Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
100     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
101     __m256i          vfitab;
102     __m128i          vfitab_lo,vfitab_hi;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m256           dummy_mask,cutoff_mask;
107     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
108     __m256           one     = _mm256_set1_ps(1.0);
109     __m256           two     = _mm256_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_elec->data;
128     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136     j_coord_offsetE = 0;
137     j_coord_offsetF = 0;
138     j_coord_offsetG = 0;
139     j_coord_offsetH = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm256_setzero_ps();
167         fiy0             = _mm256_setzero_ps();
168         fiz0             = _mm256_setzero_ps();
169
170         /* Load parameters for i particles */
171         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
172         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm256_setzero_ps();
176         vvdwsum          = _mm256_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             jnrE             = jjnr[jidx+4];
188             jnrF             = jjnr[jidx+5];
189             jnrG             = jjnr[jidx+6];
190             jnrH             = jjnr[jidx+7];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195             j_coord_offsetE  = DIM*jnrE;
196             j_coord_offsetF  = DIM*jnrF;
197             j_coord_offsetG  = DIM*jnrG;
198             j_coord_offsetH  = DIM*jnrH;
199
200             /* load j atom coordinates */
201             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
202                                                  x+j_coord_offsetC,x+j_coord_offsetD,
203                                                  x+j_coord_offsetE,x+j_coord_offsetF,
204                                                  x+j_coord_offsetG,x+j_coord_offsetH,
205                                                  &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm256_sub_ps(ix0,jx0);
209             dy00             = _mm256_sub_ps(iy0,jy0);
210             dz00             = _mm256_sub_ps(iz0,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
214
215             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
216
217             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
221                                                                  charge+jnrC+0,charge+jnrD+0,
222                                                                  charge+jnrE+0,charge+jnrF+0,
223                                                                  charge+jnrG+0,charge+jnrH+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226             vdwjidx0C        = 2*vdwtype[jnrC+0];
227             vdwjidx0D        = 2*vdwtype[jnrD+0];
228             vdwjidx0E        = 2*vdwtype[jnrE+0];
229             vdwjidx0F        = 2*vdwtype[jnrF+0];
230             vdwjidx0G        = 2*vdwtype[jnrG+0];
231             vdwjidx0H        = 2*vdwtype[jnrH+0];
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             r00              = _mm256_mul_ps(rsq00,rinv00);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _mm256_mul_ps(iq0,jq0);
241             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
242                                             vdwioffsetptr0+vdwjidx0B,
243                                             vdwioffsetptr0+vdwjidx0C,
244                                             vdwioffsetptr0+vdwjidx0D,
245                                             vdwioffsetptr0+vdwjidx0E,
246                                             vdwioffsetptr0+vdwjidx0F,
247                                             vdwioffsetptr0+vdwjidx0G,
248                                             vdwioffsetptr0+vdwjidx0H,
249                                             &c6_00,&c12_00);
250
251             /* Calculate table index by multiplying r with table scale and truncate to integer */
252             rt               = _mm256_mul_ps(r00,vftabscale);
253             vfitab           = _mm256_cvttps_epi32(rt);
254             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
255             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
256             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
257             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
258             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
259             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
260
261             /* CUBIC SPLINE TABLE ELECTROSTATICS */
262             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
263                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
264             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
265                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
266             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
267                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
268             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
269                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
270             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
271             Heps             = _mm256_mul_ps(vfeps,H);
272             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
273             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
274             velec            = _mm256_mul_ps(qq00,VV);
275             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
276             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
277
278             /* LENNARD-JONES DISPERSION/REPULSION */
279
280             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
281             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
282             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
283             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
