Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
98     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
99     __m256i          vfitab;
100     __m128i          vfitab_lo,vfitab_hi;
101     __m128i          ifour       = _mm_set1_epi32(4);
102     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
103     real             *vftab;
104     __m256           dummy_mask,cutoff_mask;
105     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
106     __m256           one     = _mm256_set1_ps(1.0);
107     __m256           two     = _mm256_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     vftab            = kernel_data->table_elec->data;
126     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134     j_coord_offsetE = 0;
135     j_coord_offsetF = 0;
136     j_coord_offsetG = 0;
137     j_coord_offsetH = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
163
164         fix0             = _mm256_setzero_ps();
165         fiy0             = _mm256_setzero_ps();
166         fiz0             = _mm256_setzero_ps();
167
168         /* Load parameters for i particles */
169         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
170         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         velecsum         = _mm256_setzero_ps();
174         vvdwsum          = _mm256_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             jnrE             = jjnr[jidx+4];
186             jnrF             = jjnr[jidx+5];
187             jnrG             = jjnr[jidx+6];
188             jnrH             = jjnr[jidx+7];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193             j_coord_offsetE  = DIM*jnrE;
194             j_coord_offsetF  = DIM*jnrF;
195             j_coord_offsetG  = DIM*jnrG;
196             j_coord_offsetH  = DIM*jnrH;
197
198             /* load j atom coordinates */
199             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
201                                                  x+j_coord_offsetE,x+j_coord_offsetF,
202                                                  x+j_coord_offsetG,x+j_coord_offsetH,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_ps(ix0,jx0);
207             dy00             = _mm256_sub_ps(iy0,jy0);
208             dz00             = _mm256_sub_ps(iz0,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
212
213             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
214
215             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
219                                                                  charge+jnrC+0,charge+jnrD+0,
220                                                                  charge+jnrE+0,charge+jnrF+0,
221                                                                  charge+jnrG+0,charge+jnrH+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224             vdwjidx0C        = 2*vdwtype[jnrC+0];
225             vdwjidx0D        = 2*vdwtype[jnrD+0];
226             vdwjidx0E        = 2*vdwtype[jnrE+0];
227             vdwjidx0F        = 2*vdwtype[jnrF+0];
228             vdwjidx0G        = 2*vdwtype[jnrG+0];
229             vdwjidx0H        = 2*vdwtype[jnrH+0];
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             r00              = _mm256_mul_ps(rsq00,rinv00);
236
237             /* Compute parameters for interactions between i and j atoms */
238             qq00             = _mm256_mul_ps(iq0,jq0);
239             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
240                                             vdwioffsetptr0+vdwjidx0B,
241                                             vdwioffsetptr0+vdwjidx0C,
242                                             vdwioffsetptr0+vdwjidx0D,
243                                             vdwioffsetptr0+vdwjidx0E,
244                                             vdwioffsetptr0+vdwjidx0F,
245                                             vdwioffsetptr0+vdwjidx0G,
246                                             vdwioffsetptr0+vdwjidx0H,
247                                             &c6_00,&c12_00);
248
249             /* Calculate table index by multiplying r with table scale and truncate to integer */
250             rt               = _mm256_mul_ps(r00,vftabscale);
251             vfitab           = _mm256_cvttps_epi32(rt);
252             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
253             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
254             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
255             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
256             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
257             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
258
259             /* CUBIC SPLINE TABLE ELECTROSTATICS */
260             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
261                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
262             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
263                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
264             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
265                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
266             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
267                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
268             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
269             Heps             = _mm256_mul_ps(vfeps,H);
270             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
271             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
272             velec            = _mm256_mul_ps(qq00,VV);
273             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
274             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
275
276             /* LENNARD-JONES DISPERSION/REPULSION */
277
278             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
279             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
