Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_single
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256i          vfitab;
108     __m128i          vfitab_lo,vfitab_hi;
109     __m128i          ifour       = _mm_set1_epi32(4);
110     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
111     real             *vftab;
112     __m256           dummy_mask,cutoff_mask;
113     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
114     __m256           one     = _mm256_set1_ps(1.0);
115     __m256           two     = _mm256_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm256_set1_ps(fr->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     vftab            = kernel_data->table_elec->data;
134     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
135
136     /* Setup water-specific parameters */
137     inr              = nlist->iinr[0];
138     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
139     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
140     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
141     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149     j_coord_offsetE = 0;
150     j_coord_offsetF = 0;
151     j_coord_offsetG = 0;
152     j_coord_offsetH = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _mm256_setzero_ps();
181         fiy0             = _mm256_setzero_ps();
182         fiz0             = _mm256_setzero_ps();
183         fix1             = _mm256_setzero_ps();
184         fiy1             = _mm256_setzero_ps();
185         fiz1             = _mm256_setzero_ps();
186         fix2             = _mm256_setzero_ps();
187         fiy2             = _mm256_setzero_ps();
188         fiz2             = _mm256_setzero_ps();
189
190         /* Reset potential sums */
191         velecsum         = _mm256_setzero_ps();
192         vvdwsum          = _mm256_setzero_ps();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             jnrE             = jjnr[jidx+4];
204             jnrF             = jjnr[jidx+5];
205             jnrG             = jjnr[jidx+6];
206             jnrH             = jjnr[jidx+7];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209             j_coord_offsetC  = DIM*jnrC;
210             j_coord_offsetD  = DIM*jnrD;
211             j_coord_offsetE  = DIM*jnrE;
212             j_coord_offsetF  = DIM*jnrF;
213             j_coord_offsetG  = DIM*jnrG;
214             j_coord_offsetH  = DIM*jnrH;
215
216             /* load j atom coordinates */
217             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
218                                                  x+j_coord_offsetC,x+j_coord_offsetD,
219                                                  x+j_coord_offsetE,x+j_coord_offsetF,
220                                                  x+j_coord_offsetG,x+j_coord_offsetH,
221                                                  &jx0,&jy0,&jz0);
222
223             /* Calculate displacement vector */
224             dx00             = _mm256_sub_ps(ix0,jx0);
225             dy00             = _mm256_sub_ps(iy0,jy0);
226             dz00             = _mm256_sub_ps(iz0,jz0);
227             dx10             = _mm256_sub_ps(ix1,jx0);
228             dy10             = _mm256_sub_ps(iy1,jy0);
229             dz10             = _mm256_sub_ps(iz1,jz0);
230             dx20             = _mm256_sub_ps(ix2,jx0);
231             dy20             = _mm256_sub_ps(iy2,jy0);
232             dz20             = _mm256_sub_ps(iz2,jz0);
233
234             /* Calculate squared distance and things based on it */
235             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
236             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
237             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
238
239             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
240             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
241             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
242
243             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
247                                                                  charge+jnrC+0,charge+jnrD+0,
248                                                                  charge+jnrE+0,charge+jnrF+0,
249                                                                  charge+jnrG+0,charge+jnrH+0);
250             vdwjidx0A        = 2*vdwtype[jnrA+0];
251             vdwjidx0B        = 2*vdwtype[jnrB+0];
252             vdwjidx0C        = 2*vdwtype[jnrC+0];
253             vdwjidx0D        = 2*vdwtype[jnrD+0];
254             vdwjidx0E        = 2*vdwtype[jnrE+0];
255             vdwjidx0F        = 2*vdwtype[jnrF+0];
256             vdwjidx0G        = 2*vdwtype[jnrG+0];
257             vdwjidx0H        = 2*vdwtype[jnrH+0];
258
259             fjx0             = _mm256_setzero_ps();
260             fjy0             = _mm256_setzero_ps();
261             fjz0             = _mm256_setzero_ps();
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             r00              = _mm256_mul_ps(rsq00,rinv00);
268
269             /* Compute parameters for interactions between i and j atoms */
270             qq00             = _mm256_mul_ps(iq0,jq0);
271             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
272                                             vdwioffsetptr0+vdwjidx0B,
273                                             vdwioffsetptr0+vdwjidx0C,
274                                             vdwioffsetptr0+vdwjidx0D,
275                                             vdwioffsetptr0+vdwjidx0E,
276                                             vdwioffsetptr0+vdwjidx0F,
277                                             vdwioffsetptr0+vdwjidx0G,
278                                             vdwioffsetptr0+vdwjidx0H,
279                                             &c6_00,&c12_00);
280
281             /* Calculate table index by multiplying r with table scale and truncate to integer */
282             rt               = _mm256_mul_ps(r00,vftabscale);
283             vfitab           = _mm256_cvttps_epi32(rt);
284             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
285             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
286             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
287             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
288             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
289             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
290
291             /* CUBIC SPLINE TABLE ELECTROSTATICS */
292             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
293                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
294             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
295                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
296             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
297                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
298             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
299                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
300             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
301             Heps             = _mm256_mul_ps(vfeps,H);
302             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
303             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
304             velec            = _mm256_mul_ps(qq00,VV);
305             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
306             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
307
308             /* LENNARD-JONES DISPERSION/REPULSION */
309
310             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
311             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
312             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