284             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             velecsum         = _mm256_add_ps(velecsum,velec);
288             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
289
290             fscal            = _mm256_add_ps(felec,fvdw);
291
292             /* Calculate temporary vectorial force */
293             tx               = _mm256_mul_ps(fscal,dx00);
294             ty               = _mm256_mul_ps(fscal,dy00);
295             tz               = _mm256_mul_ps(fscal,dz00);
296
297             /* Update vectorial force */
298             fix0             = _mm256_add_ps(fix0,tx);
299             fiy0             = _mm256_add_ps(fiy0,ty);
300             fiz0             = _mm256_add_ps(fiz0,tz);
301
302             fjptrA             = f+j_coord_offsetA;
303             fjptrB             = f+j_coord_offsetB;
304             fjptrC             = f+j_coord_offsetC;
305             fjptrD             = f+j_coord_offsetD;
306             fjptrE             = f+j_coord_offsetE;
307             fjptrF             = f+j_coord_offsetF;
308             fjptrG             = f+j_coord_offsetG;
309             fjptrH             = f+j_coord_offsetH;
310             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
311
312             /* Inner loop uses 56 flops */
313         }
314
315         if(jidx<j_index_end)
316         {
317
318             /* Get j neighbor index, and coordinate index */
319             jnrlistA         = jjnr[jidx];
320             jnrlistB         = jjnr[jidx+1];
321             jnrlistC         = jjnr[jidx+2];
322             jnrlistD         = jjnr[jidx+3];
323             jnrlistE         = jjnr[jidx+4];
324             jnrlistF         = jjnr[jidx+5];
325             jnrlistG         = jjnr[jidx+6];
326             jnrlistH         = jjnr[jidx+7];
327             /* Sign of each element will be negative for non-real atoms.
328              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
329              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
330              */
331             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
332                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
333                                             
334             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
335             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
336             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
337             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
338             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
339             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
340             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
341             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
342             j_coord_offsetA  = DIM*jnrA;
343             j_coord_offsetB  = DIM*jnrB;
344             j_coord_offsetC  = DIM*jnrC;
345             j_coord_offsetD  = DIM*jnrD;
346             j_coord_offsetE  = DIM*jnrE;
347             j_coord_offsetF  = DIM*jnrF;
348             j_coord_offsetG  = DIM*jnrG;
349             j_coord_offsetH  = DIM*jnrH;
350
351             /* load j atom coordinates */
352             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
353                                                  x+j_coord_offsetC,x+j_coord_offsetD,
354                                                  x+j_coord_offsetE,x+j_coord_offsetF,
355                                                  x+j_coord_offsetG,x+j_coord_offsetH,
356                                                  &jx0,&jy0,&jz0);
357
358             /* Calculate displacement vector */
359             dx00             = _mm256_sub_ps(ix0,jx0);
360             dy00             = _mm256_sub_ps(iy0,jy0);
361             dz00             = _mm256_sub_ps(iz0,jz0);
362
363             /* Calculate squared distance and things based on it */
364             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
365
366             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
367
368             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
369
370             /* Load parameters for j particles */
371             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
372                                                                  charge+jnrC+0,charge+jnrD+0,
373                                                                  charge+jnrE+0,charge+jnrF+0,
374                                                                  charge+jnrG+0,charge+jnrH+0);
375             vdwjidx0A        = 2*vdwtype[jnrA+0];
376             vdwjidx0B        = 2*vdwtype[jnrB+0];
377             vdwjidx0C        = 2*vdwtype[jnrC+0];
378             vdwjidx0D        = 2*vdwtype[jnrD+0];
379             vdwjidx0E        = 2*vdwtype[jnrE+0];
380             vdwjidx0F        = 2*vdwtype[jnrF+0];
381             vdwjidx0G        = 2*vdwtype[jnrG+0];
382             vdwjidx0H        = 2*vdwtype[jnrH+0];
383
384             /**************************
385              * CALCULATE INTERACTIONS *
386              **************************/
387
388             r00              = _mm256_mul_ps(rsq00,rinv00);
389             r00              = _mm256_andnot_ps(dummy_mask,r00);
390
391             /* Compute parameters for interactions between i and j atoms */
392             qq00             = _mm256_mul_ps(iq0,jq0);
393             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
394                                             vdwioffsetptr0+vdwjidx0B,
395                                             vdwioffsetptr0+vdwjidx0C,
396                                             vdwioffsetptr0+vdwjidx0D,
397                                             vdwioffsetptr0+vdwjidx0E,
398                                             vdwioffsetptr0+vdwjidx0F,
399                                             vdwioffsetptr0+vdwjidx0G,