280             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
281             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
282             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             velecsum         = _mm256_add_ps(velecsum,velec);
286             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
287
288             fscal            = _mm256_add_ps(felec,fvdw);
289
290             /* Calculate temporary vectorial force */
291             tx               = _mm256_mul_ps(fscal,dx00);
292             ty               = _mm256_mul_ps(fscal,dy00);
293             tz               = _mm256_mul_ps(fscal,dz00);
294
295             /* Update vectorial force */
296             fix0             = _mm256_add_ps(fix0,tx);
297             fiy0             = _mm256_add_ps(fiy0,ty);
298             fiz0             = _mm256_add_ps(fiz0,tz);
299
300             fjptrA             = f+j_coord_offsetA;
301             fjptrB             = f+j_coord_offsetB;
302             fjptrC             = f+j_coord_offsetC;
303             fjptrD             = f+j_coord_offsetD;
304             fjptrE             = f+j_coord_offsetE;
305             fjptrF             = f+j_coord_offsetF;
306             fjptrG             = f+j_coord_offsetG;
307             fjptrH             = f+j_coord_offsetH;
308             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
309
310             /* Inner loop uses 56 flops */
311         }
312
313         if(jidx<j_index_end)
314         {
315
316             /* Get j neighbor index, and coordinate index */
317             jnrlistA         = jjnr[jidx];
318             jnrlistB         = jjnr[jidx+1];
319             jnrlistC         = jjnr[jidx+2];
320             jnrlistD         = jjnr[jidx+3];
321             jnrlistE         = jjnr[jidx+4];
322             jnrlistF         = jjnr[jidx+5];
323             jnrlistG         = jjnr[jidx+6];
324             jnrlistH         = jjnr[jidx+7];
325             /* Sign of each element will be negative for non-real atoms.
326              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
327              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
328              */
329             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
330                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
331                                             
332             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
333             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
334             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
335             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
336             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
337             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
338             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
339             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
340             j_coord_offsetA  = DIM*jnrA;
341             j_coord_offsetB  = DIM*jnrB;
342             j_coord_offsetC  = DIM*jnrC;
343             j_coord_offsetD  = DIM*jnrD;
344             j_coord_offsetE  = DIM*jnrE;
345             j_coord_offsetF  = DIM*jnrF;
346             j_coord_offsetG  = DIM*jnrG;
347             j_coord_offsetH  = DIM*jnrH;
348
349             /* load j atom coordinates */
350             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
351                                                  x+j_coord_offsetC,x+j_coord_offsetD,
352                                                  x+j_coord_offsetE,x+j_coord_offsetF,
353                                                  x+j_coord_offsetG,x+j_coord_offsetH,
354                                                  &jx0,&jy0,&jz0);
355
356             /* Calculate displacement vector */
357             dx00             = _mm256_sub_ps(ix0,jx0);
358             dy00             = _mm256_sub_ps(iy0,jy0);
359             dz00             = _mm256_sub_ps(iz0,jz0);
360
361             /* Calculate squared distance and things based on it */
362             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
363
364             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
365
366             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
367
368             /* Load parameters for j particles */
369             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
370                                                                  charge+jnrC+0,charge+jnrD+0,
371                                                                  charge+jnrE+0,charge+jnrF+0,
372                                                                  charge+jnrG+0,charge+jnrH+0);
373             vdwjidx0A        = 2*vdwtype[jnrA+0];
374             vdwjidx0B        = 2*vdwtype[jnrB+0];
375             vdwjidx0C        = 2*vdwtype[jnrC+0];
376             vdwjidx0D        = 2*vdwtype[jnrD+0];
377             vdwjidx0E        = 2*vdwtype[jnrE+0];
378             vdwjidx0F        = 2*vdwtype[jnrF+0];
379             vdwjidx0G        = 2*vdwtype[jnrG+0];
380             vdwjidx0H        = 2*vdwtype[jnrH+0];
381
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             r00              = _mm256_mul_ps(rsq00,rinv00);
387             r00              = _mm256_andnot_ps(dummy_mask,r00);
388
389             /* Compute parameters for interactions between i and j atoms */
390             qq00             = _mm256_mul_ps(iq0,jq0);
391             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
392                                             vdwioffsetptr0+vdwjidx0B,
393                                             vdwioffsetptr0+vdwjidx0C,
394                                             vdwioffsetptr0+vdwjidx0D,
395                                             vdwioffsetptr0+vdwjidx0E,
396                                             vdwioffsetptr0+vdwjidx0F,
397                                             vdwioffsetptr0+vdwjidx0G,