313             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
314             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velecsum         = _mm256_add_ps(velecsum,velec);
318             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
319
320             fscal            = _mm256_add_ps(felec,fvdw);
321
322             /* Calculate temporary vectorial force */
323             tx               = _mm256_mul_ps(fscal,dx00);
324             ty               = _mm256_mul_ps(fscal,dy00);
325             tz               = _mm256_mul_ps(fscal,dz00);
326
327             /* Update vectorial force */
328             fix0             = _mm256_add_ps(fix0,tx);
329             fiy0             = _mm256_add_ps(fiy0,ty);
330             fiz0             = _mm256_add_ps(fiz0,tz);
331
332             fjx0             = _mm256_add_ps(fjx0,tx);
333             fjy0             = _mm256_add_ps(fjy0,ty);
334             fjz0             = _mm256_add_ps(fjz0,tz);
335
336             /**************************
337              * CALCULATE INTERACTIONS *
338              **************************/
339
340             r10              = _mm256_mul_ps(rsq10,rinv10);
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq10             = _mm256_mul_ps(iq1,jq0);
344
345             /* Calculate table index by multiplying r with table scale and truncate to integer */
346             rt               = _mm256_mul_ps(r10,vftabscale);
347             vfitab           = _mm256_cvttps_epi32(rt);
348             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
349             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
350             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
351             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
352             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
353             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
354
355             /* CUBIC SPLINE TABLE ELECTROSTATICS */
356             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
357                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
358             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
359                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
360             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
361                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
362             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
363                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
364             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
365             Heps             = _mm256_mul_ps(vfeps,H);
366             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
367             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
368             velec            = _mm256_mul_ps(qq10,VV);
369             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
370             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velecsum         = _mm256_add_ps(velecsum,velec);
374
375             fscal            = felec;
376
377             /* Calculate temporary vectorial force */
378             tx               = _mm256_mul_ps(fscal,dx10);
379             ty               = _mm256_mul_ps(fscal,dy10);
380             tz               = _mm256_mul_ps(fscal,dz10);
381
382             /* Update vectorial force */
383             fix1             = _mm256_add_ps(fix1,tx);
384             fiy1             = _mm256_add_ps(fiy1,ty);
385             fiz1             = _mm256_add_ps(fiz1,tz);
386
387             fjx0             = _mm256_add_ps(fjx0,tx);
388             fjy0             = _mm256_add_ps(fjy0,ty);
389             fjz0             = _mm256_add_ps(fjz0,tz);
390
391             /**************************
392              * CALCULATE INTERACTIONS *
393              **************************/
394
395             r20              = _mm256_mul_ps(rsq20,rinv20);
396
397             /* Compute parameters for interactions between i and j atoms */
398             qq20             = _mm256_mul_ps(iq2,jq0);
399
400             /* Calculate table index by multiplying r with table scale and truncate to integer */
401             rt               = _mm256_mul_ps(r20,vftabscale);
402             vfitab           = _mm256_cvttps_epi32(rt);
403             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
404             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
405             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
406             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
407             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
408             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
409
410             /* CUBIC SPLINE TABLE ELECTROSTATICS */
411             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
412                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
413             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
414                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
415             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
416                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
417             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
418                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
419             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
420             Heps             = _mm256_mul_ps(vfeps,H);
421             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
422             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
423             velec            = _mm256_mul_ps(qq20,VV);
424             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
425             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
426
427             /* Update potential sum for this i atom from the interaction with this j atom. */
428             velecsum         = _mm256_add_ps(velecsum,velec);
429
430             fscal            = felec;
431
432             /* Calculate temporary vectorial force */
433             tx               = _mm256_mul_ps(fscal,dx20);
434             ty               = _mm256_mul_ps(fscal,dy20);
435             tz               = _mm256_mul_ps(fscal,dz20);
436
437             /* Update vectorial force */
438             fix2             = _mm256_add_ps(fix2,tx);
439             fiy2             = _mm256_add_ps(fiy2,ty);
440             fiz2             = _mm256_add_ps(fiz2,tz);
441
442             fjx0             = _mm256_add_ps(fjx0,tx);
443             fjy0             = _mm256_add_ps(fjy0,ty);
444             fjz0             = _mm256_add_ps(fjz0,tz);
445
446             fjptrA             = f+j_coord_offsetA;
447             fjptrB             = f+j_coord_offsetB;
448             fjptrC             = f+j_coord_offsetC;
449             fjptrD             = f+j_coord_offsetD;
450             fjptrE             = f+j_coord_offsetE;
451             fjptrF             = f+j_coord_offsetF;
452             fjptrG             = f+j_coord_offsetG;
453             fjptrH             = f+j_coord_offsetH;
454
455             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
456
457             /* Inner loop uses 145 flops */
458         }
459
460         if(jidx<j_index_end)
461         {
462
463             /* Get j neighbor index, and coordinate index */
464             jnrlistA         = jjnr[jidx];
465             jnrlistB         = jjnr[jidx+1];
466             jnrlistC         = jjnr[jidx+2];
467             jnrlistD         = jjnr[jidx+3];
468             jnrlistE         = jjnr[jidx+4];
469             jnrlistF         = jjnr[jidx+5];
470             jnrlistG         = jjnr[jidx+6];
471             jnrlistH         = jjnr[jidx+7];
472             /* Sign of each element will be negative for non-real atoms.
