Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_single
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
93     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
104     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
105     __m256i          vfitab;
106     __m128i          vfitab_lo,vfitab_hi;
107     __m128i          ifour       = _mm_set1_epi32(4);
108     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
109     real             *vftab;
110     __m256           dummy_mask,cutoff_mask;
111     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
112     __m256           one     = _mm256_set1_ps(1.0);
113     __m256           two     = _mm256_set1_ps(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_ps(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     vftab            = kernel_data->table_elec->data;
132     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
133
134     /* Setup water-specific parameters */
135     inr              = nlist->iinr[0];
136     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
137     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
138     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
139     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147     j_coord_offsetE = 0;
148     j_coord_offsetF = 0;
149     j_coord_offsetG = 0;
150     j_coord_offsetH = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
177
178         fix0             = _mm256_setzero_ps();
179         fiy0             = _mm256_setzero_ps();
180         fiz0             = _mm256_setzero_ps();
181         fix1             = _mm256_setzero_ps();
182         fiy1             = _mm256_setzero_ps();
183         fiz1             = _mm256_setzero_ps();
184         fix2             = _mm256_setzero_ps();
185         fiy2             = _mm256_setzero_ps();
186         fiz2             = _mm256_setzero_ps();
187
188         /* Reset potential sums */
189         velecsum         = _mm256_setzero_ps();
190         vvdwsum          = _mm256_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             jnrE             = jjnr[jidx+4];
202             jnrF             = jjnr[jidx+5];
203             jnrG             = jjnr[jidx+6];
204             jnrH             = jjnr[jidx+7];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209             j_coord_offsetE  = DIM*jnrE;
210             j_coord_offsetF  = DIM*jnrF;
211             j_coord_offsetG  = DIM*jnrG;
212             j_coord_offsetH  = DIM*jnrH;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  x+j_coord_offsetE,x+j_coord_offsetF,
218                                                  x+j_coord_offsetG,x+j_coord_offsetH,
219                                                  &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm256_sub_ps(ix0,jx0);
223             dy00             = _mm256_sub_ps(iy0,jy0);
224             dz00             = _mm256_sub_ps(iz0,jz0);
225             dx10             = _mm256_sub_ps(ix1,jx0);
226             dy10             = _mm256_sub_ps(iy1,jy0);
227             dz10             = _mm256_sub_ps(iz1,jz0);
228             dx20             = _mm256_sub_ps(ix2,jx0);
229             dy20             = _mm256_sub_ps(iy2,jy0);
230             dz20             = _mm256_sub_ps(iz2,jz0);
231
232             /* Calculate squared distance and things based on it */
233             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
234             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
235             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
236
237             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
238             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
239             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
240
241             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
242
243             /* Load parameters for j particles */
244             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
245                                                                  charge+jnrC+0,charge+jnrD+0,
246                                                                  charge+jnrE+0,charge+jnrF+0,
247                                                                  charge+jnrG+0,charge+jnrH+0);
248             vdwjidx0A        = 2*vdwtype[jnrA+0];
249             vdwjidx0B        = 2*vdwtype[jnrB+0];
250             vdwjidx0C        = 2*vdwtype[jnrC+0];
251             vdwjidx0D        = 2*vdwtype[jnrD+0];
252             vdwjidx0E        = 2*vdwtype[jnrE+0];
253             vdwjidx0F        = 2*vdwtype[jnrF+0];
254             vdwjidx0G        = 2*vdwtype[jnrG+0];
255             vdwjidx0H        = 2*vdwtype[jnrH+0];
256
257             fjx0             = _mm256_setzero_ps();
258             fjy0             = _mm256_setzero_ps();
259             fjz0             = _mm256_setzero_ps();
260
261             /**************************
262              * CALCULATE INTERACTIONS *
263              **************************/
264
265             r00              = _mm256_mul_ps(rsq00,rinv00);
266
267             /* Compute parameters for interactions between i and j atoms */
268             qq00             = _mm256_mul_ps(iq0,jq0);
269             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
270                                             vdwioffsetptr0+vdwjidx0B,
271                                             vdwioffsetptr0+vdwjidx0C,
272                                             vdwioffsetptr0+vdwjidx0D,
273                                             vdwioffsetptr0+vdwjidx0E,
274                                             vdwioffsetptr0+vdwjidx0F,
275                                             vdwioffsetptr0+vdwjidx0G,
276                                             vdwioffsetptr0+vdwjidx0H,
277                                             &c6_00,&c12_00);
278
279             /* Calculate table index by multiplying r with table scale and truncate to integer */
280             rt               = _mm256_mul_ps(r00,vftabscale);
281             vfitab           = _mm256_cvttps_epi32(rt);
282             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
283             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
284             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
285             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
286             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
287             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
288
289             /* CUBIC SPLINE TABLE ELECTROSTATICS */
290             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
291                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
292             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
293                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
294             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
295                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
296             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
297                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
298             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
299             Heps             = _mm256_mul_ps(vfeps,H);
300             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
301             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
302             velec            = _mm256_mul_ps(qq00,VV);
303             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
304             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
305
306             /* LENNARD-JONES DISPERSION/REPULSION */
307
308             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
309             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
