Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
84     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
85     __m256i          vfitab;
86     __m128i          vfitab_lo,vfitab_hi;
87     __m128i          ifour       = _mm_set1_epi32(4);
88     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
89     real             *vftab;
90     __m256           dummy_mask,cutoff_mask;
91     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
92     __m256           one     = _mm256_set1_ps(1.0);
93     __m256           two     = _mm256_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm256_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     vftab            = kernel_data->table_elec->data;
112     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118     j_coord_offsetC = 0;
119     j_coord_offsetD = 0;
120     j_coord_offsetE = 0;
121     j_coord_offsetF = 0;
122     j_coord_offsetG = 0;
123     j_coord_offsetH = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     for(iidx=0;iidx<4*DIM;iidx++)
129     {
130         scratch[iidx] = 0.0;
131     }
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138
139         /* Load limits for loop over neighbors */
140         j_index_start    = jindex[iidx];
141         j_index_end      = jindex[iidx+1];
142
143         /* Get outer coordinate index */
144         inr              = iinr[iidx];
145         i_coord_offset   = DIM*inr;
146
147         /* Load i particle coords and add shift vector */
148         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
149
150         fix0             = _mm256_setzero_ps();
151         fiy0             = _mm256_setzero_ps();
152         fiz0             = _mm256_setzero_ps();
153
154         /* Load parameters for i particles */
155         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
156         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
157
158         /* Reset potential sums */
159         velecsum         = _mm256_setzero_ps();
160         vvdwsum          = _mm256_setzero_ps();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             jnrC             = jjnr[jidx+2];
170             jnrD             = jjnr[jidx+3];
171             jnrE             = jjnr[jidx+4];
172             jnrF             = jjnr[jidx+5];
173             jnrG             = jjnr[jidx+6];
174             jnrH             = jjnr[jidx+7];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177             j_coord_offsetC  = DIM*jnrC;
178             j_coord_offsetD  = DIM*jnrD;
179             j_coord_offsetE  = DIM*jnrE;
180             j_coord_offsetF  = DIM*jnrF;
181             j_coord_offsetG  = DIM*jnrG;
182             j_coord_offsetH  = DIM*jnrH;
183
184             /* load j atom coordinates */
185             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
186                                                  x+j_coord_offsetC,x+j_coord_offsetD,
187                                                  x+j_coord_offsetE,x+j_coord_offsetF,
188                                                  x+j_coord_offsetG,x+j_coord_offsetH,
189                                                  &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _mm256_sub_ps(ix0,jx0);
193             dy00             = _mm256_sub_ps(iy0,jy0);
194             dz00             = _mm256_sub_ps(iz0,jz0);
195
196             /* Calculate squared distance and things based on it */
197             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
198
199             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
200
201             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
202
203             /* Load parameters for j particles */
204             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
205                                                                  charge+jnrC+0,charge+jnrD+0,
206                                                                  charge+jnrE+0,charge+jnrF+0,
207                                                                  charge+jnrG+0,charge+jnrH+0);
208             vdwjidx0A        = 2*vdwtype[jnrA+0];
209             vdwjidx0B        = 2*vdwtype[jnrB+0];
210             vdwjidx0C        = 2*vdwtype[jnrC+0];
211             vdwjidx0D        = 2*vdwtype[jnrD+0];
212             vdwjidx0E        = 2*vdwtype[jnrE+0];
213             vdwjidx0F        = 2*vdwtype[jnrF+0];
214             vdwjidx0G        = 2*vdwtype[jnrG+0];
215             vdwjidx0H        = 2*vdwtype[jnrH+0];
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             r00              = _mm256_mul_ps(rsq00,rinv00);
222
223             /* Compute parameters for interactions between i and j atoms */
224             qq00             = _mm256_mul_ps(iq0,jq0);
225             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
226                                             vdwioffsetptr0+vdwjidx0B,
227                                             vdwioffsetptr0+vdwjidx0C,
228                                             vdwioffsetptr0+vdwjidx0D,
229                                             vdwioffsetptr0+vdwjidx0E,
230                                             vdwioffsetptr0+vdwjidx0F,
231                                             vdwioffsetptr0+vdwjidx0G,
232                                             vdwioffsetptr0+vdwjidx0H,
233                                             &c6_00,&c12_00);
234
235             /* Calculate table index by multiplying r with table scale and truncate to integer */
236             rt               = _mm256_mul_ps(r00,vftabscale);
237             vfitab           = _mm256_cvttps_epi32(rt);
238             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
239             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
240             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
241             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
242             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
243             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
244
245             /* CUBIC SPLINE TABLE ELECTROSTATICS */
246             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
247                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
248             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
249                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
250             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
