Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_256_single
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     real *           vdwioffsetptr3;
92     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
94     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256i          vfitab;
108     __m128i          vfitab_lo,vfitab_hi;
109     __m128i          ifour       = _mm_set1_epi32(4);
110     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
111     real             *vftab;
112     __m256           dummy_mask,cutoff_mask;
113     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
114     __m256           one     = _mm256_set1_ps(1.0);
115     __m256           two     = _mm256_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm256_set1_ps(fr->ic->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     vftab            = kernel_data->table_elec_vdw->data;
134     vftabscale       = _mm256_set1_ps(kernel_data->table_elec_vdw->scale);
135
136     /* Setup water-specific parameters */
137     inr              = nlist->iinr[0];
138     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
139     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
140     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
141     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149     j_coord_offsetE = 0;
150     j_coord_offsetF = 0;
151     j_coord_offsetG = 0;
152     j_coord_offsetH = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
179
180         fix0             = _mm256_setzero_ps();
181         fiy0             = _mm256_setzero_ps();
182         fiz0             = _mm256_setzero_ps();
183         fix1             = _mm256_setzero_ps();
184         fiy1             = _mm256_setzero_ps();
185         fiz1             = _mm256_setzero_ps();
186         fix2             = _mm256_setzero_ps();
187         fiy2             = _mm256_setzero_ps();
188         fiz2             = _mm256_setzero_ps();
189         fix3             = _mm256_setzero_ps();
190         fiy3             = _mm256_setzero_ps();
191         fiz3             = _mm256_setzero_ps();
192
193         /* Reset potential sums */
194         velecsum         = _mm256_setzero_ps();
195         vvdwsum          = _mm256_setzero_ps();
196
197         /* Start inner kernel loop */
198         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
199         {
200
201             /* Get j neighbor index, and coordinate index */
202             jnrA             = jjnr[jidx];
203             jnrB             = jjnr[jidx+1];
204             jnrC             = jjnr[jidx+2];
205             jnrD             = jjnr[jidx+3];
206             jnrE             = jjnr[jidx+4];
207             jnrF             = jjnr[jidx+5];
208             jnrG             = jjnr[jidx+6];
209             jnrH             = jjnr[jidx+7];
210             j_coord_offsetA  = DIM*jnrA;
211             j_coord_offsetB  = DIM*jnrB;
212             j_coord_offsetC  = DIM*jnrC;
213             j_coord_offsetD  = DIM*jnrD;
214             j_coord_offsetE  = DIM*jnrE;
215             j_coord_offsetF  = DIM*jnrF;
216             j_coord_offsetG  = DIM*jnrG;
217             j_coord_offsetH  = DIM*jnrH;
218
219             /* load j atom coordinates */
220             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
221                                                  x+j_coord_offsetC,x+j_coord_offsetD,
222                                                  x+j_coord_offsetE,x+j_coord_offsetF,
223                                                  x+j_coord_offsetG,x+j_coord_offsetH,
224                                                  &jx0,&jy0,&jz0);
225
226             /* Calculate displacement vector */
227             dx00             = _mm256_sub_ps(ix0,jx0);
228             dy00             = _mm256_sub_ps(iy0,jy0);
229             dz00             = _mm256_sub_ps(iz0,jz0);
230             dx10             = _mm256_sub_ps(ix1,jx0);
231             dy10             = _mm256_sub_ps(iy1,jy0);
232             dz10             = _mm256_sub_ps(iz1,jz0);
233             dx20             = _mm256_sub_ps(ix2,jx0);
234             dy20             = _mm256_sub_ps(iy2,jy0);
235             dz20             = _mm256_sub_ps(iz2,jz0);
236             dx30             = _mm256_sub_ps(ix3,jx0);
237             dy30             = _mm256_sub_ps(iy3,jy0);
238             dz30             = _mm256_sub_ps(iz3,jz0);
239
240             /* Calculate squared distance and things based on it */
241             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
242             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
243             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
244             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
245
246             rinv00           = avx256_invsqrt_f(rsq00);
247             rinv10           = avx256_invsqrt_f(rsq10);
248             rinv20           = avx256_invsqrt_f(rsq20);
249             rinv30           = avx256_invsqrt_f(rsq30);
250
251             /* Load parameters for j particles */
252             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
253                                                                  charge+jnrC+0,charge+jnrD+0,
254                                                                  charge+jnrE+0,charge+jnrF+0,
255                                                                  charge+jnrG+0,charge+jnrH+0);
256             vdwjidx0A        = 2*vdwtype[jnrA+0];
257             vdwjidx0B        = 2*vdwtype[jnrB+0];
258             vdwjidx0C        = 2*vdwtype[jnrC+0];
259             vdwjidx0D        = 2*vdwtype[jnrD+0];
260             vdwjidx0E        = 2*vdwtype[jnrE+0];
261             vdwjidx0F        = 2*vdwtype[jnrF+0];
262             vdwjidx0G        = 2*vdwtype[jnrG+0];
263             vdwjidx0H        = 2*vdwtype[jnrH+0];
264
265             fjx0             = _mm256_setzero_ps();
266             fjy0             = _mm256_setzero_ps();
267             fjz0             = _mm256_setzero_ps();
268
269             /**************************
270              * CALCULATE INTERACTIONS *
271              **************************/
272
273             r00              = _mm256_mul_ps(rsq00,rinv00);
274
275             /* Compute parameters for interactions between i and j atoms */
276             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
277                                             vdwioffsetptr0+vdwjidx0B,
278                                             vdwioffsetptr0+vdwjidx0C,
279                                             vdwioffsetptr0+vdwjidx0D,
280                                             vdwioffsetptr0+vdwjidx0E,
281                                             vdwioffsetptr0+vdwjidx0F,
282                                             vdwioffsetptr0+vdwjidx0G,
283                                             vdwioffsetptr0+vdwjidx0H,
284                                             &c6_00,&c12_00);
285
286             /* Calculate table index by multiplying r with table scale and truncate to integer */
287             rt               = _mm256_mul_ps(r00,vftabscale);
288             vfitab           = _mm256_cvttps_epi32(rt);
289             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
290             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
291             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
292             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
293             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
294             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
295
296             /* CUBIC SPLINE TABLE DISPERSION */
297             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
298             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
299             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
300                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
301             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
302                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
303             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
304                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
305             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
306                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
307             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