400                                             vdwioffsetptr0+vdwjidx0H,
401                                             &c6_00,&c12_00);
402
403             /* Calculate table index by multiplying r with table scale and truncate to integer */
404             rt               = _mm256_mul_ps(r00,vftabscale);
405             vfitab           = _mm256_cvttps_epi32(rt);
406             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
407             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
408             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
409             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
410             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
411             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
412
413             /* CUBIC SPLINE TABLE ELECTROSTATICS */
414             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
415                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
416             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
417                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
418             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
419                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
420             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
421                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
422             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
423             Heps             = _mm256_mul_ps(vfeps,H);
424             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
425             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
426             velec            = _mm256_mul_ps(qq00,VV);
427             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
428             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
429
430             /* LENNARD-JONES DISPERSION/REPULSION */
431
432             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
433             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
434             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
435             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
436             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
437
438             /* Update potential sum for this i atom from the interaction with this j atom. */
439             velec            = _mm256_andnot_ps(dummy_mask,velec);
440             velecsum         = _mm256_add_ps(velecsum,velec);
441             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
442             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
443
444             fscal            = _mm256_add_ps(felec,fvdw);
445
446             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
447
448             /* Calculate temporary vectorial force */
449             tx               = _mm256_mul_ps(fscal,dx00);
450             ty               = _mm256_mul_ps(fscal,dy00);
451             tz               = _mm256_mul_ps(fscal,dz00);
452
453             /* Update vectorial force */
454             fix0             = _mm256_add_ps(fix0,tx);
455             fiy0             = _mm256_add_ps(fiy0,ty);
456             fiz0             = _mm256_add_ps(fiz0,tz);
457
458             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
459             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
460             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
461             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
462             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
463             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
464             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
465             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
466             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
467
468             /* Inner loop uses 57 flops */
469         }
470
471         /* End of innermost loop */
472
473         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
474                                                  f+i_coord_offset,fshift+i_shift_offset);
475
476         ggid                        = gid[iidx];
477         /* Update potential energies */
478         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
479         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
480
481         /* Increment number of inner iterations */
482         inneriter                  += j_index_end - j_index_start;
483
484         /* Outer loop uses 9 flops */
485     }
486
487     /* Increment number of outer iterations */
488     outeriter        += nri;
489
490     /* Update outer/inner flops */
491
492     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
493 }
494 /*
495  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_256_single
496  * Electrostatics interaction: CubicSplineTable
497  * VdW interaction:            LennardJones
498  * Geometry:                   Particle-Particle
499  * Calculate force/pot:        Force
500  */
501 void
502 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_256_single
503                     (t_nblist                    * gmx_restrict       nlist,
504                      rvec                        * gmx_restrict          xx,
505                      rvec                        * gmx_restrict          ff,
506                      t_forcerec                  * gmx_restrict          fr,
507                      t_mdatoms                   * gmx_restrict     mdatoms,
508                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
509                      t_nrnb                      * gmx_restrict        nrnb)
510 {
511     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
512      * just 0 for non-waters.
513      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
514      * jnr indices corresponding to data put in the four positions in the SIMD register.