251                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
252             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
253                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
254             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
255             Heps             = _mm256_mul_ps(vfeps,H);
256             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
257             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
258             velec            = _mm256_mul_ps(qq00,VV);
259             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
260             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
261
262             /* LENNARD-JONES DISPERSION/REPULSION */
263
264             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
265             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
266             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
267             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
268             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
269
270             /* Update potential sum for this i atom from the interaction with this j atom. */
271             velecsum         = _mm256_add_ps(velecsum,velec);
272             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
273
274             fscal            = _mm256_add_ps(felec,fvdw);
275
276             /* Calculate temporary vectorial force */
277             tx               = _mm256_mul_ps(fscal,dx00);
278             ty               = _mm256_mul_ps(fscal,dy00);
279             tz               = _mm256_mul_ps(fscal,dz00);
280
281             /* Update vectorial force */
282             fix0             = _mm256_add_ps(fix0,tx);
283             fiy0             = _mm256_add_ps(fiy0,ty);
284             fiz0             = _mm256_add_ps(fiz0,tz);
285
286             fjptrA             = f+j_coord_offsetA;
287             fjptrB             = f+j_coord_offsetB;
288             fjptrC             = f+j_coord_offsetC;
289             fjptrD             = f+j_coord_offsetD;
290             fjptrE             = f+j_coord_offsetE;
291             fjptrF             = f+j_coord_offsetF;
292             fjptrG             = f+j_coord_offsetG;
293             fjptrH             = f+j_coord_offsetH;
294             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
295
296             /* Inner loop uses 56 flops */
297         }
298
299         if(jidx<j_index_end)
300         {
301
302             /* Get j neighbor index, and coordinate index */
303             jnrlistA         = jjnr[jidx];
304             jnrlistB         = jjnr[jidx+1];
305             jnrlistC         = jjnr[jidx+2];
306             jnrlistD         = jjnr[jidx+3];
307             jnrlistE         = jjnr[jidx+4];
308             jnrlistF         = jjnr[jidx+5];
309             jnrlistG         = jjnr[jidx+6];
310             jnrlistH         = jjnr[jidx+7];
311             /* Sign of each element will be negative for non-real atoms.
312              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
313              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
314              */
315             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
316                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
317                                             
318             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
319             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
320             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
321             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
322             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
323             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
324             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
325             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
326             j_coord_offsetA  = DIM*jnrA;
327             j_coord_offsetB  = DIM*jnrB;
328             j_coord_offsetC  = DIM*jnrC;
329             j_coord_offsetD  = DIM*jnrD;
330             j_coord_offsetE  = DIM*jnrE;
331             j_coord_offsetF  = DIM*jnrF;
332             j_coord_offsetG  = DIM*jnrG;
333             j_coord_offsetH  = DIM*jnrH;
334
335             /* load j atom coordinates */
336             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
337                                                  x+j_coord_offsetC,x+j_coord_offsetD,
338                                                  x+j_coord_offsetE,x+j_coord_offsetF,
339                                                  x+j_coord_offsetG,x+j_coord_offsetH,
340                                                  &jx0,&jy0,&jz0);
341
342             /* Calculate displacement vector */
343             dx00             = _mm256_sub_ps(ix0,jx0);
344             dy00             = _mm256_sub_ps(iy0,jy0);
345             dz00             = _mm256_sub_ps(iz0,jz0);
346
347             /* Calculate squared distance and things based on it */
348             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
349
350             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
351
352             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
353
354             /* Load parameters for j particles */
355             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
356                                                                  charge+jnrC+0,charge+jnrD+0,
357                                                                  charge+jnrE+0,charge+jnrF+0,
358                                                                  charge+jnrG+0,charge+jnrH+0);
359             vdwjidx0A        = 2*vdwtype[jnrA+0];
360             vdwjidx0B        = 2*vdwtype[jnrB+0];
361             vdwjidx0C        = 2*vdwtype[jnrC+0];
362             vdwjidx0D        = 2*vdwtype[jnrD+0];
363             vdwjidx0E        = 2*vdwtype[jnrE+0];
364             vdwjidx0F        = 2*vdwtype[jnrF+0];
365             vdwjidx0G        = 2*vdwtype[jnrG+0];
366             vdwjidx0H        = 2*vdwtype[jnrH+0];
367
368             /**************************
369              * CALCULATE INTERACTIONS *
370              **************************/
371
372             r00              = _mm256_mul_ps(rsq00,rinv00);
373             r00              = _mm256_andnot_ps(dummy_mask,r00);
374
375             /* Compute parameters for interactions between i and j atoms */