473              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
474              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
475              */
476             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
477                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
478                                             
479             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
480             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
481             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
482             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
483             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
484             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
485             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
486             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
487             j_coord_offsetA  = DIM*jnrA;
488             j_coord_offsetB  = DIM*jnrB;
489             j_coord_offsetC  = DIM*jnrC;
490             j_coord_offsetD  = DIM*jnrD;
491             j_coord_offsetE  = DIM*jnrE;
492             j_coord_offsetF  = DIM*jnrF;
493             j_coord_offsetG  = DIM*jnrG;
494             j_coord_offsetH  = DIM*jnrH;
495
496             /* load j atom coordinates */
497             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
498                                                  x+j_coord_offsetC,x+j_coord_offsetD,
499                                                  x+j_coord_offsetE,x+j_coord_offsetF,
500                                                  x+j_coord_offsetG,x+j_coord_offsetH,
501                                                  &jx0,&jy0,&jz0);
502
503             /* Calculate displacement vector */
504             dx00             = _mm256_sub_ps(ix0,jx0);
505             dy00             = _mm256_sub_ps(iy0,jy0);
506             dz00             = _mm256_sub_ps(iz0,jz0);
507             dx10             = _mm256_sub_ps(ix1,jx0);
508             dy10             = _mm256_sub_ps(iy1,jy0);
509             dz10             = _mm256_sub_ps(iz1,jz0);
510             dx20             = _mm256_sub_ps(ix2,jx0);
511             dy20             = _mm256_sub_ps(iy2,jy0);
512             dz20             = _mm256_sub_ps(iz2,jz0);
513
514             /* Calculate squared distance and things based on it */
515             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
516             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
517             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
518
519             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
520             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
521             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
522
523             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
524
525             /* Load parameters for j particles */
526             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
527                                                                  charge+jnrC+0,charge+jnrD+0,
528                                                                  charge+jnrE+0,charge+jnrF+0,
529                                                                  charge+jnrG+0,charge+jnrH+0);
530             vdwjidx0A        = 2*vdwtype[jnrA+0];
531             vdwjidx0B        = 2*vdwtype[jnrB+0];
532             vdwjidx0C        = 2*vdwtype[jnrC+0];
533             vdwjidx0D        = 2*vdwtype[jnrD+0];
534             vdwjidx0E        = 2*vdwtype[jnrE+0];
535             vdwjidx0F        = 2*vdwtype[jnrF+0];
536             vdwjidx0G        = 2*vdwtype[jnrG+0];
537             vdwjidx0H        = 2*vdwtype[jnrH+0];
538
539             fjx0             = _mm256_setzero_ps();
540             fjy0             = _mm256_setzero_ps();
541             fjz0             = _mm256_setzero_ps();
542
543             /**************************
544              * CALCULATE INTERACTIONS *
545              **************************/
546
547             r00              = _mm256_mul_ps(rsq00,rinv00);
548             r00              = _mm256_andnot_ps(dummy_mask,r00);
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq00             = _mm256_mul_ps(iq0,jq0);
552             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
553                                             vdwioffsetptr0+vdwjidx0B,
554                                             vdwioffsetptr0+vdwjidx0C,
555                                             vdwioffsetptr0+vdwjidx0D,
556                                             vdwioffsetptr0+vdwjidx0E,
557                                             vdwioffsetptr0+vdwjidx0F,
558                                             vdwioffsetptr0+vdwjidx0G,
559                                             vdwioffsetptr0+vdwjidx0H,
560                                             &c6_00,&c12_00);
561
562             /* Calculate table index by multiplying r with table scale and truncate to integer */
563             rt               = _mm256_mul_ps(r00,vftabscale);
564             vfitab           = _mm256_cvttps_epi32(rt);
565             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
566             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
567             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
568             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
569             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
570             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
571
572             /* CUBIC SPLINE TABLE ELECTROSTATICS */
573             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
574                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
575             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
576                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
577             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
578                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
579             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
580                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
581             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
582             Heps             = _mm256_mul_ps(vfeps,H);
583             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
584             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
585             velec            = _mm256_mul_ps(qq00,VV);
586             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
587             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
588
589             /* LENNARD-JONES DISPERSION/REPULSION */
590
591             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
592             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
593             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
594             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
595             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
596
597             /* Update potential sum for this i atom from the interaction with this j atom. */
598             velec            = _mm256_andnot_ps(dummy_mask,velec);
599             velecsum         = _mm256_add_ps(velecsum,velec);
600             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
601             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
602
603             fscal            = _mm256_add_ps(felec,fvdw);
604
605             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
606
607             /* Calculate temporary vectorial force */
608             tx               = _mm256_mul_ps(fscal,dx00);
609             ty               = _mm256_mul_ps(fscal,dy00);
610             tz               = _mm256_mul_ps(fscal,dz00);
611
612             /* Update vectorial force */
613             fix0             = _mm256_add_ps(fix0,tx);
614             fiy0             = _mm256_add_ps(fiy0,ty);
615             fiz0             = _mm256_add_ps(fiz0,tz);
616
617             fjx0             = _mm256_add_ps(fjx0,tx);
618             fjy0             = _mm256_add_ps(fjy0,ty);
619             fjz0             = _mm256_add_ps(fjz0,tz);
620
621             /**************************
622              * CALCULATE INTERACTIONS *
623              **************************/
624
625             r10              = _mm256_mul_ps(rsq10,rinv10);
626             r10              = _mm256_andnot_ps(dummy_mask,r10);
627
628             /* Compute parameters for interactions between i and j atoms */
629             qq10             = _mm256_mul_ps(iq1,jq0);