515      */
516     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
517     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
518     int              jnrA,jnrB,jnrC,jnrD;
519     int              jnrE,jnrF,jnrG,jnrH;
520     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
521     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
522     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
523     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
524     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
525     real             rcutoff_scalar;
526     real             *shiftvec,*fshift,*x,*f;
527     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
528     real             scratch[4*DIM];
529     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
530     real *           vdwioffsetptr0;
531     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
532     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
533     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
534     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
535     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
536     real             *charge;
537     int              nvdwtype;
538     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
539     int              *vdwtype;
540     real             *vdwparam;
541     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
542     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
543     __m256i          vfitab;
544     __m128i          vfitab_lo,vfitab_hi;
545     __m128i          ifour       = _mm_set1_epi32(4);
546     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
547     real             *vftab;
548     __m256           dummy_mask,cutoff_mask;
549     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
550     __m256           one     = _mm256_set1_ps(1.0);
551     __m256           two     = _mm256_set1_ps(2.0);
552     x                = xx[0];
553     f                = ff[0];
554
555     nri              = nlist->nri;
556     iinr             = nlist->iinr;
557     jindex           = nlist->jindex;
558     jjnr             = nlist->jjnr;
559     shiftidx         = nlist->shift;
560     gid              = nlist->gid;
561     shiftvec         = fr->shift_vec[0];
562     fshift           = fr->fshift[0];
563     facel            = _mm256_set1_ps(fr->epsfac);
564     charge           = mdatoms->chargeA;
565     nvdwtype         = fr->ntype;
566     vdwparam         = fr->nbfp;
567     vdwtype          = mdatoms->typeA;
568
569     vftab            = kernel_data->table_elec->data;
570     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
571
572     /* Avoid stupid compiler warnings */
573     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
574     j_coord_offsetA = 0;
575     j_coord_offsetB = 0;
576     j_coord_offsetC = 0;
577     j_coord_offsetD = 0;
578     j_coord_offsetE = 0;
579     j_coord_offsetF = 0;
580     j_coord_offsetG = 0;
581     j_coord_offsetH = 0;
582
583     outeriter        = 0;
584     inneriter        = 0;
585
586     for(iidx=0;iidx<4*DIM;iidx++)
587     {
588         scratch[iidx] = 0.0;
589     }
590
591     /* Start outer loop over neighborlists */
592     for(iidx=0; iidx<nri; iidx++)
593     {
594         /* Load shift vector for this list */
595         i_shift_offset   = DIM*shiftidx[iidx];
596
597         /* Load limits for loop over neighbors */
598         j_index_start    = jindex[iidx];
599         j_index_end      = jindex[iidx+1];
600
601         /* Get outer coordinate index */
602         inr              = iinr[iidx];
603         i_coord_offset   = DIM*inr;
604
605         /* Load i particle coords and add shift vector */
606         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
607
608         fix0             = _mm256_setzero_ps();
609         fiy0             = _mm256_setzero_ps();
610         fiz0             = _mm256_setzero_ps();
611
612         /* Load parameters for i particles */
613         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
614         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
615
616         /* Start inner kernel loop */
617         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
618         {
619
620             /* Get j neighbor index, and coordinate index */
621             jnrA             = jjnr[jidx];
622             jnrB             = jjnr[jidx+1];
623             jnrC             = jjnr[jidx+2];
624             jnrD             = jjnr[jidx+3];
625             jnrE             = jjnr[jidx+4];
626             jnrF             = jjnr[jidx+5];
627             jnrG             = jjnr[jidx+6];
628             jnrH             = jjnr[jidx+7];
629             j_coord_offsetA  = DIM*jnrA;
630             j_coord_offsetB  = DIM*jnrB;
631             j_coord_offsetC  = DIM*jnrC;
632             j_coord_offsetD  = DIM*jnrD;
633             j_coord_offsetE  = DIM*jnrE;
634             j_coord_offsetF  = DIM*jnrF;
635             j_coord_offsetG  = DIM*jnrG;
636             j_coord_offsetH  = DIM*jnrH;
637
638             /* load j atom coordinates */
639             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
640                                                  x+j_coord_offsetC,x+j_coord_offsetD,
641                                                  x+j_coord_offsetE,x+j_coord_offsetF,
642                                                  x+j_coord_offsetG,x+j_coord_offsetH,
643                                                  &jx0,&jy0,&jz0);
644
645             /* Calculate displacement vector */
646             dx00             = _mm256_sub_ps(ix0,jx0);
647             dy00             = _mm256_sub_ps(iy0,jy0);