308             Heps             = _mm256_mul_ps(vfeps,H);
309             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
310             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
311             vvdw6            = _mm256_mul_ps(c6_00,VV);
312             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
313             fvdw6            = _mm256_mul_ps(c6_00,FF);
314
315             /* CUBIC SPLINE TABLE REPULSION */
316             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
317             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
318             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
319                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
320             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
321                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
322             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
323                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
324             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
325                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
326             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
327             Heps             = _mm256_mul_ps(vfeps,H);
328             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
329             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
330             vvdw12           = _mm256_mul_ps(c12_00,VV);
331             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
332             fvdw12           = _mm256_mul_ps(c12_00,FF);
333             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
334             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
338
339             fscal            = fvdw;
340
341             /* Calculate temporary vectorial force */
342             tx               = _mm256_mul_ps(fscal,dx00);
343             ty               = _mm256_mul_ps(fscal,dy00);
344             tz               = _mm256_mul_ps(fscal,dz00);
345
346             /* Update vectorial force */
347             fix0             = _mm256_add_ps(fix0,tx);
348             fiy0             = _mm256_add_ps(fiy0,ty);
349             fiz0             = _mm256_add_ps(fiz0,tz);
350
351             fjx0             = _mm256_add_ps(fjx0,tx);
352             fjy0             = _mm256_add_ps(fjy0,ty);
353             fjz0             = _mm256_add_ps(fjz0,tz);
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             r10              = _mm256_mul_ps(rsq10,rinv10);
360
361             /* Compute parameters for interactions between i and j atoms */
362             qq10             = _mm256_mul_ps(iq1,jq0);
363
364             /* Calculate table index by multiplying r with table scale and truncate to integer */
365             rt               = _mm256_mul_ps(r10,vftabscale);
366             vfitab           = _mm256_cvttps_epi32(rt);
367             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
368             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
369             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
370             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
371             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
372             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
373
374             /* CUBIC SPLINE TABLE ELECTROSTATICS */
375             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
376                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
377             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
378                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
379             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
380                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
381             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
382                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
383             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
384             Heps             = _mm256_mul_ps(vfeps,H);
385             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
386             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
387             velec            = _mm256_mul_ps(qq10,VV);
388             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
389             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velecsum         = _mm256_add_ps(velecsum,velec);
393
394             fscal            = felec;
395
396             /* Calculate temporary vectorial force */
397             tx               = _mm256_mul_ps(fscal,dx10);
398             ty               = _mm256_mul_ps(fscal,dy10);
399             tz               = _mm256_mul_ps(fscal,dz10);
400
401             /* Update vectorial force */
402             fix1             = _mm256_add_ps(fix1,tx);
403             fiy1             = _mm256_add_ps(fiy1,ty);
404             fiz1             = _mm256_add_ps(fiz1,tz);
405
406             fjx0             = _mm256_add_ps(fjx0,tx);
407             fjy0             = _mm256_add_ps(fjy0,ty);
408             fjz0             = _mm256_add_ps(fjz0,tz);
409
410             /**************************
411              * CALCULATE INTERACTIONS *
412              **************************/
413
414             r20              = _mm256_mul_ps(rsq20,rinv20);
415
416             /* Compute parameters for interactions between i and j atoms */
417             qq20             = _mm256_mul_ps(iq2,jq0);
418
419             /* Calculate table index by multiplying r with table scale and truncate to integer */
420             rt               = _mm256_mul_ps(r20,vftabscale);
421             vfitab           = _mm256_cvttps_epi32(rt);
422             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
423             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
424             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
425             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
426             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
427             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
428
429             /* CUBIC SPLINE TABLE ELECTROSTATICS */
430             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
431                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
432             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
433                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
434             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
435                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
436             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
437                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
438             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
439             Heps             = _mm256_mul_ps(vfeps,H);
440             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
441             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
442             velec            = _mm256_mul_ps(qq20,VV);
443             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
444             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
445
446             /* Update potential sum for this i atom from the interaction with this j atom. */
447             velecsum         = _mm256_add_ps(velecsum,velec);
448
449             fscal            = felec;
450
451             /* Calculate temporary vectorial force */
452             tx               = _mm256_mul_ps(fscal,dx20);
453             ty               = _mm256_mul_ps(fscal,dy20);
454             tz               = _mm256_mul_ps(fscal,dz20);
455
456             /* Update vectorial force */
457             fix2             = _mm256_add_ps(fix2,tx);
458             fiy2             = _mm256_add_ps(fiy2,ty);
459             fiz2             = _mm256_add_ps(fiz2,tz);
460
461             fjx0             = _mm256_add_ps(fjx0,tx);
462             fjy0             = _mm256_add_ps(fjy0,ty);
463             fjz0             = _mm256_add_ps(fjz0,tz);
464
465             /**************************
466              * CALCULATE INTERACTIONS *
467              **************************/
468
469             r30              = _mm256_mul_ps(rsq30,rinv30);
470
471             /* Compute parameters for interactions between i and j atoms */
472             qq30             = _mm256_mul_ps(iq3,jq0);