310             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
311             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
312             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velecsum         = _mm256_add_ps(velecsum,velec);
316             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
317
318             fscal            = _mm256_add_ps(felec,fvdw);
319
320             /* Calculate temporary vectorial force */
321             tx               = _mm256_mul_ps(fscal,dx00);
322             ty               = _mm256_mul_ps(fscal,dy00);
323             tz               = _mm256_mul_ps(fscal,dz00);
324
325             /* Update vectorial force */
326             fix0             = _mm256_add_ps(fix0,tx);
327             fiy0             = _mm256_add_ps(fiy0,ty);
328             fiz0             = _mm256_add_ps(fiz0,tz);
329
330             fjx0             = _mm256_add_ps(fjx0,tx);
331             fjy0             = _mm256_add_ps(fjy0,ty);
332             fjz0             = _mm256_add_ps(fjz0,tz);
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             r10              = _mm256_mul_ps(rsq10,rinv10);
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq10             = _mm256_mul_ps(iq1,jq0);
342
343             /* Calculate table index by multiplying r with table scale and truncate to integer */
344             rt               = _mm256_mul_ps(r10,vftabscale);
345             vfitab           = _mm256_cvttps_epi32(rt);
346             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
347             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
348             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
349             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
350             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
351             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
352
353             /* CUBIC SPLINE TABLE ELECTROSTATICS */
354             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
355                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
356             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
357                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
358             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
359                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
360             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
361                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
362             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
363             Heps             = _mm256_mul_ps(vfeps,H);
364             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
365             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
366             velec            = _mm256_mul_ps(qq10,VV);
367             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
368             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velecsum         = _mm256_add_ps(velecsum,velec);
372
373             fscal            = felec;
374
375             /* Calculate temporary vectorial force */
376             tx               = _mm256_mul_ps(fscal,dx10);
377             ty               = _mm256_mul_ps(fscal,dy10);
378             tz               = _mm256_mul_ps(fscal,dz10);
379
380             /* Update vectorial force */
381             fix1             = _mm256_add_ps(fix1,tx);
382             fiy1             = _mm256_add_ps(fiy1,ty);
383             fiz1             = _mm256_add_ps(fiz1,tz);
384
385             fjx0             = _mm256_add_ps(fjx0,tx);
386             fjy0             = _mm256_add_ps(fjy0,ty);
387             fjz0             = _mm256_add_ps(fjz0,tz);
388
389             /**************************
390              * CALCULATE INTERACTIONS *
391              **************************/
392
393             r20              = _mm256_mul_ps(rsq20,rinv20);
394
395             /* Compute parameters for interactions between i and j atoms */
396             qq20             = _mm256_mul_ps(iq2,jq0);
397
398             /* Calculate table index by multiplying r with table scale and truncate to integer */
399             rt               = _mm256_mul_ps(r20,vftabscale);
400             vfitab           = _mm256_cvttps_epi32(rt);
401             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
402             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
403             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
404             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
405             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
406             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
407
408             /* CUBIC SPLINE TABLE ELECTROSTATICS */
409             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
410                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
411             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
412                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
413             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
414                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
415             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
416                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
417             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
418             Heps             = _mm256_mul_ps(vfeps,H);
419             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
420             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
421             velec            = _mm256_mul_ps(qq20,VV);
422             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
423             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
424
425             /* Update potential sum for this i atom from the interaction with this j atom. */
426             velecsum         = _mm256_add_ps(velecsum,velec);
427
428             fscal            = felec;
429
430             /* Calculate temporary vectorial force */
431             tx               = _mm256_mul_ps(fscal,dx20);
432             ty               = _mm256_mul_ps(fscal,dy20);
433             tz               = _mm256_mul_ps(fscal,dz20);
434
435             /* Update vectorial force */
436             fix2             = _mm256_add_ps(fix2,tx);
437             fiy2             = _mm256_add_ps(fiy2,ty);
438             fiz2             = _mm256_add_ps(fiz2,tz);
439
440             fjx0             = _mm256_add_ps(fjx0,tx);
441             fjy0             = _mm256_add_ps(fjy0,ty);
442             fjz0             = _mm256_add_ps(fjz0,tz);
443
444             fjptrA             = f+j_coord_offsetA;
445             fjptrB             = f+j_coord_offsetB;
446             fjptrC             = f+j_coord_offsetC;
447             fjptrD             = f+j_coord_offsetD;
448             fjptrE             = f+j_coord_offsetE;
449             fjptrF             = f+j_coord_offsetF;
450             fjptrG             = f+j_coord_offsetG;
451             fjptrH             = f+j_coord_offsetH;
452
453             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
454
455             /* Inner loop uses 145 flops */
456         }
457
458         if(jidx<j_index_end)
459         {
460
461             /* Get j neighbor index, and coordinate index */
462             jnrlistA         = jjnr[jidx];
463             jnrlistB         = jjnr[jidx+1];
464             jnrlistC         = jjnr[jidx+2];
465             jnrlistD         = jjnr[jidx+3];
466             jnrlistE         = jjnr[jidx+4];
467             jnrlistF         = jjnr[jidx+5];
468             jnrlistG         = jjnr[jidx+6];
469             jnrlistH         = jjnr[jidx+7];
470             /* Sign of each element will be negative for non-real atoms.
