix0,tx);
1301             fiy0             = _mm256_add_ps(fiy0,ty);
1302             fiz0             = _mm256_add_ps(fiz0,tz);
1303
1304             fjx0             = _mm256_add_ps(fjx0,tx);
1305             fjy0             = _mm256_add_ps(fjy0,ty);
1306             fjz0             = _mm256_add_ps(fjz0,tz);
1307
1308             /**************************
1309              * CALCULATE INTERACTIONS *
1310              **************************/
1311
1312             r10              = _mm256_mul_ps(rsq10,rinv10);
1313             r10              = _mm256_andnot_ps(dummy_mask,r10);
1314
1315             /* Compute parameters for interactions between i and j atoms */
1316             qq10             = _mm256_mul_ps(iq1,jq0);
1317
1318             /* Calculate table index by multiplying r with table scale and truncate to integer */
1319             rt               = _mm256_mul_ps(r10,vftabscale);
1320             vfitab           = _mm256_cvttps_epi32(rt);
1321             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1322             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1323             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1324             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1325             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1326             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1327
1328             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1329             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1330                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1331             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1332                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1333             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1334                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1335             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1336                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1337             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1338             Heps             = _mm256_mul_ps(vfeps,H);
1339             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1340             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1341             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1342
1343             fscal            = felec;
1344
1345             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1346
1347             /* Calculate temporary vectorial force */
1348             tx               = _mm256_mul_ps(fscal,dx10);
1349             ty               = _mm256_mul_ps(fscal,dy10);
1350             tz               = _mm256_mul_ps(fscal,dz10);
1351
1352             /* Update vectorial force */
1353             fix1             = _mm256_add_ps(fix1,tx);
1354             fiy1             = _mm256_add_ps(fiy1,ty);
1355             fiz1             = _mm256_add_ps(fiz1,tz);
1356
1357             fjx0             = _mm256_add_ps(fjx0,tx);
1358             fjy0             = _mm256_add_ps(fjy0,ty);
1359             fjz0             = _mm256_add_ps(fjz0,tz);
1360
1361             /**************************
1362              * CALCULATE INTERACTIONS *
1363              **************************/
1364
1365             r20              = _mm256_mul_ps(rsq20,rinv20);
1366             r20              = _mm256_andnot_ps(dummy_mask,r20);
1367
1368             /* Compute parameters for interactions between i and j atoms */
1369             qq20             = _mm256_mul_ps(iq2,jq0);
1370
1371             /* Calculate table index by multiplying r with table scale and truncate to integer */
1372             rt               = _mm256_mul_ps(r20,vftabscale);
1373             vfitab           = _mm256_cvttps_epi32(rt);
1374             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1375             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1376             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1377             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1378             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1379             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1380
1381             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1382             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1383                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1384             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1385                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1386             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1387                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1388             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1389                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1390             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1391             Heps             = _mm256_mul_ps(vfeps,H);
1392             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1393             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1394             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1395
1396             fscal            = felec;
1397
1398             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1399
1400             /* Calculate temporary vectorial force */
1401             tx               = _mm256_mul_ps(fscal,dx20);
1402             ty               = _mm256_mul_ps(fscal,dy20);
1403             tz               = _mm256_mul_ps(fscal,dz20);
1404
1405             /* Update vectorial force */
1406             fix2             = _mm256_add_ps(fix2,tx);
1407             fiy2             = _mm256_add_ps(fiy2,ty);
1408             fiz2             = _mm256_add_ps(fiz2,tz);
1409
1410             fjx0             = _mm256_add_ps(fjx0,tx);
1411             fjy0             = _mm256_add_ps(fjy0,ty);
1412             fjz0             = _mm256_add_ps(fjz0,tz);
1413
1414             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1415             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1416             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1417             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1418             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1419             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1420             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1421             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1422
1423             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1424
1425             /* Inner loop uses 131 flops */
1426         }
1427
1428         /* End of innermost loop */
1429
1430         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1431                                                  f+i_coord_offset,fshift+i_shift_offset);
1432
1433         /* Increment number of inner iterations */
1434         inneriter                  += j_index_end - j_index_start;
1435
1436         /* Outer loop uses 18 flops */
1437     }
1438
1439     /* Increment number of outer iterations */
1440     outeriter        += nri;
1441
1442     /* Update outer/inner flops */
1443
1444     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*131);
1445 }