630
631             /* Calculate table index by multiplying r with table scale and truncate to integer */
632             rt               = _mm256_mul_ps(r10,vftabscale);
633             vfitab           = _mm256_cvttps_epi32(rt);
634             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
635             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
636             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
637             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
638             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
639             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
640
641             /* CUBIC SPLINE TABLE ELECTROSTATICS */
642             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
643                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
644             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
645                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
646             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
647                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
648             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
649                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
650             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
651             Heps             = _mm256_mul_ps(vfeps,H);
652             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
653             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
654             velec            = _mm256_mul_ps(qq10,VV);
655             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
656             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
657
658             /* Update potential sum for this i atom from the interaction with this j atom. */
659             velec            = _mm256_andnot_ps(dummy_mask,velec);
660             velecsum         = _mm256_add_ps(velecsum,velec);
661
662             fscal            = felec;
663
664             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
665
666             /* Calculate temporary vectorial force */
667             tx               = _mm256_mul_ps(fscal,dx10);
668             ty               = _mm256_mul_ps(fscal,dy10);
669             tz               = _mm256_mul_ps(fscal,dz10);
670
671             /* Update vectorial force */
672             fix1             = _mm256_add_ps(fix1,tx);
673             fiy1             = _mm256_add_ps(fiy1,ty);
674             fiz1             = _mm256_add_ps(fiz1,tz);
675
676             fjx0             = _mm256_add_ps(fjx0,tx);
677             fjy0             = _mm256_add_ps(fjy0,ty);
678             fjz0             = _mm256_add_ps(fjz0,tz);
679
680             /**************************
681              * CALCULATE INTERACTIONS *
682              **************************/
683
684             r20              = _mm256_mul_ps(rsq20,rinv20);
685             r20              = _mm256_andnot_ps(dummy_mask,r20);
686
687             /* Compute parameters for interactions between i and j atoms */
688             qq20             = _mm256_mul_ps(iq2,jq0);
689
690             /* Calculate table index by multiplying r with table scale and truncate to integer */
691             rt               = _mm256_mul_ps(r20,vftabscale);
692             vfitab           = _mm256_cvttps_epi32(rt);
693             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
694             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
695             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
696             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
697             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
698             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
699
700             /* CUBIC SPLINE TABLE ELECTROSTATICS */
701             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
702                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
703             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
704                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
705             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
706                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
707             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
708                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
709             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
710             Heps             = _mm256_mul_ps(vfeps,H);
711             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
712             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
713             velec            = _mm256_mul_ps(qq20,VV);
714             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
715             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
716
717             /* Update potential sum for this i atom from the interaction with this j atom. */
718             velec            = _mm256_andnot_ps(dummy_mask,velec);
719             velecsum         = _mm256_add_ps(velecsum,velec);
720
721             fscal            = felec;
722
723             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
724
725             /* Calculate temporary vectorial force */
726             tx               = _mm256_mul_ps(fscal,dx20);
727             ty               = _mm256_mul_ps(fscal,dy20);
728             tz               = _mm256_mul_ps(fscal,dz20);
729
730             /* Update vectorial force */
731             fix2             = _mm256_add_ps(fix2,tx);
732             fiy2             = _mm256_add_ps(fiy2,ty);
733             fiz2             = _mm256_add_ps(fiz2,tz);
734
735             fjx0             = _mm256_add_ps(fjx0,tx);
736             fjy0             = _mm256_add_ps(fjy0,ty);
737             fjz0             = _mm256_add_ps(fjz0,tz);
738
739             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
740             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
741             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
742             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
743             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
744             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
745             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
746             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
747
748             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
749
750             /* Inner loop uses 148 flops */
751         }
752
753         /* End of innermost loop */
754
755         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
756                                                  f+i_coord_offset,fshift+i_shift_offset);
757
758         ggid                        = gid[iidx];
759         /* Update potential energies */
760         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
761         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
762
763         /* Increment number of inner iterations */
764         inneriter                  += j_index_end - j_index_start;
765
766         /* Outer loop uses 20 flops */
767     }
768
769     /* Increment number of outer iterations */
770     outeriter        += nri;
771
772     /* Update outer/inner flops */
773
774     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*148);
775 }
776 /*
777  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_single
778  * Electrostatics interaction: CubicSplineTable
779  * VdW interaction:            LennardJones
780  * Geometry:                   Water3-Particle
781  * Calculate force/pot:        Force
782  */
783 void
784 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_single
785                     (t_nblist                    * gmx_restrict       nlist,
786                      rvec                        * gmx_restrict          xx,
787                      rvec                        * gmx_restrict          ff,
788                      t_forcerec                  * gmx_restrict          fr,
789                      t_mdatoms                   * gmx_restrict     mdatoms,
790                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
791                      t_nrnb                      * gmx_restrict        nrnb)
792 {
793     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
794      * just 0 for non-waters.
795      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
796      * jnr indices corresponding to data put in the four positions in the SIMD register.