376             qq00             = _mm256_mul_ps(iq0,jq0);
377             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
378                                             vdwioffsetptr0+vdwjidx0B,
379                                             vdwioffsetptr0+vdwjidx0C,
380                                             vdwioffsetptr0+vdwjidx0D,
381                                             vdwioffsetptr0+vdwjidx0E,
382                                             vdwioffsetptr0+vdwjidx0F,
383                                             vdwioffsetptr0+vdwjidx0G,
384                                             vdwioffsetptr0+vdwjidx0H,
385                                             &c6_00,&c12_00);
386
387             /* Calculate table index by multiplying r with table scale and truncate to integer */
388             rt               = _mm256_mul_ps(r00,vftabscale);
389             vfitab           = _mm256_cvttps_epi32(rt);
390             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
391             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
392             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
393             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
394             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
395             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
396
397             /* CUBIC SPLINE TABLE ELECTROSTATICS */
398             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
399                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
400             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
401                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
402             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
403                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
404             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
405                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
406             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
407             Heps             = _mm256_mul_ps(vfeps,H);
408             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
409             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
410             velec            = _mm256_mul_ps(qq00,VV);
411             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
412             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
413
414             /* LENNARD-JONES DISPERSION/REPULSION */
415
416             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
417             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
418             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
419             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
420             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
421
422             /* Update potential sum for this i atom from the interaction with this j atom. */
423             velec            = _mm256_andnot_ps(dummy_mask,velec);
424             velecsum         = _mm256_add_ps(velecsum,velec);
425             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
426             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
427
428             fscal            = _mm256_add_ps(felec,fvdw);
429
430             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
431
432             /* Calculate temporary vectorial force */
433             tx               = _mm256_mul_ps(fscal,dx00);
434             ty               = _mm256_mul_ps(fscal,dy00);
435             tz               = _mm256_mul_ps(fscal,dz00);
436
437             /* Update vectorial force */
438             fix0             = _mm256_add_ps(fix0,tx);
439             fiy0             = _mm256_add_ps(fiy0,ty);
440             fiz0             = _mm256_add_ps(fiz0,tz);
441
442             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
443             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
444             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
445             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
446             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
447             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
448             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
449             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
450             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
451
452             /* Inner loop uses 57 flops */
453         }
454
455         /* End of innermost loop */
456
457         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
458                                                  f+i_coord_offset,fshift+i_shift_offset);
459
460         ggid                        = gid[iidx];
461         /* Update potential energies */
462         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
463         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
464
465         /* Increment number of inner iterations */
466         inneriter                  += j_index_end - j_index_start;
467
468         /* Outer loop uses 9 flops */
469     }
470
471     /* Increment number of outer iterations */
472     outeriter        += nri;
473
474     /* Update outer/inner flops */
475
476     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
477 }
478 /*
479  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_256_single
480  * Electrostatics interaction: CubicSplineTable
481  * VdW interaction:            LennardJones
482  * Geometry:                   Particle-Particle
483  * Calculate force/pot:        Force
484  */
485 void
486 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_256_single
487                     (t_nblist * gmx_restrict                nlist,
488                      rvec * gmx_restrict                    xx,
489                      rvec * gmx_restrict                    ff,
490                      t_forcerec * gmx_restrict              fr,
491                      t_mdatoms * gmx_restrict               mdatoms,
492                      nb_kernel_data_t * gmx_restrict        kernel_data,
493                      t_nrnb * gmx_restrict                  nrnb)
494 {
495     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
496      * just 0 for non-waters.
497      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
498      * jnr indices corresponding to data put in the four positions in the SIMD register.