471              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
472              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
473              */
474             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
475                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
476                                             
477             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
478             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
479             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
480             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
481             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
482             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
483             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
484             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
485             j_coord_offsetA  = DIM*jnrA;
486             j_coord_offsetB  = DIM*jnrB;
487             j_coord_offsetC  = DIM*jnrC;
488             j_coord_offsetD  = DIM*jnrD;
489             j_coord_offsetE  = DIM*jnrE;
490             j_coord_offsetF  = DIM*jnrF;
491             j_coord_offsetG  = DIM*jnrG;
492             j_coord_offsetH  = DIM*jnrH;
493
494             /* load j atom coordinates */
495             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
496                                                  x+j_coord_offsetC,x+j_coord_offsetD,
497                                                  x+j_coord_offsetE,x+j_coord_offsetF,
498                                                  x+j_coord_offsetG,x+j_coord_offsetH,
499                                                  &jx0,&jy0,&jz0);
500
501             /* Calculate displacement vector */
502             dx00             = _mm256_sub_ps(ix0,jx0);
503             dy00             = _mm256_sub_ps(iy0,jy0);
504             dz00             = _mm256_sub_ps(iz0,jz0);
505             dx10             = _mm256_sub_ps(ix1,jx0);
506             dy10             = _mm256_sub_ps(iy1,jy0);
507             dz10             = _mm256_sub_ps(iz1,jz0);
508             dx20             = _mm256_sub_ps(ix2,jx0);
509             dy20             = _mm256_sub_ps(iy2,jy0);
510             dz20             = _mm256_sub_ps(iz2,jz0);
511
512             /* Calculate squared distance and things based on it */
513             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
514             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
515             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
516
517             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
518             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
519             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
520
521             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
522
523             /* Load parameters for j particles */
524             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
525                                                                  charge+jnrC+0,charge+jnrD+0,
526                                                                  charge+jnrE+0,charge+jnrF+0,
527                                                                  charge+jnrG+0,charge+jnrH+0);
528             vdwjidx0A        = 2*vdwtype[jnrA+0];
529             vdwjidx0B        = 2*vdwtype[jnrB+0];
530             vdwjidx0C        = 2*vdwtype[jnrC+0];
531             vdwjidx0D        = 2*vdwtype[jnrD+0];
532             vdwjidx0E        = 2*vdwtype[jnrE+0];
533             vdwjidx0F        = 2*vdwtype[jnrF+0];
534             vdwjidx0G        = 2*vdwtype[jnrG+0];
535             vdwjidx0H        = 2*vdwtype[jnrH+0];
536
537             fjx0             = _mm256_setzero_ps();
538             fjy0             = _mm256_setzero_ps();
539             fjz0             = _mm256_setzero_ps();
540
541             /**************************
542              * CALCULATE INTERACTIONS *
543              **************************/
544
545             r00              = _mm256_mul_ps(rsq00,rinv00);
546             r00              = _mm256_andnot_ps(dummy_mask,r00);
547
548             /* Compute parameters for interactions between i and j atoms */
549             qq00             = _mm256_mul_ps(iq0,jq0);
550             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
551                                             vdwioffsetptr0+vdwjidx0B,
552                                             vdwioffsetptr0+vdwjidx0C,
553                                             vdwioffsetptr0+vdwjidx0D,
554                                             vdwioffsetptr0+vdwjidx0E,
555                                             vdwioffsetptr0+vdwjidx0F,
556                                             vdwioffsetptr0+vdwjidx0G,
557                                             vdwioffsetptr0+vdwjidx0H,
558                                             &c6_00,&c12_00);
559
560             /* Calculate table index by multiplying r with table scale and truncate to integer */
561             rt               = _mm256_mul_ps(r00,vftabscale);
562             vfitab           = _mm256_cvttps_epi32(rt);
563             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
564             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
565             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
566             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
567             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
568             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
569
570             /* CUBIC SPLINE TABLE ELECTROSTATICS */
571             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
572                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
573             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
574                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
575             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
576                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
577             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
578                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
579             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
580             Heps             = _mm256_mul_ps(vfeps,H);
581             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
582             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
583             velec            = _mm256_mul_ps(qq00,VV);
584             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
585             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
586
587             /* LENNARD-JONES DISPERSION/REPULSION */
588
589             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
590             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
591             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
592             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
593             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
594
595             /* Update potential sum for this i atom from the interaction with this j atom. */
596             velec            = _mm256_andnot_ps(dummy_mask,velec);
597             velecsum         = _mm256_add_ps(velecsum,velec);
598             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
599             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
600
601             fscal            = _mm256_add_ps(felec,fvdw);
602
603             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
604
605             /* Calculate temporary vectorial force */
606             tx               = _mm256_mul_ps(fscal,dx00);
607             ty               = _mm256_mul_ps(fscal,dy00);
608             tz               = _mm256_mul_ps(fscal,dz00);
609
610             /* Update vectorial force */
611             fix0             = _mm256_add_ps(fix0,tx);
612             fiy0             = _mm256_add_ps(fiy0,ty);
613             fiz0             = _mm256_add_ps(fiz0,tz);
614
615             fjx0             = _mm256_add_ps(fjx0,tx);
616             fjy0             = _mm256_add_ps(fjy0,ty);
617             fjz0             = _mm256_add_ps(fjz0,tz);
618
619             /**************************
620              * CALCULATE INTERACTIONS *
621              **************************/
622
623             r10              = _mm256_mul_ps(rsq10,rinv10);
624             r10              = _mm256_andnot_ps(dummy_mask,r10);
625
626             /* Compute parameters for interactions between i and j atoms */