797      */
798     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
799     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
800     int              jnrA,jnrB,jnrC,jnrD;
801     int              jnrE,jnrF,jnrG,jnrH;
802     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
803     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
804     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
805     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
806     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
807     real             rcutoff_scalar;
808     real             *shiftvec,*fshift,*x,*f;
809     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
810     real             scratch[4*DIM];
811     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
812     real *           vdwioffsetptr0;
813     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
814     real *           vdwioffsetptr1;
815     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
816     real *           vdwioffsetptr2;
817     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
818     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
819     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
820     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
821     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
822     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
823     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
824     real             *charge;
825     int              nvdwtype;
826     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
827     int              *vdwtype;
828     real             *vdwparam;
829     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
830     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
831     __m256i          vfitab;
832     __m128i          vfitab_lo,vfitab_hi;
833     __m128i          ifour       = _mm_set1_epi32(4);
834     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
835     real             *vftab;
836     __m256           dummy_mask,cutoff_mask;
837     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
838     __m256           one     = _mm256_set1_ps(1.0);
839     __m256           two     = _mm256_set1_ps(2.0);
840     x                = xx[0];
841     f                = ff[0];
842
843     nri              = nlist->nri;
844     iinr             = nlist->iinr;
845     jindex           = nlist->jindex;
846     jjnr             = nlist->jjnr;
847     shiftidx         = nlist->shift;
848     gid              = nlist->gid;
849     shiftvec         = fr->shift_vec[0];
850     fshift           = fr->fshift[0];
851     facel            = _mm256_set1_ps(fr->epsfac);
852     charge           = mdatoms->chargeA;
853     nvdwtype         = fr->ntype;
854     vdwparam         = fr->nbfp;
855     vdwtype          = mdatoms->typeA;
856
857     vftab            = kernel_data->table_elec->data;
858     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
859
860     /* Setup water-specific parameters */
861     inr              = nlist->iinr[0];
862     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
863     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
864     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
865     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
866
867     /* Avoid stupid compiler warnings */
868     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
869     j_coord_offsetA = 0;
870     j_coord_offsetB = 0;
871     j_coord_offsetC = 0;
872     j_coord_offsetD = 0;
873     j_coord_offsetE = 0;
874     j_coord_offsetF = 0;
875     j_coord_offsetG = 0;
876     j_coord_offsetH = 0;
877
878     outeriter        = 0;
879     inneriter        = 0;
880
881     for(iidx=0;iidx<4*DIM;iidx++)
882     {
883         scratch[iidx] = 0.0;
884     }
885
886     /* Start outer loop over neighborlists */
887     for(iidx=0; iidx<nri; iidx++)
888     {
889         /* Load shift vector for this list */
890         i_shift_offset   = DIM*shiftidx[iidx];
891
892         /* Load limits for loop over neighbors */
893         j_index_start    = jindex[iidx];
894         j_index_end      = jindex[iidx+1];
895
896         /* Get outer coordinate index */
897         inr              = iinr[iidx];
898         i_coord_offset   = DIM*inr;
899
900         /* Load i particle coords and add shift vector */
901         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
902                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
903
904         fix0             = _mm256_setzero_ps();
905         fiy0             = _mm256_setzero_ps();
906         fiz0             = _mm256_setzero_ps();
907         fix1             = _mm256_setzero_ps();
908         fiy1             = _mm256_setzero_ps();
909         fiz1             = _mm256_setzero_ps();
910         fix2             = _mm256_setzero_ps();
911         fiy2             = _mm256_setzero_ps();
912         fiz2             = _mm256_setzero_ps();
913
914         /* Start inner kernel loop */
915         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
916         {
917
918             /* Get j neighbor index, and coordinate index */
919             jnrA             = jjnr[jidx];
920             jnrB             = jjnr[jidx+1];
921             jnrC             = jjnr[jidx+2];
922             jnrD             = jjnr[jidx+3];
923             jnrE             = jjnr[jidx+4];
924             jnrF             = jjnr[jidx+5];
925             jnrG             = jjnr[jidx+6];
926             jnrH             = jjnr[jidx+7];
927             j_coord_offsetA  = DIM*jnrA;
928             j_coord_offsetB  = DIM*jnrB;
929             j_coord_offsetC  = DIM*jnrC;
930             j_coord_offsetD  = DIM*jnrD;
931             j_coord_offsetE  = DIM*jnrE;
932             j_coord_offsetF  = DIM*jnrF;
933             j_coord_offsetG  = DIM*jnrG;
934             j_coord_offsetH  = DIM*jnrH;
935
936             /* load j atom coordinates */
937             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
938                                                  x+j_coord_offsetC,x+j_coord_offsetD,
939                                                  x+j_coord_offsetE,x+j_coord_offsetF,
940                                                  x+j_coord_offsetG,x+j_coord_offsetH,
941                                                  &jx0,&jy0,&jz0);
942
943             /* Calculate displacement vector */
944             dx00             = _mm256_sub_ps(ix0,jx0);
945             dy00             = _mm256_sub_ps(iy0,jy0);
946             dz00             = _mm256_sub_ps(iz0,jz0);
947             dx10             = _mm256_sub_ps(ix1,jx0);
948             dy10             = _mm256_sub_ps(iy1,jy0);
949             dz10             = _mm256_sub_ps(iz1,jz0);
950             dx20             = _mm256_sub_ps(ix2,jx0);
951             dy20             = _mm256_sub_ps(iy2,jy0);
952             dz20             = _mm256_sub_ps(iz2,jz0);
953
954             /* Calculate squared distance and things based on it */
955             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
956             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
957             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
958
959             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
960             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
961             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
962
963             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
964
965             /* Load parameters for j particles */
966             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
967                                                                  charge+jnrC+0,charge+jnrD+0,
968                                                                  charge+jnrE+0,charge+jnrF+0,
969                                                                  charge+jnrG+0,charge+jnrH+0);
970             vdwjidx0A        = 2*vdwtype[jnrA+0];
971             vdwjidx0B        = 2*vdwtype[jnrB+0];
972             vdwjidx0C        = 2*vdwtype[jnrC+0];
973             vdwjidx0D        = 2*vdwtype[jnrD+0];
974             vdwjidx0E        = 2*vdwtype[jnrE+0];
975             vdwjidx0F        = 2*vdwtype[jnrF+0];
976             vdwjidx0G        = 2*vdwtype[jnrG+0];