499      */
500     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
501     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
502     int              jnrA,jnrB,jnrC,jnrD;
503     int              jnrE,jnrF,jnrG,jnrH;
504     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
505     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
506     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
507     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
508     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
509     real             rcutoff_scalar;
510     real             *shiftvec,*fshift,*x,*f;
511     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
512     real             scratch[4*DIM];
513     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
514     real *           vdwioffsetptr0;
515     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
516     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
517     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
518     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
519     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
520     real             *charge;
521     int              nvdwtype;
522     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
523     int              *vdwtype;
524     real             *vdwparam;
525     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
526     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
527     __m256i          vfitab;
528     __m128i          vfitab_lo,vfitab_hi;
529     __m128i          ifour       = _mm_set1_epi32(4);
530     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
531     real             *vftab;
532     __m256           dummy_mask,cutoff_mask;
533     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
534     __m256           one     = _mm256_set1_ps(1.0);
535     __m256           two     = _mm256_set1_ps(2.0);
536     x                = xx[0];
537     f                = ff[0];
538
539     nri              = nlist->nri;
540     iinr             = nlist->iinr;
541     jindex           = nlist->jindex;
542     jjnr             = nlist->jjnr;
543     shiftidx         = nlist->shift;
544     gid              = nlist->gid;
545     shiftvec         = fr->shift_vec[0];
546     fshift           = fr->fshift[0];
547     facel            = _mm256_set1_ps(fr->epsfac);
548     charge           = mdatoms->chargeA;
549     nvdwtype         = fr->ntype;
550     vdwparam         = fr->nbfp;
551     vdwtype          = mdatoms->typeA;
552
553     vftab            = kernel_data->table_elec->data;
554     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
555
556     /* Avoid stupid compiler warnings */
557     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
558     j_coord_offsetA = 0;
559     j_coord_offsetB = 0;
560     j_coord_offsetC = 0;
561     j_coord_offsetD = 0;
562     j_coord_offsetE = 0;
563     j_coord_offsetF = 0;
564     j_coord_offsetG = 0;
565     j_coord_offsetH = 0;
566
567     outeriter        = 0;
568     inneriter        = 0;
569
570     for(iidx=0;iidx<4*DIM;iidx++)
571     {
572         scratch[iidx] = 0.0;
573     }
574
575     /* Start outer loop over neighborlists */
576     for(iidx=0; iidx<nri; iidx++)
577     {
578         /* Load shift vector for this list */
579         i_shift_offset   = DIM*shiftidx[iidx];
580
581         /* Load limits for loop over neighbors */
582         j_index_start    = jindex[iidx];
583         j_index_end      = jindex[iidx+1];
584
585         /* Get outer coordinate index */
586         inr              = iinr[iidx];
587         i_coord_offset   = DIM*inr;
588
589         /* Load i particle coords and add shift vector */
590         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
591
592         fix0             = _mm256_setzero_ps();
593         fiy0             = _mm256_setzero_ps();
594         fiz0             = _mm256_setzero_ps();
595
596         /* Load parameters for i particles */
597         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
598         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
599
600         /* Start inner kernel loop */
601         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
602         {
603
604             /* Get j neighbor index, and coordinate index */
605             jnrA             = jjnr[jidx];
606             jnrB             = jjnr[jidx+1];
607             jnrC             = jjnr[jidx+2];
608             jnrD             = jjnr[jidx+3];
609             jnrE             = jjnr[jidx+4];
610             jnrF             = jjnr[jidx+5];
611             jnrG             = jjnr[jidx+6];
612             jnrH             = jjnr[jidx+7];
613             j_coord_offsetA  = DIM*jnrA;
614             j_coord_offsetB  = DIM*jnrB;
615             j_coord_offsetC  = DIM*jnrC;
616             j_coord_offsetD  = DIM*jnrD;
617             j_coord_offsetE  = DIM*jnrE;
618             j_coord_offsetF  = DIM*jnrF;
619             j_coord_offsetG  = DIM*jnrG;
620             j_coord_offsetH  = DIM*jnrH;
621
622             /* load j atom coordinates */
623             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
624                                                  x+j_coord_offsetC,x+j_coord_offsetD,
625                                                  x+j_coord_offsetE,x+j_coord_offsetF,
626                                                  x+j_coord_offsetG,x+j_coord_offsetH,
627                                                  &jx0,&jy0,&jz0);
628
629             /* Calculate displacement vector */
630             dx00             = _mm256_sub_ps(ix0,jx0);
631             dy00             = _mm256_sub_ps(iy0,jy0);