627             qq10             = _mm256_mul_ps(iq1,jq0);
628
629             /* Calculate table index by multiplying r with table scale and truncate to integer */
630             rt               = _mm256_mul_ps(r10,vftabscale);
631             vfitab           = _mm256_cvttps_epi32(rt);
632             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
633             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
634             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
635             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
636             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
637             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
638
639             /* CUBIC SPLINE TABLE ELECTROSTATICS */
640             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
641                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
642             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
643                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
644             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
645                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
646             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
647                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
648             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
649             Heps             = _mm256_mul_ps(vfeps,H);
650             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
651             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
652             velec            = _mm256_mul_ps(qq10,VV);
653             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
654             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
655
656             /* Update potential sum for this i atom from the interaction with this j atom. */
657             velec            = _mm256_andnot_ps(dummy_mask,velec);
658             velecsum         = _mm256_add_ps(velecsum,velec);
659
660             fscal            = felec;
661
662             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
663
664             /* Calculate temporary vectorial force */
665             tx               = _mm256_mul_ps(fscal,dx10);
666             ty               = _mm256_mul_ps(fscal,dy10);
667             tz               = _mm256_mul_ps(fscal,dz10);
668
669             /* Update vectorial force */
670             fix1             = _mm256_add_ps(fix1,tx);
671             fiy1             = _mm256_add_ps(fiy1,ty);
672             fiz1             = _mm256_add_ps(fiz1,tz);
673
674             fjx0             = _mm256_add_ps(fjx0,tx);
675             fjy0             = _mm256_add_ps(fjy0,ty);
676             fjz0             = _mm256_add_ps(fjz0,tz);
677
678             /**************************
679              * CALCULATE INTERACTIONS *
680              **************************/
681
682             r20              = _mm256_mul_ps(rsq20,rinv20);
683             r20              = _mm256_andnot_ps(dummy_mask,r20);
684
685             /* Compute parameters for interactions between i and j atoms */
686             qq20             = _mm256_mul_ps(iq2,jq0);
687
688             /* Calculate table index by multiplying r with table scale and truncate to integer */
689             rt               = _mm256_mul_ps(r20,vftabscale);
690             vfitab           = _mm256_cvttps_epi32(rt);
691             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
692             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
693             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
694             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
695             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
696             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
697
698             /* CUBIC SPLINE TABLE ELECTROSTATICS */
699             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
700                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
701             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
702                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
703             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
704                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
705             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
706                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
707             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
708             Heps             = _mm256_mul_ps(vfeps,H);
709             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
710             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
711             velec            = _mm256_mul_ps(qq20,VV);
712             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
713             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
714
715             /* Update potential sum for this i atom from the interaction with this j atom. */
716             velec            = _mm256_andnot_ps(dummy_mask,velec);
717             velecsum         = _mm256_add_ps(velecsum,velec);
718
719             fscal            = felec;
720
721             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
722
723             /* Calculate temporary vectorial force */
724             tx               = _mm256_mul_ps(fscal,dx20);
725             ty               = _mm256_mul_ps(fscal,dy20);
726             tz               = _mm256_mul_ps(fscal,dz20);
727
728             /* Update vectorial force */
729             fix2             = _mm256_add_ps(fix2,tx);
730             fiy2             = _mm256_add_ps(fiy2,ty);
731             fiz2             = _mm256_add_ps(fiz2,tz);
732
733             fjx0             = _mm256_add_ps(fjx0,tx);
734             fjy0             = _mm256_add_ps(fjy0,ty);
735             fjz0             = _mm256_add_ps(fjz0,tz);
736
737             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
738             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
739             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
740             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
741             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
742             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
743             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
744             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
745
746             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
747
748             /* Inner loop uses 148 flops */
749         }
750
751         /* End of innermost loop */
752
753         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
754                                                  f+i_coord_offset,fshift+i_shift_offset);
755
756         ggid                        = gid[iidx];
757         /* Update potential energies */
758         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
759         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
760
761         /* Increment number of inner iterations */
762         inneriter                  += j_index_end - j_index_start;
763
764         /* Outer loop uses 20 flops */
765     }
766
767     /* Increment number of outer iterations */
768     outeriter        += nri;
769
770     /* Update outer/inner flops */
771
772     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*148);
773 }
774 /*
775  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_single
776  * Electrostatics interaction: CubicSplineTable
777  * VdW interaction:            LennardJones
778  * Geometry:                   Water3-Particle
779  * Calculate force/pot:        Force
780  */
781 void
782 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_single
783                     (t_nblist                    * gmx_restrict       nlist,
784                      rvec                        * gmx_restrict          xx,
785                      rvec                        * gmx_restrict          ff,
786                      t_forcerec                  * gmx_restrict          fr,
787                      t_mdatoms                   * gmx_restrict     mdatoms,
788                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
789                      t_nrnb                      * gmx_restrict        nrnb)
790 {
791     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
792      * just 0 for non-waters.
793      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
794      * jnr indices corresponding to data put in the four positions in the SIMD register.