977             vdwjidx0H        = 2*vdwtype[jnrH+0];
978
979             fjx0             = _mm256_setzero_ps();
980             fjy0             = _mm256_setzero_ps();
981             fjz0             = _mm256_setzero_ps();
982
983             /**************************
984              * CALCULATE INTERACTIONS *
985              **************************/
986
987             r00              = _mm256_mul_ps(rsq00,rinv00);
988
989             /* Compute parameters for interactions between i and j atoms */
990             qq00             = _mm256_mul_ps(iq0,jq0);
991             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
992                                             vdwioffsetptr0+vdwjidx0B,
993                                             vdwioffsetptr0+vdwjidx0C,
994                                             vdwioffsetptr0+vdwjidx0D,
995                                             vdwioffsetptr0+vdwjidx0E,
996                                             vdwioffsetptr0+vdwjidx0F,
997                                             vdwioffsetptr0+vdwjidx0G,
998                                             vdwioffsetptr0+vdwjidx0H,
999                                             &c6_00,&c12_00);
1000
1001             /* Calculate table index by multiplying r with table scale and truncate to integer */
1002             rt               = _mm256_mul_ps(r00,vftabscale);
1003             vfitab           = _mm256_cvttps_epi32(rt);
1004             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1005             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1006             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1007             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1008             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1009             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1010
1011             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1012             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1013                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1014             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1015                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1016             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1017                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1018             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1019                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1020             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1021             Heps             = _mm256_mul_ps(vfeps,H);
1022             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1023             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1024             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
1025
1026             /* LENNARD-JONES DISPERSION/REPULSION */
1027
1028             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1029             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1030
1031             fscal            = _mm256_add_ps(felec,fvdw);
1032
1033             /* Calculate temporary vectorial force */
1034             tx               = _mm256_mul_ps(fscal,dx00);
1035             ty               = _mm256_mul_ps(fscal,dy00);
1036             tz               = _mm256_mul_ps(fscal,dz00);
1037
1038             /* Update vectorial force */
1039             fix0             = _mm256_add_ps(fix0,tx);
1040             fiy0             = _mm256_add_ps(fiy0,ty);
1041             fiz0             = _mm256_add_ps(fiz0,tz);
1042
1043             fjx0             = _mm256_add_ps(fjx0,tx);
1044             fjy0             = _mm256_add_ps(fjy0,ty);
1045             fjz0             = _mm256_add_ps(fjz0,tz);
1046
1047             /**************************
1048              * CALCULATE INTERACTIONS *
1049              **************************/
1050
1051             r10              = _mm256_mul_ps(rsq10,rinv10);
1052
1053             /* Compute parameters for interactions between i and j atoms */
1054             qq10             = _mm256_mul_ps(iq1,jq0);
1055
1056             /* Calculate table index by multiplying r with table scale and truncate to integer */
1057             rt               = _mm256_mul_ps(r10,vftabscale);
1058             vfitab           = _mm256_cvttps_epi32(rt);
1059             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1060             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1061             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1062             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1063             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1064             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1065
1066             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1067             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1068                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1069             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1070                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1071             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1072                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1073             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1074                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1075             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1076             Heps             = _mm256_mul_ps(vfeps,H);
1077             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1078             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1079             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1080
1081             fscal            = felec;
1082
1083             /* Calculate temporary vectorial force */
1084             tx               = _mm256_mul_ps(fscal,dx10);
1085             ty               = _mm256_mul_ps(fscal,dy10);
1086             tz               = _mm256_mul_ps(fscal,dz10);
1087
1088             /* Update vectorial force */
1089             fix1             = _mm256_add_ps(fix1,tx);
1090             fiy1             = _mm256_add_ps(fiy1,ty);
1091             fiz1             = _mm256_add_ps(fiz1,tz);
1092
1093             fjx0             = _mm256_add_ps(fjx0,tx);
1094             fjy0             = _mm256_add_ps(fjy0,ty);
1095             fjz0             = _mm256_add_ps(fjz0,tz);
1096
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             r20              = _mm256_mul_ps(rsq20,rinv20);
1102
1103             /* Compute parameters for interactions between i and j atoms */
1104             qq20             = _mm256_mul_ps(iq2,jq0);
1105
1106             /* Calculate table index by multiplying r with table scale and truncate to integer */
1107             rt               = _mm256_mul_ps(r20,vftabscale);
1108             vfitab           = _mm256_cvttps_epi32(rt);
1109             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1110             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1111             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1112             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1113             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1114             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1115
1116             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1117             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1118                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1119             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1120                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1121             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1122                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1123             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1124                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1125             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1126             Heps             = _mm256_mul_ps(vfeps,H);
1127             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1128             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1129             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1130