632             dz00             = _mm256_sub_ps(iz0,jz0);
633
634             /* Calculate squared distance and things based on it */
635             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
636
637             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
638
639             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
640
641             /* Load parameters for j particles */
642             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
643                                                                  charge+jnrC+0,charge+jnrD+0,
644                                                                  charge+jnrE+0,charge+jnrF+0,
645                                                                  charge+jnrG+0,charge+jnrH+0);
646             vdwjidx0A        = 2*vdwtype[jnrA+0];
647             vdwjidx0B        = 2*vdwtype[jnrB+0];
648             vdwjidx0C        = 2*vdwtype[jnrC+0];
649             vdwjidx0D        = 2*vdwtype[jnrD+0];
650             vdwjidx0E        = 2*vdwtype[jnrE+0];
651             vdwjidx0F        = 2*vdwtype[jnrF+0];
652             vdwjidx0G        = 2*vdwtype[jnrG+0];
653             vdwjidx0H        = 2*vdwtype[jnrH+0];
654
655             /**************************
656              * CALCULATE INTERACTIONS *
657              **************************/
658
659             r00              = _mm256_mul_ps(rsq00,rinv00);
660
661             /* Compute parameters for interactions between i and j atoms */
662             qq00             = _mm256_mul_ps(iq0,jq0);
663             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
664                                             vdwioffsetptr0+vdwjidx0B,
665                                             vdwioffsetptr0+vdwjidx0C,
666                                             vdwioffsetptr0+vdwjidx0D,
667                                             vdwioffsetptr0+vdwjidx0E,
668                                             vdwioffsetptr0+vdwjidx0F,
669                                             vdwioffsetptr0+vdwjidx0G,
670                                             vdwioffsetptr0+vdwjidx0H,
671                                             &c6_00,&c12_00);
672
673             /* Calculate table index by multiplying r with table scale and truncate to integer */
674             rt               = _mm256_mul_ps(r00,vftabscale);
675             vfitab           = _mm256_cvttps_epi32(rt);
676             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
677             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
678             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
679             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
680             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
681             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
682
683             /* CUBIC SPLINE TABLE ELECTROSTATICS */
684             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
685                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
686             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
687                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
688             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
689                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
690             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
691                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
692             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
693             Heps             = _mm256_mul_ps(vfeps,H);
694             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
695             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
696             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
697
698             /* LENNARD-JONES DISPERSION/REPULSION */
699
700             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
701             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
702
703             fscal            = _mm256_add_ps(felec,fvdw);
704
705             /* Calculate temporary vectorial force */
706             tx               = _mm256_mul_ps(fscal,dx00);
707             ty               = _mm256_mul_ps(fscal,dy00);
708             tz               = _mm256_mul_ps(fscal,dz00);
709
710             /* Update vectorial force */
711             fix0             = _mm256_add_ps(fix0,tx);
712             fiy0             = _mm256_add_ps(fiy0,ty);
713             fiz0             = _mm256_add_ps(fiz0,tz);
714
715             fjptrA             = f+j_coord_offsetA;
716             fjptrB             = f+j_coord_offsetB;
717             fjptrC             = f+j_coord_offsetC;
718             fjptrD             = f+j_coord_offsetD;
719             fjptrE             = f+j_coord_offsetE;
720             fjptrF             = f+j_coord_offsetF;
721             fjptrG             = f+j_coord_offsetG;
722             fjptrH             = f+j_coord_offsetH;
723             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
724
725             /* Inner loop uses 47 flops */
726         }
727
728         if(jidx<j_index_end)
729         {
730
731             /* Get j neighbor index, and coordinate index */
732             jnrlistA         = jjnr[jidx];
733             jnrlistB         = jjnr[jidx+1];
734             jnrlistC         = jjnr[jidx+2];
735             jnrlistD         = jjnr[jidx+3];
736             jnrlistE         = jjnr[jidx+4];
737             jnrlistF         = jjnr[jidx+5];
738             jnrlistG         = jjnr[jidx+6];
739             jnrlistH         = jjnr[jidx+7];
740             /* Sign of each element will be negative for non-real atoms.