795      */
796     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
797     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
798     int              jnrA,jnrB,jnrC,jnrD;
799     int              jnrE,jnrF,jnrG,jnrH;
800     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
801     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
802     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
803     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
804     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
805     real             rcutoff_scalar;
806     real             *shiftvec,*fshift,*x,*f;
807     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
808     real             scratch[4*DIM];
809     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
810     real *           vdwioffsetptr0;
811     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
812     real *           vdwioffsetptr1;
813     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
814     real *           vdwioffsetptr2;
815     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
816     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
817     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
818     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
819     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
820     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
821     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
822     real             *charge;
823     int              nvdwtype;
824     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
825     int              *vdwtype;
826     real             *vdwparam;
827     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
828     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
829     __m256i          vfitab;
830     __m128i          vfitab_lo,vfitab_hi;
831     __m128i          ifour       = _mm_set1_epi32(4);
832     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
833     real             *vftab;
834     __m256           dummy_mask,cutoff_mask;
835     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
836     __m256           one     = _mm256_set1_ps(1.0);
837     __m256           two     = _mm256_set1_ps(2.0);
838     x                = xx[0];
839     f                = ff[0];
840
841     nri              = nlist->nri;
842     iinr             = nlist->iinr;
843     jindex           = nlist->jindex;
844     jjnr             = nlist->jjnr;
845     shiftidx         = nlist->shift;
846     gid              = nlist->gid;
847     shiftvec         = fr->shift_vec[0];
848     fshift           = fr->fshift[0];
849     facel            = _mm256_set1_ps(fr->epsfac);
850     charge           = mdatoms->chargeA;
851     nvdwtype         = fr->ntype;
852     vdwparam         = fr->nbfp;
853     vdwtype          = mdatoms->typeA;
854
855     vftab            = kernel_data->table_elec->data;
856     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
857
858     /* Setup water-specific parameters */
859     inr              = nlist->iinr[0];
860     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
861     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
862     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
863     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
864
865     /* Avoid stupid compiler warnings */
866     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
867     j_coord_offsetA = 0;
868     j_coord_offsetB = 0;
869     j_coord_offsetC = 0;
870     j_coord_offsetD = 0;
871     j_coord_offsetE = 0;
872     j_coord_offsetF = 0;
873     j_coord_offsetG = 0;
874     j_coord_offsetH = 0;
875
876     outeriter        = 0;
877     inneriter        = 0;
878
879     for(iidx=0;iidx<4*DIM;iidx++)
880     {
881         scratch[iidx] = 0.0;
882     }
883
884     /* Start outer loop over neighborlists */
885     for(iidx=0; iidx<nri; iidx++)
886     {
887         /* Load shift vector for this list */
888         i_shift_offset   = DIM*shiftidx[iidx];
889
890         /* Load limits for loop over neighbors */
891         j_index_start    = jindex[iidx];
892         j_index_end      = jindex[iidx+1];
893
894         /* Get outer coordinate index */
895         inr              = iinr[iidx];
896         i_coord_offset   = DIM*inr;
897
898         /* Load i particle coords and add shift vector */
899         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
900                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
901
902         fix0             = _mm256_setzero_ps();
903         fiy0             = _mm256_setzero_ps();
904         fiz0             = _mm256_setzero_ps();
905         fix1             = _mm256_setzero_ps();
906         fiy1             = _mm256_setzero_ps();
907         fiz1             = _mm256_setzero_ps();
908         fix2             = _mm256_setzero_ps();
909         fiy2             = _mm256_setzero_ps();
910         fiz2             = _mm256_setzero_ps();
911
912         /* Start inner kernel loop */
913         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
914         {
915
916             /* Get j neighbor index, and coordinate index */
917             jnrA             = jjnr[jidx];
918             jnrB             = jjnr[jidx+1];
919             jnrC             = jjnr[jidx+2];
920             jnrD             = jjnr[jidx+3];
921             jnrE             = jjnr[jidx+4];
922             jnrF             = jjnr[jidx+5];
923             jnrG             = jjnr[jidx+6];
924             jnrH             = jjnr[jidx+7];
925             j_coord_offsetA  = DIM*jnrA;
926             j_coord_offsetB  = DIM*jnrB;
927             j_coord_offsetC  = DIM*jnrC;
928             j_coord_offsetD  = DIM*jnrD;
929             j_coord_offsetE  = DIM*jnrE;
930             j_coord_offsetF  = DIM*jnrF;
931             j_coord_offsetG  = DIM*jnrG;
932             j_coord_offsetH  = DIM*jnrH;
933
934             /* load j atom coordinates */
935             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
936                                                  x+j_coord_offsetC,x+j_coord_offsetD,
937                                                  x+j_coord_offsetE,x+j_coord_offsetF,
938                                                  x+j_coord_offsetG,x+j_coord_offsetH,
939                                                  &jx0,&jy0,&jz0);
940
941             /* Calculate displacement vector */
942             dx00             = _mm256_sub_ps(ix0,jx0);
943             dy00             = _mm256_sub_ps(iy0,jy0);
944             dz00             = _mm256_sub_ps(iz0,jz0);
945             dx10             = _mm256_sub_ps(ix1,jx0);
946             dy10             = _mm256_sub_ps(iy1,jy0);
947             dz10             = _mm256_sub_ps(iz1,jz0);
948             dx20             = _mm256_sub_ps(ix2,jx0);
949             dy20             = _mm256_sub_ps(iy2,jy0);
950             dz20             = _mm256_sub_ps(iz2,jz0);
951
952             /* Calculate squared distance and things based on it */
953             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
954             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
955             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
956
957             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
958             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
959             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
960
961             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
962
963             /* Load parameters for j particles */
964             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
965                                                                  charge+jnrC+0,charge+jnrD+0,
966                                                                  charge+jnrE+0,charge+jnrF+0,
967                                                                  charge+jnrG+0,charge+jnrH+0);
968             vdwjidx0A        = 2*vdwtype[jnrA+0];
969             vdwjidx0B        = 2*vdwtype[jnrB+0];
970             vdwjidx0C        = 2*vdwtype[jnrC+0];
971             vdwjidx0D        = 2*vdwtype[jnrD+0];
972             vdwjidx0E        = 2*vdwtype[jnrE+0];
973             vdwjidx0F        = 2*vdwtype[jnrF+0];
974             vdwjidx0G        = 2*vdwtype[jnrG+0];