1131             fscal            = felec;
1132
1133             /* Calculate temporary vectorial force */
1134             tx               = _mm256_mul_ps(fscal,dx20);
1135             ty               = _mm256_mul_ps(fscal,dy20);
1136             tz               = _mm256_mul_ps(fscal,dz20);
1137
1138             /* Update vectorial force */
1139             fix2             = _mm256_add_ps(fix2,tx);
1140             fiy2             = _mm256_add_ps(fiy2,ty);
1141             fiz2             = _mm256_add_ps(fiz2,tz);
1142
1143             fjx0             = _mm256_add_ps(fjx0,tx);
1144             fjy0             = _mm256_add_ps(fjy0,ty);
1145             fjz0             = _mm256_add_ps(fjz0,tz);
1146
1147             fjptrA             = f+j_coord_offsetA;
1148             fjptrB             = f+j_coord_offsetB;
1149             fjptrC             = f+j_coord_offsetC;
1150             fjptrD             = f+j_coord_offsetD;
1151             fjptrE             = f+j_coord_offsetE;
1152             fjptrF             = f+j_coord_offsetF;
1153             fjptrG             = f+j_coord_offsetG;
1154             fjptrH             = f+j_coord_offsetH;
1155
1156             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1157
1158             /* Inner loop uses 128 flops */
1159         }
1160
1161         if(jidx<j_index_end)
1162         {
1163
1164             /* Get j neighbor index, and coordinate index */
1165             jnrlistA         = jjnr[jidx];
1166             jnrlistB         = jjnr[jidx+1];
1167             jnrlistC         = jjnr[jidx+2];
1168             jnrlistD         = jjnr[jidx+3];
1169             jnrlistE         = jjnr[jidx+4];
1170             jnrlistF         = jjnr[jidx+5];
1171             jnrlistG         = jjnr[jidx+6];
1172             jnrlistH         = jjnr[jidx+7];
1173             /* Sign of each element will be negative for non-real atoms.
1174              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1175              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1176              */
1177             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1178                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1179                                             
1180             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1181             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1182             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1183             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1184             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1185             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1186             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1187             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1188             j_coord_offsetA  = DIM*jnrA;
1189             j_coord_offsetB  = DIM*jnrB;
1190             j_coord_offsetC  = DIM*jnrC;
1191             j_coord_offsetD  = DIM*jnrD;
1192             j_coord_offsetE  = DIM*jnrE;
1193             j_coord_offsetF  = DIM*jnrF;
1194             j_coord_offsetG  = DIM*jnrG;
1195             j_coord_offsetH  = DIM*jnrH;
1196
1197             /* load j atom coordinates */
1198             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1199                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1200                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1201                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1202                                                  &jx0,&jy0,&jz0);
1203
1204             /* Calculate displacement vector */
1205             dx00             = _mm256_sub_ps(ix0,jx0);
1206             dy00             = _mm256_sub_ps(iy0,jy0);
1207             dz00             = _mm256_sub_ps(iz0,jz0);
1208             dx10             = _mm256_sub_ps(ix1,jx0);
1209             dy10             = _mm256_sub_ps(iy1,jy0);
1210             dz10             = _mm256_sub_ps(iz1,jz0);
1211             dx20             = _mm256_sub_ps(ix2,jx0);
1212             dy20             = _mm256_sub_ps(iy2,jy0);
1213             dz20             = _mm256_sub_ps(iz2,jz0);
1214
1215             /* Calculate squared distance and things based on it */
1216             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1217             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1218             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1219
1220             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1221             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1222             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1223
1224             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1225
1226             /* Load parameters for j particles */
1227             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1228                                                                  charge+jnrC+0,charge+jnrD+0,
1229                                                                  charge+jnrE+0,charge+jnrF+0,
1230                                                                  charge+jnrG+0,charge+jnrH+0);
1231             vdwjidx0A        = 2*vdwtype[jnrA+0];
1232             vdwjidx0B        = 2*vdwtype[jnrB+0];
1233             vdwjidx0C        = 2*vdwtype[jnrC+0];
1234             vdwjidx0D        = 2*vdwtype[jnrD+0];
1235             vdwjidx0E        = 2*vdwtype[jnrE+0];
1236             vdwjidx0F        = 2*vdwtype[jnrF+0];
1237             vdwjidx0G        = 2*vdwtype[jnrG+0];
1238             vdwjidx0H        = 2*vdwtype[jnrH+0];
1239
1240             fjx0             = _mm256_setzero_ps();
1241             fjy0             = _mm256_setzero_ps();
1242             fjz0             = _mm256_setzero_ps();
1243
1244             /**************************
1245              * CALCULATE INTERACTIONS *
1246              **************************/
1247
1248             r00              = _mm256_mul_ps(rsq00,rinv00);
1249             r00              = _mm256_andnot_ps(dummy_mask,r00);
1250
1251             /* Compute parameters for interactions between i and j atoms */
1252             qq00             = _mm256_mul_ps(iq0,jq0);
1253             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1254                                             vdwioffsetptr0+vdwjidx0B,
1255                                             vdwioffsetptr0+vdwjidx0C,
1256                                             vdwioffsetptr0+vdwjidx0D,
1257                                             vdwioffsetptr0+vdwjidx0E,
1258                                             vdwioffsetptr0+vdwjidx0F,
1259                                             vdwioffsetptr0+vdwjidx0G,
1260                                             vdwioffsetptr0+vdwjidx0H,
1261                                             &c6_00,&c12_00);
1262
1263             /* Calculate table index by multiplying r with table scale and truncate to integer */
1264             rt               = _mm256_mul_ps(r00,vftabscale);
1265             vfitab           = _mm256_cvttps_epi32(rt);
1266             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1267             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1268             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1269             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1270             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1271             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1272
1273             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1274             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1275                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1276             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1277                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1278             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1279                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1280             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1281                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1282             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1283             Heps             = _mm256_mul_ps(vfeps,H);