398                                             vdwioffsetptr0+vdwjidx0H,
399                                             &c6_00,&c12_00);
400
401             /* Calculate table index by multiplying r with table scale and truncate to integer */
402             rt               = _mm256_mul_ps(r00,vftabscale);
403             vfitab           = _mm256_cvttps_epi32(rt);
404             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
405             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
406             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
407             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
408             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
409             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
410
411             /* CUBIC SPLINE TABLE ELECTROSTATICS */
412             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
413                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
414             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
415                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
416             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
417                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
418             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
419                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
420             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
421             Heps             = _mm256_mul_ps(vfeps,H);
422             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
423             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
424             velec            = _mm256_mul_ps(qq00,VV);
425             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
426             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
427
428             /* LENNARD-JONES DISPERSION/REPULSION */
429
430             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
431             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
432             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
433             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
434             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
435
436             /* Update potential sum for this i atom from the interaction with this j atom. */
437             velec            = _mm256_andnot_ps(dummy_mask,velec);
438             velecsum         = _mm256_add_ps(velecsum,velec);
439             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
440             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
441
442             fscal            = _mm256_add_ps(felec,fvdw);
443
444             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
445
446             /* Calculate temporary vectorial force */
447             tx               = _mm256_mul_ps(fscal,dx00);
448             ty               = _mm256_mul_ps(fscal,dy00);
449             tz               = _mm256_mul_ps(fscal,dz00);
450
451             /* Update vectorial force */
452             fix0             = _mm256_add_ps(fix0,tx);
453             fiy0             = _mm256_add_ps(fiy0,ty);
454             fiz0             = _mm256_add_ps(fiz0,tz);
455
456             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
457             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
458             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
459             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
460             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
461             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
462             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
463             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
464             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
465
466             /* Inner loop uses 57 flops */
467         }
468
469         /* End of innermost loop */
470
471         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
472                                                  f+i_coord_offset,fshift+i_shift_offset);
473
474         ggid                        = gid[iidx];
475         /* Update potential energies */
476         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
477         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
478
479         /* Increment number of inner iterations */
480         inneriter                  += j_index_end - j_index_start;
481
482         /* Outer loop uses 9 flops */
483     }
484
485     /* Increment number of outer iterations */
486     outeriter        += nri;
487
488     /* Update outer/inner flops */
489
490     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
491 }
492 /*
493  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_256_single
494  * Electrostatics interaction: CubicSplineTable
495  * VdW interaction:            LennardJones
496  * Geometry:                   Particle-Particle
497  * Calculate force/pot:        Force
498  */
499 void
500 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_256_single
501                     (t_nblist                    * gmx_restrict       nlist,
502                      rvec                        * gmx_restrict          xx,
503                      rvec                        * gmx_restrict          ff,
504                      t_forcerec                  * gmx_restrict          fr,
505                      t_mdatoms                   * gmx_restrict     mdatoms,
506                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
507                      t_nrnb                      * gmx_restrict        nrnb)
508 {
509     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
510      * just 0 for non-waters.
511      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
512      * jnr indices corresponding to data put in the four positions in the SIMD register.