975             vdwjidx0H        = 2*vdwtype[jnrH+0];
976
977             fjx0             = _mm256_setzero_ps();
978             fjy0             = _mm256_setzero_ps();
979             fjz0             = _mm256_setzero_ps();
980
981             /**************************
982              * CALCULATE INTERACTIONS *
983              **************************/
984
985             r00              = _mm256_mul_ps(rsq00,rinv00);
986
987             /* Compute parameters for interactions between i and j atoms */
988             qq00             = _mm256_mul_ps(iq0,jq0);
989             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
990                                             vdwioffsetptr0+vdwjidx0B,
991                                             vdwioffsetptr0+vdwjidx0C,
992                                             vdwioffsetptr0+vdwjidx0D,
993                                             vdwioffsetptr0+vdwjidx0E,
994                                             vdwioffsetptr0+vdwjidx0F,
995                                             vdwioffsetptr0+vdwjidx0G,
996                                             vdwioffsetptr0+vdwjidx0H,
997                                             &c6_00,&c12_00);
998
999             /* Calculate table index by multiplying r with table scale and truncate to integer */
1000             rt               = _mm256_mul_ps(r00,vftabscale);
1001             vfitab           = _mm256_cvttps_epi32(rt);
1002             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1003             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1004             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1005             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1006             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1007             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1008
1009             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1010             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1011                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1012             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1013                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1014             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1015                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1016             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1017                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1018             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1019             Heps             = _mm256_mul_ps(vfeps,H);
1020             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1021             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1022             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
1023
1024             /* LENNARD-JONES DISPERSION/REPULSION */
1025
1026             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1027             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1028
1029             fscal            = _mm256_add_ps(felec,fvdw);
1030
1031             /* Calculate temporary vectorial force */
1032             tx               = _mm256_mul_ps(fscal,dx00);
1033             ty               = _mm256_mul_ps(fscal,dy00);
1034             tz               = _mm256_mul_ps(fscal,dz00);
1035
1036             /* Update vectorial force */
1037             fix0             = _mm256_add_ps(fix0,tx);
1038             fiy0             = _mm256_add_ps(fiy0,ty);
1039             fiz0             = _mm256_add_ps(fiz0,tz);
1040
1041             fjx0             = _mm256_add_ps(fjx0,tx);
1042             fjy0             = _mm256_add_ps(fjy0,ty);
1043             fjz0             = _mm256_add_ps(fjz0,tz);
1044
1045             /**************************
1046              * CALCULATE INTERACTIONS *
1047              **************************/
1048
1049             r10              = _mm256_mul_ps(rsq10,rinv10);
1050
1051             /* Compute parameters for interactions between i and j atoms */
1052             qq10             = _mm256_mul_ps(iq1,jq0);
1053
1054             /* Calculate table index by multiplying r with table scale and truncate to integer */
1055             rt               = _mm256_mul_ps(r10,vftabscale);
1056             vfitab           = _mm256_cvttps_epi32(rt);
1057             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1058             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1059             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1060             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1061             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1062             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1063
1064             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1065             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1066                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1067             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1068                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1069             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1070                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1071             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1072                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1073             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1074             Heps             = _mm256_mul_ps(vfeps,H);
1075             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1076             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1077             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1078
1079             fscal            = felec;
1080
1081             /* Calculate temporary vectorial force */
1082             tx               = _mm256_mul_ps(fscal,dx10);
1083             ty               = _mm256_mul_ps(fscal,dy10);
1084             tz               = _mm256_mul_ps(fscal,dz10);
1085
1086             /* Update vectorial force */
1087             fix1             = _mm256_add_ps(fix1,tx);
1088             fiy1             = _mm256_add_ps(fiy1,ty);
1089             fiz1             = _mm256_add_ps(fiz1,tz);
1090
1091             fjx0             = _mm256_add_ps(fjx0,tx);
1092             fjy0             = _mm256_add_ps(fjy0,ty);
1093             fjz0             = _mm256_add_ps(fjz0,tz);
1094
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             r20              = _mm256_mul_ps(rsq20,rinv20);
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             qq20             = _mm256_mul_ps(iq2,jq0);
1103
1104             /* Calculate table index by multiplying r with table scale and truncate to integer */
1105             rt               = _mm256_mul_ps(r20,vftabscale);
1106             vfitab           = _mm256_cvttps_epi32(rt);
1107             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1108             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1109             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1110             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1111             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1112             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1113
1114             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1115             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1116                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1117             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1118                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1119             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1120                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1121             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1122                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1123             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1124             Heps             = _mm256_mul_ps(vfeps,H);
1125             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1126             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1127             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1128