648             dz00             = _mm256_sub_ps(iz0,jz0);
649
650             /* Calculate squared distance and things based on it */
651             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
652
653             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
654
655             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
656
657             /* Load parameters for j particles */
658             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
659                                                                  charge+jnrC+0,charge+jnrD+0,
660                                                                  charge+jnrE+0,charge+jnrF+0,
661                                                                  charge+jnrG+0,charge+jnrH+0);
662             vdwjidx0A        = 2*vdwtype[jnrA+0];
663             vdwjidx0B        = 2*vdwtype[jnrB+0];
664             vdwjidx0C        = 2*vdwtype[jnrC+0];
665             vdwjidx0D        = 2*vdwtype[jnrD+0];
666             vdwjidx0E        = 2*vdwtype[jnrE+0];
667             vdwjidx0F        = 2*vdwtype[jnrF+0];
668             vdwjidx0G        = 2*vdwtype[jnrG+0];
669             vdwjidx0H        = 2*vdwtype[jnrH+0];
670
671             /**************************
672              * CALCULATE INTERACTIONS *
673              **************************/
674
675             r00              = _mm256_mul_ps(rsq00,rinv00);
676
677             /* Compute parameters for interactions between i and j atoms */
678             qq00             = _mm256_mul_ps(iq0,jq0);
679             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
680                                             vdwioffsetptr0+vdwjidx0B,
681                                             vdwioffsetptr0+vdwjidx0C,
682                                             vdwioffsetptr0+vdwjidx0D,
683                                             vdwioffsetptr0+vdwjidx0E,
684                                             vdwioffsetptr0+vdwjidx0F,
685                                             vdwioffsetptr0+vdwjidx0G,
686                                             vdwioffsetptr0+vdwjidx0H,
687                                             &c6_00,&c12_00);
688
689             /* Calculate table index by multiplying r with table scale and truncate to integer */
690             rt               = _mm256_mul_ps(r00,vftabscale);
691             vfitab           = _mm256_cvttps_epi32(rt);
692             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
693             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
694             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
695             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
696             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
697             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
698
699             /* CUBIC SPLINE TABLE ELECTROSTATICS */
700             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
701                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
702             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
703                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
704             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
705                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
706             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
707                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
708             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
709             Heps             = _mm256_mul_ps(vfeps,H);
710             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
711             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
712             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
713
714             /* LENNARD-JONES DISPERSION/REPULSION */
715
716             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
717             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
718
719             fscal            = _mm256_add_ps(felec,fvdw);
720
721             /* Calculate temporary vectorial force */
722             tx               = _mm256_mul_ps(fscal,dx00);
723             ty               = _mm256_mul_ps(fscal,dy00);
724             tz               = _mm256_mul_ps(fscal,dz00);
725
726             /* Update vectorial force */
727             fix0             = _mm256_add_ps(fix0,tx);
728             fiy0             = _mm256_add_ps(fiy0,ty);
729             fiz0             = _mm256_add_ps(fiz0,tz);
730
731             fjptrA             = f+j_coord_offsetA;
732             fjptrB             = f+j_coord_offsetB;
733             fjptrC             = f+j_coord_offsetC;
734             fjptrD             = f+j_coord_offsetD;
735             fjptrE             = f+j_coord_offsetE;
736             fjptrF             = f+j_coord_offsetF;
737             fjptrG             = f+j_coord_offsetG;
738             fjptrH             = f+j_coord_offsetH;
739             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
740
741             /* Inner loop uses 47 flops */
742         }
743
744         if(jidx<j_index_end)
745         {
746
747             /* Get j neighbor index, and coordinate index */
748             jnrlistA         = jjnr[jidx];
749             jnrlistB         = jjnr[jidx+1];
750             jnrlistC         = jjnr[jidx+2];
751             jnrlistD         = jjnr[jidx+3];
752             jnrlistE         = jjnr[jidx+4];
753             jnrlistF         = jjnr[jidx+5];
754             jnrlistG         = jjnr[jidx+6];
755             jnrlistH         = jjnr[jidx+7];
756             /* Sign of each element will be negative for non-real atoms.