513      */
514     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
515     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
516     int              jnrA,jnrB,jnrC,jnrD;
517     int              jnrE,jnrF,jnrG,jnrH;
518     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
519     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
520     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
521     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
522     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
523     real             rcutoff_scalar;
524     real             *shiftvec,*fshift,*x,*f;
525     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
526     real             scratch[4*DIM];
527     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
528     real *           vdwioffsetptr0;
529     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
530     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
531     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
532     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
533     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
534     real             *charge;
535     int              nvdwtype;
536     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
537     int              *vdwtype;
538     real             *vdwparam;
539     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
540     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
541     __m256i          vfitab;
542     __m128i          vfitab_lo,vfitab_hi;
543     __m128i          ifour       = _mm_set1_epi32(4);
544     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
545     real             *vftab;
546     __m256           dummy_mask,cutoff_mask;
547     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
548     __m256           one     = _mm256_set1_ps(1.0);
549     __m256           two     = _mm256_set1_ps(2.0);
550     x                = xx[0];
551     f                = ff[0];
552
553     nri              = nlist->nri;
554     iinr             = nlist->iinr;
555     jindex           = nlist->jindex;
556     jjnr             = nlist->jjnr;
557     shiftidx         = nlist->shift;
558     gid              = nlist->gid;
559     shiftvec         = fr->shift_vec[0];
560     fshift           = fr->fshift[0];
561     facel            = _mm256_set1_ps(fr->epsfac);
562     charge           = mdatoms->chargeA;
563     nvdwtype         = fr->ntype;
564     vdwparam         = fr->nbfp;
565     vdwtype          = mdatoms->typeA;
566
567     vftab            = kernel_data->table_elec->data;
568     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
569
570     /* Avoid stupid compiler warnings */
571     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
572     j_coord_offsetA = 0;
573     j_coord_offsetB = 0;
574     j_coord_offsetC = 0;
575     j_coord_offsetD = 0;
576     j_coord_offsetE = 0;
577     j_coord_offsetF = 0;
578     j_coord_offsetG = 0;
579     j_coord_offsetH = 0;
580
581     outeriter        = 0;
582     inneriter        = 0;
583
584     for(iidx=0;iidx<4*DIM;iidx++)
585     {
586         scratch[iidx] = 0.0;
587     }
588
589     /* Start outer loop over neighborlists */
590     for(iidx=0; iidx<nri; iidx++)
591     {
592         /* Load shift vector for this list */
593         i_shift_offset   = DIM*shiftidx[iidx];
594
595         /* Load limits for loop over neighbors */
596         j_index_start    = jindex[iidx];
597         j_index_end      = jindex[iidx+1];
598
599         /* Get outer coordinate index */
600         inr              = iinr[iidx];
601         i_coord_offset   = DIM*inr;
602
603         /* Load i particle coords and add shift vector */
604         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
605
606         fix0             = _mm256_setzero_ps();
607         fiy0             = _mm256_setzero_ps();
608         fiz0             = _mm256_setzero_ps();
609
610         /* Load parameters for i particles */
611         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
612         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
613
614         /* Start inner kernel loop */
615         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
616         {
617
618             /* Get j neighbor index, and coordinate index */
619             jnrA             = jjnr[jidx];
620             jnrB             = jjnr[jidx+1];
621             jnrC             = jjnr[jidx+2];
622             jnrD             = jjnr[jidx+3];
623             jnrE             = jjnr[jidx+4];
624             jnrF             = jjnr[jidx+5];
625             jnrG             = jjnr[jidx+6];
626             jnrH             = jjnr[jidx+7];
627             j_coord_offsetA  = DIM*jnrA;
628             j_coord_offsetB  = DIM*jnrB;
629             j_coord_offsetC  = DIM*jnrC;
630             j_coord_offsetD  = DIM*jnrD;
631             j_coord_offsetE  = DIM*jnrE;
632             j_coord_offsetF  = DIM*jnrF;
633             j_coord_offsetG  = DIM*jnrG;
634             j_coord_offsetH  = DIM*jnrH;
635
636             /* load j atom coordinates */
637             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
638                                                  x+j_coord_offsetC,x+j_coord_offsetD,
639                                                  x+j_coord_offsetE,x+j_coord_offsetF,
640                                                  x+j_coord_offsetG,x+j_coord_offsetH,
641                                                  &jx0,&jy0,&jz0);
642
643             /* Calculate displacement vector */
644             dx00             = _mm256_sub_ps(ix0,jx0);
645             dy00             = _mm256_sub_ps(iy0,jy0);