1129             fscal            = felec;
1130
1131             /* Calculate temporary vectorial force */
1132             tx               = _mm256_mul_ps(fscal,dx20);
1133             ty               = _mm256_mul_ps(fscal,dy20);
1134             tz               = _mm256_mul_ps(fscal,dz20);
1135
1136             /* Update vectorial force */
1137             fix2             = _mm256_add_ps(fix2,tx);
1138             fiy2             = _mm256_add_ps(fiy2,ty);
1139             fiz2             = _mm256_add_ps(fiz2,tz);
1140
1141             fjx0             = _mm256_add_ps(fjx0,tx);
1142             fjy0             = _mm256_add_ps(fjy0,ty);
1143             fjz0             = _mm256_add_ps(fjz0,tz);
1144
1145             fjptrA             = f+j_coord_offsetA;
1146             fjptrB             = f+j_coord_offsetB;
1147             fjptrC             = f+j_coord_offsetC;
1148             fjptrD             = f+j_coord_offsetD;
1149             fjptrE             = f+j_coord_offsetE;
1150             fjptrF             = f+j_coord_offsetF;
1151             fjptrG             = f+j_coord_offsetG;
1152             fjptrH             = f+j_coord_offsetH;
1153
1154             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1155
1156             /* Inner loop uses 128 flops */
1157         }
1158
1159         if(jidx<j_index_end)
1160         {
1161
1162             /* Get j neighbor index, and coordinate index */
1163             jnrlistA         = jjnr[jidx];
1164             jnrlistB         = jjnr[jidx+1];
1165             jnrlistC         = jjnr[jidx+2];
1166             jnrlistD         = jjnr[jidx+3];
1167             jnrlistE         = jjnr[jidx+4];
1168             jnrlistF         = jjnr[jidx+5];
1169             jnrlistG         = jjnr[jidx+6];
1170             jnrlistH         = jjnr[jidx+7];
1171             /* Sign of each element will be negative for non-real atoms.
1172              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1173              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1174              */
1175             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1176                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1177                                             
1178             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1179             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1180             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1181             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1182             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1183             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1184             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1185             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1186             j_coord_offsetA  = DIM*jnrA;
1187             j_coord_offsetB  = DIM*jnrB;
1188             j_coord_offsetC  = DIM*jnrC;
1189             j_coord_offsetD  = DIM*jnrD;
1190             j_coord_offsetE  = DIM*jnrE;
1191             j_coord_offsetF  = DIM*jnrF;
1192             j_coord_offsetG  = DIM*jnrG;
1193             j_coord_offsetH  = DIM*jnrH;
1194
1195             /* load j atom coordinates */
1196             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1197                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1198                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1199                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1200                                                  &jx0,&jy0,&jz0);
1201
1202             /* Calculate displacement vector */
1203             dx00             = _mm256_sub_ps(ix0,jx0);
1204             dy00             = _mm256_sub_ps(iy0,jy0);
1205             dz00             = _mm256_sub_ps(iz0,jz0);
1206             dx10             = _mm256_sub_ps(ix1,jx0);
1207             dy10             = _mm256_sub_ps(iy1,jy0);
1208             dz10             = _mm256_sub_ps(iz1,jz0);
1209             dx20             = _mm256_sub_ps(ix2,jx0);
1210             dy20             = _mm256_sub_ps(iy2,jy0);
1211             dz20             = _mm256_sub_ps(iz2,jz0);
1212
1213             /* Calculate squared distance and things based on it */
1214             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1215             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1216             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1217
1218             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1219             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1220             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1221
1222             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1223
1224             /* Load parameters for j particles */
1225             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1226                                                                  charge+jnrC+0,charge+jnrD+0,
1227                                                                  charge+jnrE+0,charge+jnrF+0,
1228                                                                  charge+jnrG+0,charge+jnrH+0);
1229             vdwjidx0A        = 2*vdwtype[jnrA+0];
1230             vdwjidx0B        = 2*vdwtype[jnrB+0];
1231             vdwjidx0C        = 2*vdwtype[jnrC+0];
1232             vdwjidx0D        = 2*vdwtype[jnrD+0];
1233             vdwjidx0E        = 2*vdwtype[jnrE+0];
1234             vdwjidx0F        = 2*vdwtype[jnrF+0];
1235             vdwjidx0G        = 2*vdwtype[jnrG+0];
1236             vdwjidx0H        = 2*vdwtype[jnrH+0];
1237
1238             fjx0             = _mm256_setzero_ps();
1239             fjy0             = _mm256_setzero_ps();
1240             fjz0             = _mm256_setzero_ps();
1241
1242             /**************************
1243              * CALCULATE INTERACTIONS *
1244              **************************/
1245
1246             r00              = _mm256_mul_ps(rsq00,rinv00);
1247             r00              = _mm256_andnot_ps(dummy_mask,r00);
1248
1249             /* Compute parameters for interactions between i and j atoms */
1250             qq00             = _mm256_mul_ps(iq0,jq0);
1251             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1252                                             vdwioffsetptr0+vdwjidx0B,
1253                                             vdwioffsetptr0+vdwjidx0C,
1254                                             vdwioffsetptr0+vdwjidx0D,
1255                                             vdwioffsetptr0+vdwjidx0E,
1256                                             vdwioffsetptr0+vdwjidx0F,
1257                                             vdwioffsetptr0+vdwjidx0G,
1258                                             vdwioffsetptr0+vdwjidx0H,
1259                                             &c6_00,&c12_00);
1260
1261             /* Calculate table index by multiplying r with table scale and truncate to integer */
1262             rt               = _mm256_mul_ps(r00,vftabscale);
1263             vfitab           = _mm256_cvttps_epi32(rt);
1264             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1265             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1266             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1267             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1268             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1269             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1270
1271             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1272             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1273                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1274             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1275                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1276             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1277                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1278             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1279                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1280             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1281             Heps             = _mm256_mul_ps(vfeps,H);