473
474             /* Calculate table index by multiplying r with table scale and truncate to integer */
475             rt               = _mm256_mul_ps(r30,vftabscale);
476             vfitab           = _mm256_cvttps_epi32(rt);
477             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
478             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
479             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
480             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
481             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
482             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
483
484             /* CUBIC SPLINE TABLE ELECTROSTATICS */
485             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
486                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
487             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
488                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
489             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
490                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
491             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
492                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
493             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
494             Heps             = _mm256_mul_ps(vfeps,H);
495             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
496             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
497             velec            = _mm256_mul_ps(qq30,VV);
498             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
499             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
500
501             /* Update potential sum for this i atom from the interaction with this j atom. */
502             velecsum         = _mm256_add_ps(velecsum,velec);
503
504             fscal            = felec;
505
506             /* Calculate temporary vectorial force */
507             tx               = _mm256_mul_ps(fscal,dx30);
508             ty               = _mm256_mul_ps(fscal,dy30);
509             tz               = _mm256_mul_ps(fscal,dz30);
510
511             /* Update vectorial force */
512             fix3             = _mm256_add_ps(fix3,tx);
513             fiy3             = _mm256_add_ps(fiy3,ty);
514             fiz3             = _mm256_add_ps(fiz3,tz);
515
516             fjx0             = _mm256_add_ps(fjx0,tx);
517             fjy0             = _mm256_add_ps(fjy0,ty);
518             fjz0             = _mm256_add_ps(fjz0,tz);
519
520             fjptrA             = f+j_coord_offsetA;
521             fjptrB             = f+j_coord_offsetB;
522             fjptrC             = f+j_coord_offsetC;
523             fjptrD             = f+j_coord_offsetD;
524             fjptrE             = f+j_coord_offsetE;
525             fjptrF             = f+j_coord_offsetF;
526             fjptrG             = f+j_coord_offsetG;
527             fjptrH             = f+j_coord_offsetH;
528
529             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
530
531             /* Inner loop uses 188 flops */
532         }
533
534         if(jidx<j_index_end)
535         {
536
537             /* Get j neighbor index, and coordinate index */
538             jnrlistA         = jjnr[jidx];
539             jnrlistB         = jjnr[jidx+1];
540             jnrlistC         = jjnr[jidx+2];
541             jnrlistD         = jjnr[jidx+3];
542             jnrlistE         = jjnr[jidx+4];
543             jnrlistF         = jjnr[jidx+5];
544             jnrlistG         = jjnr[jidx+6];
545             jnrlistH         = jjnr[jidx+7];
546             /* Sign of each element will be negative for non-real atoms.
547              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
548              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
549              */
550             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
551                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
552                                             
553             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
554             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
555             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
556             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
557             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
558             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
559             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
560             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
561             j_coord_offsetA  = DIM*jnrA;
562             j_coord_offsetB  = DIM*jnrB;
563             j_coord_offsetC  = DIM*jnrC;
564             j_coord_offsetD  = DIM*jnrD;
565             j_coord_offsetE  = DIM*jnrE;
566             j_coord_offsetF  = DIM*jnrF;
567             j_coord_offsetG  = DIM*jnrG;
568             j_coord_offsetH  = DIM*jnrH;
569
570             /* load j atom coordinates */
571             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
572                                                  x+j_coord_offsetC,x+j_coord_offsetD,
573                                                  x+j_coord_offsetE,x+j_coord_offsetF,
574                                                  x+j_coord_offsetG,x+j_coord_offsetH,
575                                                  &jx0,&jy0,&jz0);
576
577             /* Calculate displacement vector */
578             dx00             = _mm256_sub_ps(ix0,jx0);
579             dy00             = _mm256_sub_ps(iy0,jy0);
580             dz00             = _mm256_sub_ps(iz0,jz0);
581             dx10             = _mm256_sub_ps(ix1,jx0);
582             dy10             = _mm256_sub_ps(iy1,jy0);
583             dz10             = _mm256_sub_ps(iz1,jz0);
584             dx20             = _mm256_sub_ps(ix2,jx0);
585             dy20             = _mm256_sub_ps(iy2,jy0);
586             dz20             = _mm256_sub_ps(iz2,jz0);
587             dx30             = _mm256_sub_ps(ix3,jx0);
588             dy30             = _mm256_sub_ps(iy3,jy0);
589             dz30             = _mm256_sub_ps(iz3,jz0);
590
591             /* Calculate squared distance and things based on it */
592             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
593             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
594             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
595             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
596
597             rinv00           = avx256_invsqrt_f(rsq00);
598             rinv10           = avx256_invsqrt_f(rsq10);
599             rinv20           = avx256_invsqrt_f(rsq20);
600             rinv30           = avx256_invsqrt_f(rsq30);
601
602             /* Load parameters for j particles */
603             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
604                                                                  charge+jnrC+0,charge+jnrD+0,
605                                                                  charge+jnrE+0,charge+jnrF+0,
606                                                                  charge+jnrG+0,charge+jnrH+0);
607             vdwjidx0A        = 2*vdwtype[jnrA+0];
608             vdwjidx0B        = 2*vdwtype[jnrB+0];
609             vdwjidx0C        = 2*vdwtype[jnrC+0];
610             vdwjidx0D        = 2*vdwtype[jnrD+0];
611             vdwjidx0E        = 2*vdwtype[jnrE+0];
612             vdwjidx0F        = 2*vdwtype[jnrF+0];
613             vdwjidx0G        = 2*vdwtype[jnrG+0];
614             vdwjidx0H        = 2*vdwtype[jnrH+0];
615
616             fjx0             = _mm256_setzero_ps();
617             fjy0             = _mm256_setzero_ps();
618             fjz0             = _mm256_setzero_ps();
619
620             /**************************
621              * CALCULATE INTERACTIONS *
622              **************************/
623
624             r00              = _mm256_mul_ps(rsq00,rinv00);
625             r00              = _mm256_andnot_ps(dummy_mask,r00);
626
627             /* Compute parameters for interactions between i and j atoms */
628             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
629                                             vdwioffsetptr0+vdwjidx0B,
630                                             vdwioffsetptr0+vdwjidx0C,