646             dz00             = _mm256_sub_ps(iz0,jz0);
647
648             /* Calculate squared distance and things based on it */
649             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
650
651             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
652
653             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
654
655             /* Load parameters for j particles */
656             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
657                                                                  charge+jnrC+0,charge+jnrD+0,
658                                                                  charge+jnrE+0,charge+jnrF+0,
659                                                                  charge+jnrG+0,charge+jnrH+0);
660             vdwjidx0A        = 2*vdwtype[jnrA+0];
661             vdwjidx0B        = 2*vdwtype[jnrB+0];
662             vdwjidx0C        = 2*vdwtype[jnrC+0];
663             vdwjidx0D        = 2*vdwtype[jnrD+0];
664             vdwjidx0E        = 2*vdwtype[jnrE+0];
665             vdwjidx0F        = 2*vdwtype[jnrF+0];
666             vdwjidx0G        = 2*vdwtype[jnrG+0];
667             vdwjidx0H        = 2*vdwtype[jnrH+0];
668
669             /**************************
670              * CALCULATE INTERACTIONS *
671              **************************/
672
673             r00              = _mm256_mul_ps(rsq00,rinv00);
674
675             /* Compute parameters for interactions between i and j atoms */
676             qq00             = _mm256_mul_ps(iq0,jq0);
677             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
678                                             vdwioffsetptr0+vdwjidx0B,
679                                             vdwioffsetptr0+vdwjidx0C,
680                                             vdwioffsetptr0+vdwjidx0D,
681                                             vdwioffsetptr0+vdwjidx0E,
682                                             vdwioffsetptr0+vdwjidx0F,
683                                             vdwioffsetptr0+vdwjidx0G,
684                                             vdwioffsetptr0+vdwjidx0H,
685                                             &c6_00,&c12_00);
686
687             /* Calculate table index by multiplying r with table scale and truncate to integer */
688             rt               = _mm256_mul_ps(r00,vftabscale);
689             vfitab           = _mm256_cvttps_epi32(rt);
690             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
691             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
692             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
693             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
694             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
695             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
696
697             /* CUBIC SPLINE TABLE ELECTROSTATICS */
698             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
699                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
700             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
701                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
702             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
703                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
704             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
705                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
706             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
707             Heps             = _mm256_mul_ps(vfeps,H);
708             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
709             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
710             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
711
712             /* LENNARD-JONES DISPERSION/REPULSION */
713
714             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
715             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
716
717             fscal            = _mm256_add_ps(felec,fvdw);
718
719             /* Calculate temporary vectorial force */
720             tx               = _mm256_mul_ps(fscal,dx00);
721             ty               = _mm256_mul_ps(fscal,dy00);
722             tz               = _mm256_mul_ps(fscal,dz00);
723
724             /* Update vectorial force */
725             fix0             = _mm256_add_ps(fix0,tx);
726             fiy0             = _mm256_add_ps(fiy0,ty);
727             fiz0             = _mm256_add_ps(fiz0,tz);
728
729             fjptrA             = f+j_coord_offsetA;
730             fjptrB             = f+j_coord_offsetB;
731             fjptrC             = f+j_coord_offsetC;
732             fjptrD             = f+j_coord_offsetD;
733             fjptrE             = f+j_coord_offsetE;
734             fjptrF             = f+j_coord_offsetF;
735             fjptrG             = f+j_coord_offsetG;
736             fjptrH             = f+j_coord_offsetH;
737             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
738
739             /* Inner loop uses 47 flops */
740         }
741
742         if(jidx<j_index_end)
743         {
744
745             /* Get j neighbor index, and coordinate index */
746             jnrlistA         = jjnr[jidx];
747             jnrlistB         = jjnr[jidx+1];
748             jnrlistC         = jjnr[jidx+2];
749             jnrlistD         = jjnr[jidx+3];
750             jnrlistE         = jjnr[jidx+4];
751             jnrlistF         = jjnr[jidx+5];
752             jnrlistG         = jjnr[jidx+6];
753             jnrlistH         = jjnr[jidx+7];
754             /* Sign of each element will be negative for non-real atoms.