1282             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1283             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1284             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
1285
1286             /* LENNARD-JONES DISPERSION/REPULSION */
1287
1288             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1289             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1290
1291             fscal            = _mm256_add_ps(felec,fvdw);
1292
1293             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1294
1295             /* Calculate temporary vectorial force */
1296             tx               = _mm256_mul_ps(fscal,dx00);
1297             ty               = _mm256_mul_ps(fscal,dy00);
1298             tz               = _mm256_mul_ps(fscal,dz00);
1299
1300             /* Update vectorial force */
1301             fix0             = _mm256_add_ps(fix0,tx);
1302             fiy0             = _mm256_add_ps(fiy0,ty);
1303             fiz0             = _mm256_add_ps(fiz0,tz);
1304
1305             fjx0             = _mm256_add_ps(fjx0,tx);
1306             fjy0             = _mm256_add_ps(fjy0,ty);
1307             fjz0             = _mm256_add_ps(fjz0,tz);
1308
1309             /**************************
1310              * CALCULATE INTERACTIONS *
1311              **************************/
1312
1313             r10              = _mm256_mul_ps(rsq10,rinv10);
1314             r10              = _mm256_andnot_ps(dummy_mask,r10);
1315
1316             /* Compute parameters for interactions between i and j atoms */
1317             qq10             = _mm256_mul_ps(iq1,jq0);
1318
1319             /* Calculate table index by multiplying r with table scale and truncate to integer */
1320             rt               = _mm256_mul_ps(r10,vftabscale);
1321             vfitab           = _mm256_cvttps_epi32(rt);
1322             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1323             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1324             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1325             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1326             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1327             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1328
1329             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1330             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1331                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1332             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1333                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1334             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1335                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1336             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1337                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1338             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1339             Heps             = _mm256_mul_ps(vfeps,H);
1340             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1341             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1342             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1343
1344             fscal            = felec;
1345
1346             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1347
1348             /* Calculate temporary vectorial force */
1349             tx               = _mm256_mul_ps(fscal,dx10);
1350             ty               = _mm256_mul_ps(fscal,dy10);
1351             tz               = _mm256_mul_ps(fscal,dz10);
1352
1353             /* Update vectorial force */
1354             fix1             = _mm256_add_ps(fix1,tx);
1355             fiy1             = _mm256_add_ps(fiy1,ty);
1356             fiz1             = _mm256_add_ps(fiz1,tz);
1357
1358             fjx0             = _mm256_add_ps(fjx0,tx);
1359             fjy0             = _mm256_add_ps(fjy0,ty);
1360             fjz0             = _mm256_add_ps(fjz0,tz);
1361
1362             /**************************
1363              * CALCULATE INTERACTIONS *
1364              **************************/
1365
1366             r20              = _mm256_mul_ps(rsq20,rinv20);
1367             r20              = _mm256_andnot_ps(dummy_mask,r20);
1368
1369             /* Compute parameters for interactions between i and j atoms */
1370             qq20             = _mm256_mul_ps(iq2,jq0);
1371
1372             /* Calculate table index by multiplying r with table scale and truncate to integer */
1373             rt               = _mm256_mul_ps(r20,vftabscale);
1374             vfitab           = _mm256_cvttps_epi32(rt);
1375             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1376             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1377             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1378             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1379             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1380             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1381
1382             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1383             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1384                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1385             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1386                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1387             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1388                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1389             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1390                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1391             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1392             Heps             = _mm256_mul_ps(vfeps,H);
1393             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1394             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1395             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1396
1397             fscal            = felec;
1398
1399             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1400
1401             /* Calculate temporary vectorial force */
1402             tx               = _mm256_mul_ps(fscal,dx20);
1403             ty               = _mm256_mul_ps(fscal,dy20);
1404             tz               = _mm256_mul_ps(fscal,dz20);
1405
1406             /* Update vectorial force */
1407             fix2             = _mm256_add_ps(fix2,tx);
1408             fiy2             = _mm256_add_ps(fiy2,ty);
1409             fiz2             = _mm256_add_ps(fiz2,tz);
1410
1411             fjx0             = _mm256_add_ps(fjx0,tx);
1412             fjy0             = _mm256_add_ps(fjy0,ty);
1413             fjz0             = _mm256_add_ps(fjz0,tz);
1414
1415             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1416             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1417             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1418             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1419             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1420             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1421             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1422             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1423
1424             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1425
1426             /* Inner loop uses 131 flops */
1427         }
1428
1429         /* End of innermost loop */
1430
1431         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1432                                                  f+i_coord_offset,fshift+i_shift_offset);
1433
1434         /* Increment number of inner iterations */
1435         inneriter                  += j_index_end - j_index_start;
1436
1437         /* Outer loop uses 18 flops */
1438     }
1439
1440     /* Increment number of outer iterations */
1441     outeriter        += nri;
1442
1443     /* Update outer/inner flops */
1444
1445     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*131);
1446 }