631                                             vdwioffsetptr0+vdwjidx0D,
632                                             vdwioffsetptr0+vdwjidx0E,
633                                             vdwioffsetptr0+vdwjidx0F,
634                                             vdwioffsetptr0+vdwjidx0G,
635                                             vdwioffsetptr0+vdwjidx0H,
636                                             &c6_00,&c12_00);
637
638             /* Calculate table index by multiplying r with table scale and truncate to integer */
639             rt               = _mm256_mul_ps(r00,vftabscale);
640             vfitab           = _mm256_cvttps_epi32(rt);
641             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
642             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
643             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
644             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
645             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
646             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
647
648             /* CUBIC SPLINE TABLE DISPERSION */
649             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
650             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
651             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
652                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
653             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
654                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
655             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
656                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
657             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
658                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
659             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
660             Heps             = _mm256_mul_ps(vfeps,H);
661             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
662             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
663             vvdw6            = _mm256_mul_ps(c6_00,VV);
664             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
665             fvdw6            = _mm256_mul_ps(c6_00,FF);
666
667             /* CUBIC SPLINE TABLE REPULSION */
668             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
669             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
670             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
671                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
672             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
673                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
674             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
675                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
676             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
677                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
678             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
679             Heps             = _mm256_mul_ps(vfeps,H);
680             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
681             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
682             vvdw12           = _mm256_mul_ps(c12_00,VV);
683             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
684             fvdw12           = _mm256_mul_ps(c12_00,FF);
685             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
686             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
687
688             /* Update potential sum for this i atom from the interaction with this j atom. */
689             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
690             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
691
692             fscal            = fvdw;
693
694             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
695
696             /* Calculate temporary vectorial force */
697             tx               = _mm256_mul_ps(fscal,dx00);
698             ty               = _mm256_mul_ps(fscal,dy00);
699             tz               = _mm256_mul_ps(fscal,dz00);
700
701             /* Update vectorial force */
702             fix0             = _mm256_add_ps(fix0,tx);
703             fiy0             = _mm256_add_ps(fiy0,ty);
704             fiz0             = _mm256_add_ps(fiz0,tz);
705
706             fjx0             = _mm256_add_ps(fjx0,tx);
707             fjy0             = _mm256_add_ps(fjy0,ty);
708             fjz0             = _mm256_add_ps(fjz0,tz);
709
710             /**************************
711              * CALCULATE INTERACTIONS *
712              **************************/
713
714             r10              = _mm256_mul_ps(rsq10,rinv10);
715             r10              = _mm256_andnot_ps(dummy_mask,r10);
716
717             /* Compute parameters for interactions between i and j atoms */
718             qq10             = _mm256_mul_ps(iq1,jq0);
719
720             /* Calculate table index by multiplying r with table scale and truncate to integer */
721             rt               = _mm256_mul_ps(r10,vftabscale);
722             vfitab           = _mm256_cvttps_epi32(rt);
723             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
724             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
725             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
726             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
727             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
728             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
729
730             /* CUBIC SPLINE TABLE ELECTROSTATICS */
731             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
732                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
733             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
734                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
735             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
736                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
737             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
738                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
739             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
740             Heps             = _mm256_mul_ps(vfeps,H);
741             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
742             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
743             velec            = _mm256_mul_ps(qq10,VV);
744             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
745             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
746
747             /* Update potential sum for this i atom from the interaction with this j atom. */
748             velec            = _mm256_andnot_ps(dummy_mask,velec);
749             velecsum         = _mm256_add_ps(velecsum,velec);
750
751             fscal            = felec;
752
753             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
754
755             /* Calculate temporary vectorial force */
756             tx               = _mm256_mul_ps(fscal,dx10);
757             ty               = _mm256_mul_ps(fscal,dy10);
758             tz               = _mm256_mul_ps(fscal,dz10);
759
760             /* Update vectorial force */
761             fix1             = _mm256_add_ps(fix1,tx);
762             fiy1             = _mm256_add_ps(fiy1,ty);
763             fiz1             = _mm256_add_ps(fiz1,tz);
764
765             fjx0             = _mm256_add_ps(fjx0,tx);
766             fjy0             = _mm256_add_ps(fjy0,ty);
767             fjz0             = _mm256_add_ps(fjz0,tz);
768
769             /**************************
770              * CALCULATE INTERACTIONS *
771              **************************/
772
773             r20              = _mm256_mul_ps(rsq20,rinv20);
774             r20              = _mm256_andnot_ps(dummy_mask,r20);
775
776             /* Compute parameters for interactions between i and j atoms */
777             qq20             = _mm256_mul_ps(iq2,jq0);
778
779             /* Calculate table index by multiplying r with table scale and truncate to integer */
780             rt               = _mm256_mul_ps(r20,vftabscale);