755              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
756              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
757              */
758             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
759                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
760                                             
761             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
762             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
763             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
764             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
765             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
766             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
767             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
768             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
769             j_coord_offsetA  = DIM*jnrA;
770             j_coord_offsetB  = DIM*jnrB;
771             j_coord_offsetC  = DIM*jnrC;
772             j_coord_offsetD  = DIM*jnrD;
773             j_coord_offsetE  = DIM*jnrE;
774             j_coord_offsetF  = DIM*jnrF;
775             j_coord_offsetG  = DIM*jnrG;
776             j_coord_offsetH  = DIM*jnrH;
777
778             /* load j atom coordinates */
779             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
780                                                  x+j_coord_offsetC,x+j_coord_offsetD,
781                                                  x+j_coord_offsetE,x+j_coord_offsetF,
782                                                  x+j_coord_offsetG,x+j_coord_offsetH,
783                                                  &jx0,&jy0,&jz0);
784
785             /* Calculate displacement vector */
786             dx00             = _mm256_sub_ps(ix0,jx0);
787             dy00             = _mm256_sub_ps(iy0,jy0);
788             dz00             = _mm256_sub_ps(iz0,jz0);
789
790             /* Calculate squared distance and things based on it */
791             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
792
793             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
794
795             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
796
797             /* Load parameters for j particles */
798             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
799                                                                  charge+jnrC+0,charge+jnrD+0,
800                                                                  charge+jnrE+0,charge+jnrF+0,
801                                                                  charge+jnrG+0,charge+jnrH+0);
802             vdwjidx0A        = 2*vdwtype[jnrA+0];
803             vdwjidx0B        = 2*vdwtype[jnrB+0];
804             vdwjidx0C        = 2*vdwtype[jnrC+0];
805             vdwjidx0D        = 2*vdwtype[jnrD+0];
806             vdwjidx0E        = 2*vdwtype[jnrE+0];
807             vdwjidx0F        = 2*vdwtype[jnrF+0];
808             vdwjidx0G        = 2*vdwtype[jnrG+0];
809             vdwjidx0H        = 2*vdwtype[jnrH+0];
810
811             /**************************
812              * CALCULATE INTERACTIONS *
813              **************************/
814
815             r00              = _mm256_mul_ps(rsq00,rinv00);
816             r00              = _mm256_andnot_ps(dummy_mask,r00);
817
818             /* Compute parameters for interactions between i and j atoms */
819             qq00             = _mm256_mul_ps(iq0,jq0);
820             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
821                                             vdwioffsetptr0+vdwjidx0B,
822                                             vdwioffsetptr0+vdwjidx0C,
823                                             vdwioffsetptr0+vdwjidx0D,
824                                             vdwioffsetptr0+vdwjidx0E,
825                                             vdwioffsetptr0+vdwjidx0F,
826                                             vdwioffsetptr0+vdwjidx0G,
827                                             vdwioffsetptr0+vdwjidx0H,
828                                             &c6_00,&c12_00);
829
830             /* Calculate table index by multiplying r with table scale and truncate to integer */
831             rt               = _mm256_mul_ps(r00,vftabscale);
832             vfitab           = _mm256_cvttps_epi32(rt);
833             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
834             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
835             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
836             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
837             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
838             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
839
840             /* CUBIC SPLINE TABLE ELECTROSTATICS */
841             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
842                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
843             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
844                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
845             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
846                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
847             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
848                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
849             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
850             Heps             = _mm256_mul_ps(vfeps,H);
851             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
852             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
853             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
854
855             /* LENNARD-JONES DISPERSION/REPULSION */
856
857             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
858             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
859
860             fscal            = _mm256_add_ps(felec,fvdw);
861
862             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
863
864             /* Calculate temporary vectorial force */
865             tx               = _mm256_mul_ps(fscal,dx00);
866             ty               = _mm256_mul_ps(fscal,dy00);
867             tz               = _mm256_mul_ps(fscal,dz00);
868
869             /* Update vectorial force */
870             fix0             = _mm256_add_ps(fix0,tx);
871             fiy0             = _mm256_add_ps(fiy0,ty);
872             fiz0             = _mm256_add_ps(fiz0,tz);
873
874             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
875             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
876             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
877             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
878             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
879             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
880             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
881             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
882             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
883
884             /* Inner loop uses 48 flops */
885         }
886
887         /* End of innermost loop */
888
889         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
890                                                  f+i_coord_offset,fshift+i_shift_offset);
891
892         /* Increment number of inner iterations */
893         inneriter                  += j_index_end - j_index_start;
894
895         /* Outer loop uses 7 flops */
896     }
897
898     /* Increment number of outer iterations */
899     outeriter        += nri;
900
901     /* Update outer/inner flops */
902
903     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*48);
904 }