741              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
742              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
743              */
744             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
745                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
746                                             
747             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
748             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
749             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
750             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
751             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
752             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
753             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
754             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
755             j_coord_offsetA  = DIM*jnrA;
756             j_coord_offsetB  = DIM*jnrB;
757             j_coord_offsetC  = DIM*jnrC;
758             j_coord_offsetD  = DIM*jnrD;
759             j_coord_offsetE  = DIM*jnrE;
760             j_coord_offsetF  = DIM*jnrF;
761             j_coord_offsetG  = DIM*jnrG;
762             j_coord_offsetH  = DIM*jnrH;
763
764             /* load j atom coordinates */
765             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
766                                                  x+j_coord_offsetC,x+j_coord_offsetD,
767                                                  x+j_coord_offsetE,x+j_coord_offsetF,
768                                                  x+j_coord_offsetG,x+j_coord_offsetH,
769                                                  &jx0,&jy0,&jz0);
770
771             /* Calculate displacement vector */
772             dx00             = _mm256_sub_ps(ix0,jx0);
773             dy00             = _mm256_sub_ps(iy0,jy0);
774             dz00             = _mm256_sub_ps(iz0,jz0);
775
776             /* Calculate squared distance and things based on it */
777             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
778
779             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
780
781             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
782
783             /* Load parameters for j particles */
784             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
785                                                                  charge+jnrC+0,charge+jnrD+0,
786                                                                  charge+jnrE+0,charge+jnrF+0,
787                                                                  charge+jnrG+0,charge+jnrH+0);
788             vdwjidx0A        = 2*vdwtype[jnrA+0];
789             vdwjidx0B        = 2*vdwtype[jnrB+0];
790             vdwjidx0C        = 2*vdwtype[jnrC+0];
791             vdwjidx0D        = 2*vdwtype[jnrD+0];
792             vdwjidx0E        = 2*vdwtype[jnrE+0];
793             vdwjidx0F        = 2*vdwtype[jnrF+0];
794             vdwjidx0G        = 2*vdwtype[jnrG+0];
795             vdwjidx0H        = 2*vdwtype[jnrH+0];
796
797             /**************************
798              * CALCULATE INTERACTIONS *
799              **************************/
800
801             r00              = _mm256_mul_ps(rsq00,rinv00);
802             r00              = _mm256_andnot_ps(dummy_mask,r00);
803
804             /* Compute parameters for interactions between i and j atoms */
805             qq00             = _mm256_mul_ps(iq0,jq0);
806             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
807                                             vdwioffsetptr0+vdwjidx0B,
808                                             vdwioffsetptr0+vdwjidx0C,
809                                             vdwioffsetptr0+vdwjidx0D,
810                                             vdwioffsetptr0+vdwjidx0E,
811                                             vdwioffsetptr0+vdwjidx0F,
812                                             vdwioffsetptr0+vdwjidx0G,
813                                             vdwioffsetptr0+vdwjidx0H,
814                                             &c6_00,&c12_00);
815
816             /* Calculate table index by multiplying r with table scale and truncate to integer */
817             rt               = _mm256_mul_ps(r00,vftabscale);
818             vfitab           = _mm256_cvttps_epi32(rt);
819             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
820             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
821             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
822             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
823             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
824             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
825
826             /* CUBIC SPLINE TABLE ELECTROSTATICS */
827             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
828                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
829             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
830                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
831             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
832                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
833             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
834                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
835             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
836             Heps             = _mm256_mul_ps(vfeps,H);
837             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
838             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
839             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
840
841             /* LENNARD-JONES DISPERSION/REPULSION */
842
843             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
844             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
845
846             fscal            = _mm256_add_ps(felec,fvdw);
847
848             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
849
850             /* Calculate temporary vectorial force */
851             tx               = _mm256_mul_ps(fscal,dx00);
852             ty               = _mm256_mul_ps(fscal,dy00);
853             tz               = _mm256_mul_ps(fscal,dz00);
854
855             /* Update vectorial force */
856             fix0             = _mm256_add_ps(fix0,tx);
857             fiy0             = _mm256_add_ps(fiy0,ty);
858             fiz0             = _mm256_add_ps(fiz0,tz);
859
860             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
861             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
862             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
863             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
864             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
865             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
866             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
867             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
868             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
869
870             /* Inner loop uses 48 flops */
871         }
872
873         /* End of innermost loop */
874
875         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
876                                                  f+i_coord_offset,fshift+i_shift_offset);
877
878         /* Increment number of inner iterations */
879         inneriter                  += j_index_end - j_index_start;
880
881         /* Outer loop uses 7 flops */
882     }
883
884     /* Increment number of outer iterations */
885     outeriter        += nri;
886
887     /* Update outer/inner flops */
888
889     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*48);
890 }