781             vfitab           = _mm256_cvttps_epi32(rt);
782             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
783             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
784             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
785             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
786             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
787             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
788
789             /* CUBIC SPLINE TABLE ELECTROSTATICS */
790             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
791                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
792             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
793                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
794             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
795                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
796             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
797                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
798             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
799             Heps             = _mm256_mul_ps(vfeps,H);
800             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
801             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
802             velec            = _mm256_mul_ps(qq20,VV);
803             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
804             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
805
806             /* Update potential sum for this i atom from the interaction with this j atom. */
807             velec            = _mm256_andnot_ps(dummy_mask,velec);
808             velecsum         = _mm256_add_ps(velecsum,velec);
809
810             fscal            = felec;
811
812             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
813
814             /* Calculate temporary vectorial force */
815             tx               = _mm256_mul_ps(fscal,dx20);
816             ty               = _mm256_mul_ps(fscal,dy20);
817             tz               = _mm256_mul_ps(fscal,dz20);
818
819             /* Update vectorial force */
820             fix2             = _mm256_add_ps(fix2,tx);
821             fiy2             = _mm256_add_ps(fiy2,ty);
822             fiz2             = _mm256_add_ps(fiz2,tz);
823
824             fjx0             = _mm256_add_ps(fjx0,tx);
825             fjy0             = _mm256_add_ps(fjy0,ty);
826             fjz0             = _mm256_add_ps(fjz0,tz);
827
828             /**************************
829              * CALCULATE INTERACTIONS *
830              **************************/
831
832             r30              = _mm256_mul_ps(rsq30,rinv30);
833             r30              = _mm256_andnot_ps(dummy_mask,r30);
834
835             /* Compute parameters for interactions between i and j atoms */
836             qq30             = _mm256_mul_ps(iq3,jq0);
837
838             /* Calculate table index by multiplying r with table scale and truncate to integer */
839             rt               = _mm256_mul_ps(r30,vftabscale);
840             vfitab           = _mm256_cvttps_epi32(rt);
841             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
842             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
843             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
844             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
845             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
846             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
847
848             /* CUBIC SPLINE TABLE ELECTROSTATICS */
849             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
850                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
851             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
852                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
853             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
854                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
855             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
856                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
857             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
858             Heps             = _mm256_mul_ps(vfeps,H);
859             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
860             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
861             velec            = _mm256_mul_ps(qq30,VV);
862             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
863             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
864
865             /* Update potential sum for this i atom from the interaction with this j atom. */
866             velec            = _mm256_andnot_ps(dummy_mask,velec);
867             velecsum         = _mm256_add_ps(velecsum,velec);
868
869             fscal            = felec;
870
871             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
872
873             /* Calculate temporary vectorial force */
874             tx               = _mm256_mul_ps(fscal,dx30);
875             ty               = _mm256_mul_ps(fscal,dy30);
876             tz               = _mm256_mul_ps(fscal,dz30);
877
878             /* Update vectorial force */
879             fix3             = _mm256_add_ps(fix3,tx);
880             fiy3             = _mm256_add_ps(fiy3,ty);
881             fiz3             = _mm256_add_ps(fiz3,tz);
882
883             fjx0             = _mm256_add_ps(fjx0,tx);
884             fjy0             = _mm256_add_ps(fjy0,ty);
885             fjz0             = _mm256_add_ps(fjz0,tz);
886
887             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
888             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
889             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
890             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
891             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
892             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
893             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
894             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
895
896             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
897
898             /* Inner loop uses 192 flops */
899         }
900
901         /* End of innermost loop */
902
903         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
904                                                  f+i_coord_offset,fshift+i_shift_offset);
905
906         ggid                        = gid[iidx];
907         /* Update potential energies */
908         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
909         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
910
911         /* Increment number of inner iterations */
912         inneriter                  += j_index_end - j_index_start;
913
914         /* Outer loop uses 26 flops */
915     }
916
917     /* Increment number of outer iterations */
918     outeriter        += nri;
919
920     /* Update outer/inner flops */
921
922     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*192);
923 }
924 /*
925  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_256_single
926  * Electrostatics interaction: CubicSplineTable
927  * VdW interaction:            CubicSplineTable
928  * Geometry:                   Water4-Particle
929  * Calculate force/pot:        Force
930  */
931 void
932 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_256_single
933                     (t_nblist                    * gmx_restrict       nlist,
934                      rvec                        * gmx_restrict          xx,
935                      rvec                        * gmx_restrict          ff,
936                      struct t_forcerec           * gmx_restrict          fr,
937                      t_mdatoms                   * gmx_restrict     mdatoms,
938                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
939                      t_nrnb                      * gmx_restrict        nrnb)
940 {
941     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
942      * just 0 for non-waters.
943      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
944      * jnr indices corresponding to data put in the four positions in the SIMD register.