1284             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1285             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1286             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
1287
1288             /* LENNARD-JONES DISPERSION/REPULSION */
1289
1290             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1291             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1292
1293             fscal            = _mm256_add_ps(felec,fvdw);
1294
1295             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1296
1297             /* Calculate temporary vectorial force */
1298             tx               = _mm256_mul_ps(fscal,dx00);
1299             ty               = _mm256_mul_ps(fscal,dy00);
1300             tz               = _mm256_mul_ps(fscal,dz00);
1301
1302             /* Update vectorial force */
1303             fix0             = _mm256_add_ps(fix0,tx);
1304             fiy0             = _mm256_add_ps(fiy0,ty);
1305             fiz0             = _mm256_add_ps(fiz0,tz);
1306
1307             fjx0             = _mm256_add_ps(fjx0,tx);
1308             fjy0             = _mm256_add_ps(fjy0,ty);
1309             fjz0             = _mm256_add_ps(fjz0,tz);
1310
1311             /**************************
1312              * CALCULATE INTERACTIONS *
1313              **************************/
1314
1315             r10              = _mm256_mul_ps(rsq10,rinv10);
1316             r10              = _mm256_andnot_ps(dummy_mask,r10);
1317
1318             /* Compute parameters for interactions between i and j atoms */
1319             qq10             = _mm256_mul_ps(iq1,jq0);
1320
1321             /* Calculate table index by multiplying r with table scale and truncate to integer */
1322             rt               = _mm256_mul_ps(r10,vftabscale);
1323             vfitab           = _mm256_cvttps_epi32(rt);
1324             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1325             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1326             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1327             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1328             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1329             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1330
1331             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1332             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1333                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1334             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1335                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1336             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1337                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1338             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1339                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1340             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1341             Heps             = _mm256_mul_ps(vfeps,H);
1342             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1343             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1344             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1345
1346             fscal            = felec;
1347
1348             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1349
1350             /* Calculate temporary vectorial force */
1351             tx               = _mm256_mul_ps(fscal,dx10);
1352             ty               = _mm256_mul_ps(fscal,dy10);
1353             tz               = _mm256_mul_ps(fscal,dz10);
1354
1355             /* Update vectorial force */
1356             fix1             = _mm256_add_ps(fix1,tx);
1357             fiy1             = _mm256_add_ps(fiy1,ty);
1358             fiz1             = _mm256_add_ps(fiz1,tz);
1359
1360             fjx0             = _mm256_add_ps(fjx0,tx);
1361             fjy0             = _mm256_add_ps(fjy0,ty);
1362             fjz0             = _mm256_add_ps(fjz0,tz);
1363
1364             /**************************
1365              * CALCULATE INTERACTIONS *
1366              **************************/
1367
1368             r20              = _mm256_mul_ps(rsq20,rinv20);
1369             r20              = _mm256_andnot_ps(dummy_mask,r20);
1370
1371             /* Compute parameters for interactions between i and j atoms */
1372             qq20             = _mm256_mul_ps(iq2,jq0);
1373
1374             /* Calculate table index by multiplying r with table scale and truncate to integer */
1375             rt               = _mm256_mul_ps(r20,vftabscale);
1376             vfitab           = _mm256_cvttps_epi32(rt);
1377             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1378             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1379             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1380             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1381             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1382             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1383
1384             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1385             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1386                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1387             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1388                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1389             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1390                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1391             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1392                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1393             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1394             Heps             = _mm256_mul_ps(vfeps,H);
1395             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1396             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1397             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1398
1399             fscal            = felec;
1400
1401             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1402
1403             /* Calculate temporary vectorial force */
1404             tx               = _mm256_mul_ps(fscal,dx20);
1405             ty               = _mm256_mul_ps(fscal,dy20);
1406             tz               = _mm256_mul_ps(fscal,dz20);
1407
1408             /* Update vectorial force */
1409             fix2             = _mm256_add_ps(fix2,tx);
1410             fiy2             = _mm256_add_ps(fiy2,ty);
1411             fiz2             = _mm256_add_ps(fiz2,tz);
1412
1413             fjx0             = _mm256_add_ps(fjx0,tx);
1414             fjy0             = _mm256_add_ps(fjy0,ty);
1415             fjz0             = _mm256_add_ps(fjz0,tz);
1416
1417             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1418             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1419             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1420             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1421             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1422             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1423             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1424             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1425
1426             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1427
1428             /* Inner loop uses 131 flops */
1429         }
1430
1431         /* End of innermost loop */
1432
1433         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1434                                                  f+i_coord_offset,fshift+i_shift_offset);
1435
1436         /* Increment number of inner iterations */
1437         inneriter                  += j_index_end - j_index_start;
1438
1439         /* Outer loop uses 18 flops */
1440     }
1441
1442     /* Increment number of outer iterations */
1443     outeriter        += nri;
1444
1445     /* Update outer/inner flops */
1446
1447     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*131);
1448 }