757              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
758              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
759              */
760             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
761                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
762                                             
763             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
764             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
765             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
766             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
767             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
768             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
769             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
770             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
771             j_coord_offsetA  = DIM*jnrA;
772             j_coord_offsetB  = DIM*jnrB;
773             j_coord_offsetC  = DIM*jnrC;
774             j_coord_offsetD  = DIM*jnrD;
775             j_coord_offsetE  = DIM*jnrE;
776             j_coord_offsetF  = DIM*jnrF;
777             j_coord_offsetG  = DIM*jnrG;
778             j_coord_offsetH  = DIM*jnrH;
779
780             /* load j atom coordinates */
781             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
782                                                  x+j_coord_offsetC,x+j_coord_offsetD,
783                                                  x+j_coord_offsetE,x+j_coord_offsetF,
784                                                  x+j_coord_offsetG,x+j_coord_offsetH,
785                                                  &jx0,&jy0,&jz0);
786
787             /* Calculate displacement vector */
788             dx00             = _mm256_sub_ps(ix0,jx0);
789             dy00             = _mm256_sub_ps(iy0,jy0);
790             dz00             = _mm256_sub_ps(iz0,jz0);
791
792             /* Calculate squared distance and things based on it */
793             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
794
795             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
796
797             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
798
799             /* Load parameters for j particles */
800             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
801                                                                  charge+jnrC+0,charge+jnrD+0,
802                                                                  charge+jnrE+0,charge+jnrF+0,
803                                                                  charge+jnrG+0,charge+jnrH+0);
804             vdwjidx0A        = 2*vdwtype[jnrA+0];
805             vdwjidx0B        = 2*vdwtype[jnrB+0];
806             vdwjidx0C        = 2*vdwtype[jnrC+0];
807             vdwjidx0D        = 2*vdwtype[jnrD+0];
808             vdwjidx0E        = 2*vdwtype[jnrE+0];
809             vdwjidx0F        = 2*vdwtype[jnrF+0];
810             vdwjidx0G        = 2*vdwtype[jnrG+0];
811             vdwjidx0H        = 2*vdwtype[jnrH+0];
812
813             /**************************
814              * CALCULATE INTERACTIONS *
815              **************************/
816
817             r00              = _mm256_mul_ps(rsq00,rinv00);
818             r00              = _mm256_andnot_ps(dummy_mask,r00);
819
820             /* Compute parameters for interactions between i and j atoms */
821             qq00             = _mm256_mul_ps(iq0,jq0);
822             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
823                                             vdwioffsetptr0+vdwjidx0B,
824                                             vdwioffsetptr0+vdwjidx0C,
825                                             vdwioffsetptr0+vdwjidx0D,
826                                             vdwioffsetptr0+vdwjidx0E,
827                                             vdwioffsetptr0+vdwjidx0F,
828                                             vdwioffsetptr0+vdwjidx0G,
829                                             vdwioffsetptr0+vdwjidx0H,
830                                             &c6_00,&c12_00);
831
832             /* Calculate table index by multiplying r with table scale and truncate to integer */
833             rt               = _mm256_mul_ps(r00,vftabscale);
834             vfitab           = _mm256_cvttps_epi32(rt);
835             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
836             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
837             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
838             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
839             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
840             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
841
842             /* CUBIC SPLINE TABLE ELECTROSTATICS */
843             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
844                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
845             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
846                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
847             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
848                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
849             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
850                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
851             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
852             Heps             = _mm256_mul_ps(vfeps,H);
853             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
854             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
855             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
856
857             /* LENNARD-JONES DISPERSION/REPULSION */
858
859             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
860             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
861
862             fscal            = _mm256_add_ps(felec,fvdw);
863
864             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
865
866             /* Calculate temporary vectorial force */
867             tx               = _mm256_mul_ps(fscal,dx00);
868             ty               = _mm256_mul_ps(fscal,dy00);
869             tz               = _mm256_mul_ps(fscal,dz00);
870
871             /* Update vectorial force */
872             fix0             = _mm256_add_ps(fix0,tx);
873             fiy0             = _mm256_add_ps(fiy0,ty);
874             fiz0             = _mm256_add_ps(fiz0,tz);
875
876             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
877             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
878             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
879             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
880             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
881             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
882             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
883             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
884             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
885
886             /* Inner loop uses 48 flops */
887         }
888
889         /* End of innermost loop */
890
891         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
892                                                  f+i_coord_offset,fshift+i_shift_offset);
893
894         /* Increment number of inner iterations */
895         inneriter                  += j_index_end - j_index_start;
896
897         /* Outer loop uses 7 flops */
898     }
899
900     /* Increment number of outer iterations */
901     outeriter        += nri;
902
903     /* Update outer/inner flops */
904
905     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*48);
906 }