945      */
946     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
947     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
948     int              jnrA,jnrB,jnrC,jnrD;
949     int              jnrE,jnrF,jnrG,jnrH;
950     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
951     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
952     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
953     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
954     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
955     real             rcutoff_scalar;
956     real             *shiftvec,*fshift,*x,*f;
957     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
958     real             scratch[4*DIM];
959     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
960     real *           vdwioffsetptr0;
961     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
962     real *           vdwioffsetptr1;
963     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
964     real *           vdwioffsetptr2;
965     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
966     real *           vdwioffsetptr3;
967     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
968     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
969     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
970     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
971     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
972     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
973     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
974     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
975     real             *charge;
976     int              nvdwtype;
977     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
978     int              *vdwtype;
979     real             *vdwparam;
980     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
981     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
982     __m256i          vfitab;
983     __m128i          vfitab_lo,vfitab_hi;
984     __m128i          ifour       = _mm_set1_epi32(4);
985     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
986     real             *vftab;
987     __m256           dummy_mask,cutoff_mask;
988     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
989     __m256           one     = _mm256_set1_ps(1.0);
990     __m256           two     = _mm256_set1_ps(2.0);
991     x                = xx[0];
992     f                = ff[0];
993
994     nri              = nlist->nri;
995     iinr             = nlist->iinr;
996     jindex           = nlist->jindex;
997     jjnr             = nlist->jjnr;
998     shiftidx         = nlist->shift;
999     gid              = nlist->gid;
1000     shiftvec         = fr->shift_vec[0];
1001     fshift           = fr->fshift[0];
1002     facel            = _mm256_set1_ps(fr->ic->epsfac);
1003     charge           = mdatoms->chargeA;
1004     nvdwtype         = fr->ntype;
1005     vdwparam         = fr->nbfp;
1006     vdwtype          = mdatoms->typeA;
1007
1008     vftab            = kernel_data->table_elec_vdw->data;
1009     vftabscale       = _mm256_set1_ps(kernel_data->table_elec_vdw->scale);
1010
1011     /* Setup water-specific parameters */
1012     inr              = nlist->iinr[0];
1013     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
1014     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
1015     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
1016     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
1017
1018     /* Avoid stupid compiler warnings */
1019     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
1020     j_coord_offsetA = 0;
1021     j_coord_offsetB = 0;
1022     j_coord_offsetC = 0;
1023     j_coord_offsetD = 0;
1024     j_coord_offsetE = 0;
1025     j_coord_offsetF = 0;
1026     j_coord_offsetG = 0;
1027     j_coord_offsetH = 0;
1028
1029     outeriter        = 0;
1030     inneriter        = 0;
1031
1032     for(iidx=0;iidx<4*DIM;iidx++)
1033     {
1034         scratch[iidx] = 0.0;
1035     }
1036
1037     /* Start outer loop over neighborlists */
1038     for(iidx=0; iidx<nri; iidx++)
1039     {
1040         /* Load shift vector for this list */
1041         i_shift_offset   = DIM*shiftidx[iidx];
1042
1043         /* Load limits for loop over neighbors */
1044         j_index_start    = jindex[iidx];
1045         j_index_end      = jindex[iidx+1];
1046
1047         /* Get outer coordinate index */
1048         inr              = iinr[iidx];
1049         i_coord_offset   = DIM*inr;
1050
1051         /* Load i particle coords and add shift vector */
1052         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1053                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1054
1055         fix0             = _mm256_setzero_ps();
1056         fiy0             = _mm256_setzero_ps();
1057         fiz0             = _mm256_setzero_ps();
1058         fix1             = _mm256_setzero_ps();
1059         fiy1             = _mm256_setzero_ps();
1060         fiz1             = _mm256_setzero_ps();
1061         fix2             = _mm256_setzero_ps();
1062         fiy2             = _mm256_setzero_ps();
1063         fiz2             = _mm256_setzero_ps();
1064         fix3             = _mm256_setzero_ps();
1065         fiy3             = _mm256_setzero_ps();
1066         fiz3             = _mm256_setzero_ps();
1067
1068         /* Start inner kernel loop */
1069         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
1070         {
1071
1072             /* Get j neighbor index, and coordinate index */
1073             jnrA             = jjnr[jidx];
1074             jnrB             = jjnr[jidx+1];
1075             jnrC             = jjnr[jidx+2];
1076             jnrD             = jjnr[jidx+3];
1077             jnrE             = jjnr[jidx+4];
1078             jnrF             = jjnr[jidx+5];
1079             jnrG             = jjnr[jidx+6];
1080             jnrH             = jjnr[jidx+7];
1081             j_coord_offsetA  = DIM*jnrA;
1082             j_coord_offsetB  = DIM*jnrB;
1083             j_coord_offsetC  = DIM*jnrC;
1084             j_coord_offsetD  = DIM*jnrD;
1085             j_coord_offsetE  = DIM*jnrE;
1086             j_coord_offsetF  = DIM*jnrF;
1087             j_coord_offsetG  = DIM*jnrG;
1088             j_coord_offsetH  = DIM*jnrH;
1089
1090             /* load j atom coordinates */
1091             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1092                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1093                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1094                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1095                                                  &jx0,&jy0,&jz0);
1096
1097             /* Calculate displacement vector */
1098             dx00             = _mm256_sub_ps(ix0,jx0);
1099             dy00             = _mm256_sub_ps(iy0,jy0);
1100             dz00             = _mm256_sub_ps(iz0,jz0);
1101             dx10             = _mm256_sub_ps(ix1,jx0);
1102             dy10             = _mm256_sub_ps(iy1,jy0);
1103             dz10             = _mm256_sub_ps(iz1,jz0);
1104             dx20             = _mm256_sub_ps(ix2,jx0);
1105             dy20             = _mm256_sub_ps(iy2,jy0);
1106             dz20             = _mm256_sub_ps(iz2,jz0);
1107             dx30             = _mm256_sub_ps(ix3,jx0);
1108             dy30             = _mm256_sub_ps(iy3,jy0);
1109             dz30             = _mm256_sub_ps(iz3,jz0);
1110
1111             /* Calculate squared distance and things based on it */
1112             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1113             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1114             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1115             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1116
1117             rinv00           = avx256_invsqrt_f(rsq00);
1118             rinv10           = avx256_invsqrt_f(rsq10);
1119             rinv20           = avx256_invsqrt_f(rsq20);
1120             rinv30           = avx256_invsqrt_f(rsq30);
1121
1122             /* Load parameters for j particles */
1123             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1124                                                                  charge+jnrC+0,charge+jnrD+0,
1125                                                                  charge+jnrE+0,charge+jnrF+0,
1126                                                                  charge+jnrG+0,charge+jnrH+0);
1127             vdwjidx0A        = 2*vdwtype[jnrA+0];
1128             vdwjidx0B        = 2*vdwtype[jnrB+0];
1129             vdwjidx0C        = 2*vdwtype[jnrC+0];
1130             vdwjidx0D        = 2*vdwtype[jnrD+0];
1131             vdwjidx0E        = 2*vdwtype[jnrE+0];
1132             vdwjidx0F        = 2*vdwtype[jnrF+0];
1133             vdwjidx0G        = 2*vdwtype[jnrG+0];
1134             vdwjidx0H        = 2*vdwtype[jnrH+0];
1135
1136             fjx0             = _mm256_setzero_ps();
1137             fjy0             = _mm256_setzero_ps();
1138             fjz0             = _mm256_setzero_ps();
1139
1140             /**************************
1141              * CALCULATE INTERACTIONS *
1142              **************************/
1143
1144             r00              = _mm256_mul_ps(rsq00,rinv00);
1145
1146             /* Compute parameters for interactions between i and j atoms */
1147             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1148                                             vdwioffsetptr0+vdwjidx0B,
1149                                             vdwioffsetptr0+vdwjidx0C,
1150                                             vdwioffsetptr0+vdwjidx0D,
1151                                             vdwioffsetptr0+vdwjidx0E,
1152                                             vdwioffsetptr0+vdwjidx0F,
1153                                             vdwioffsetptr0+vdwjidx0G,
1154                                             vdwioffsetptr0+vdwjidx0H,
1155                                             &c6_00,&c12_00);
1156
1157             /* Calculate table index by multiplying r with table scale and truncate to integer */
1158             rt               = _mm256_mul_ps(r00,vftabscale);
1159             vfitab           = _mm256_cvttps_epi32(rt);
1160             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1161             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1162             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1163             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1164             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
1165             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
1166
1167             /* CUBIC SPLINE TABLE DISPERSION */
1168             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1169             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1170             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1171                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1172             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1173                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1174             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1175                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1176             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1177                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1178             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1179             Heps             = _mm256_mul_ps(vfeps,H);
1180             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1181             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1182             fvdw6            = _mm256_mul_ps(c6_00,FF);
1183
1184             /* CUBIC SPLINE TABLE REPULSION */
1185             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1186             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1187             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1188                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1189             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1190                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1191             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1192                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1193             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1194                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1195             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1196             Heps             = _mm256_mul_ps(vfeps,H);
1197             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1198             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1199             fvdw12           = _mm256_mul_ps(c12_00,FF);
1200             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1201
1202             fscal            = fvdw;
1203
1204             /* Calculate temporary vectorial force */
1205             tx               = _mm256_mul_ps(fscal,dx00);
1206             ty               = _mm256_mul_ps(fscal,dy00);
1207             tz               = _mm256_mul_ps(fscal,dz00);
1208
1209             /* Update vectorial force */
1210             fix0             = _mm256_add_ps(fix0,tx);
1211             fiy0             = _mm256_add_ps(fiy0,ty);
1212             fiz0             = _mm256_add_ps(fiz0,tz);
1213
1214             fjx0             = _mm256_add_ps(fjx0,tx);
1215             fjy0             = _mm256_add_ps(fjy0,ty);
1216             fjz0             = _mm256_add_ps(fjz0,tz);
1217
1218             /**************************
1219              * CALCULATE INTERACTIONS *
1220              **************************/
1221
1222             r10              = _mm256_mul_ps(rsq10,rinv10);
1223
1224             /* Compute parameters for interactions between i and j atoms */
1225             qq10             = _mm256_mul_ps(iq1,jq0);
1226
1227             /* Calculate table index by multiplying r with table scale and truncate to integer */
1228             rt               = _mm256_mul_ps(r10,vftabscale);
1229             vfitab           = _mm256_cvttps_epi32(rt);
1230             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1231             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1232             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1233             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1234             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
1235             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
1236
1237             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1238             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1239                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1240             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1241                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1242             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1243                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1244             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1245                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1246             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1247             Heps             = _mm256_mul_ps(vfeps,H);
1248             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1249             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1250             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1251
1252             fscal            = felec;
1253
1254             /* Calculate temporary vectorial force */
1255             tx               = _mm256_mul_ps(fscal,dx10);
1256             ty               = _mm256_mul_ps(fscal,dy10);
1257             tz               = _mm256_mul_ps(fscal,dz10);
1258
1259             /* Update vectorial force */
1260             fix1             = _mm256_add_ps(fix1,tx);
1261             fiy1             = _mm256_add_ps(fiy1,ty);
1262             fiz1             = _mm256_add_ps(fiz1,tz);
1263
1264             fjx0             = _mm256_add_ps(fjx0,tx);
1265             fjy0             = _mm256_add_ps(fjy0,ty);
1266             fjz0             = _mm256_add_ps(fjz0,tz);
1267
1268             /**************************
1269              * CALCULATE INTERACTIONS *
1270              **************************/
1271
1272             r20              = _mm256_mul_ps(rsq20,rinv20);
1273
1274             /* Compute parameters for interactions between i and j atoms */
1275             qq20             = _mm256_mul_ps(iq2,jq0);
1276
1277             /* Calculate table index by multiplying r with table scale and truncate to integer */
1278             rt               = _mm256_mul_ps(r20,vftabscale);
1279             vfitab           = _mm256_cvttps_epi32(rt);
1280             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1281             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1282             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1283             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1284             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
1285             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
1286
1287             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1288             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1289                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1290             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1291                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1292             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1293                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1294             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1295                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1296             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1297             Heps             = _mm256_mul_ps(vfeps,H);
1298             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1299             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1300             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1301
1302             fscal            = felec;
1303
1304             /* Calculate temporary vectorial force */
1305             tx               = _mm256_mul_ps(fscal,dx20);
1306             ty               = _mm256_mul_ps(fscal,dy20);
1307             tz               = _mm256_mul_ps(fscal,dz20);
1308
1309             /* Update vectorial force */
1310             fix2             = _mm256_add_ps(fix2,tx);
1311             fiy2             = _mm256_add_ps(fiy2,ty);
1312             fiz2             = _mm256_add_ps(fiz2,tz);
1313
1314             fjx0             = _mm256_add_ps(fjx0,tx);
1315             fjy0             = _mm256_add_ps(fjy0,ty);
1316             fjz0             = _mm256_add_ps(fjz0,tz);
1317
1318             /**************************
1319              * CALCULATE INTERACTIONS *
1320              **************************/
1321
1322             r30              = _mm256_mul_ps(rsq30,rinv30);
1323
1324             /* Compute parameters for interactions between i and j atoms */
1325             qq30             = _mm256_mul_ps(iq3,jq0);
1326
1327             /* Calculate table index by multiplying r with table scale and truncate to integer */
1328             rt               = _mm256_mul_ps(r30,vftabscale);
1329             vfitab           = _mm256_cvttps_epi32(rt);
1330             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1331             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1332             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1333             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1334             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
1335             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
1336
1337             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1338             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1339                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1340             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1341                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1342             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1343                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1344             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1345                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1346             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1347             Heps             = _mm256_mul_ps(vfeps,H);
1348             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1349             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1350             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
1351
1352             fscal            = felec;
1353
1354             /* Calculate temporary vectorial force */
1355             tx               = _mm256_mul_ps(fscal,dx30);
1356             ty               = _mm256_mul_ps(fscal,dy30);
1357             tz               = _mm256_mul_ps(fscal,dz30);
1358
1359             /* Update vectorial force */
1360             fix3             = _mm256_add_ps(fix3,tx);
1361             fiy3             = _mm256_add_ps(fiy3,ty);
1362             fiz3             = _mm256_add_ps(fiz3,tz);
1363
1364             fjx0             = _mm256_add_ps(fjx0,tx);
1365             fjy0             = _mm256_add_ps(fjy0,ty);
1366             fjz0             = _mm256_add_ps(fjz0,tz);
1367
1368             fjptrA             = f+j_coord_offsetA;
1369             fjptrB             = f+j_coord_offsetB;
1370             fjptrC             = f+j_coord_offsetC;
1371             fjptrD             = f+j_coord_offsetD;
1372             fjptrE             = f+j_coord_offsetE;
1373             fjptrF             = f+j_coord_offsetF;
1374             fjptrG             = f+j_coord_offsetG;
1375             fjptrH             = f+j_coord_offsetH;
1376
1377             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1378
1379             /* Inner loop uses 168 flops */
1380         }
1381
1382         if(jidx<j_index_end)
1383         {
1384
1385             /* Get j neighbor index, and coordinate index */
1386             jnrlistA         = jjnr[jidx];
1387             jnrlistB         = jjnr[jidx+1];
1388             jnrlistC         = jjnr[jidx+2];
1389             jnrlistD         = jjnr[jidx+3];
1390             jnrlistE         = jjnr[jidx+4];
1391             jnrlistF         = jjnr[jidx+5];
1392             jnrlistG         = jjnr[jidx+6];
1393             jnrlistH         = jjnr[jidx+7];
1394             /* Sign of each element will be negative for non-real atoms.
1395              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1396              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1397              */
1398             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1399                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1400                                             
1401             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1402             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1403             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1404             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1405             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1406             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1407             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1408             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1409             j_coord_offsetA  = DIM*jnrA;
1410             j_coord_offsetB  = DIM*jnrB;
1411             j_coord_offsetC  = DIM*jnrC;
1412             j_coord_offsetD  = DIM*jnrD;
1413             j_coord_offsetE  = DIM*jnrE;
1414             j_coord_offsetF  = DIM*jnrF;
1415             j_coord_offsetG  = DIM*jnrG;
1416             j_coord_offsetH  = DIM*jnrH;
1417
1418             /* load j atom coordinates */
1419             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1420                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1421                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1422                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1423                                                  &jx0,&jy0,&jz0);
1424
1425             /* Calculate displacement vector */
1426             dx00             = _mm256_sub_ps(ix0,jx0);
1427             dy00             = _mm256_sub_ps(iy0,jy0);
1428             dz00             = _mm256_sub_ps(iz0,jz0);
1429             dx10             = _mm256_sub_ps(ix1,jx0);
1430             dy10             = _mm256_sub_ps(iy1,jy0);
1431             dz10             = _mm256_sub_ps(iz1,jz0);
1432             dx20             = _mm256_sub_ps(ix2,jx0);
1433             dy20             = _mm256_sub_ps(iy2,jy0);
1434             dz20             = _mm256_sub_ps(iz2,jz0);
1435             dx30             = _mm256_sub_ps(ix3,jx0);
1436             dy30             = _mm256_sub_ps(iy3,jy0);
1437             dz30             = _mm256_sub_ps(iz3,jz0);
1438
1439             /* Calculate squared distance and things based on it */
1440             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1441             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1442             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1443             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1444
1445             rinv00           = avx256_invsqrt_f(rsq00);
1446             rinv10           = avx256_invsqrt_f(rsq10);
1447             rinv20           = avx256_invsqrt_f(rsq20);
1448             rinv30           = avx256_invsqrt_f(rsq30);
1449
1450             /* Load parameters for j particles */
1451             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1452                                                                  charge+jnrC+0,charge+jnrD+0,
1453                                                                  charge+jnrE+0,charge+jnrF+0,
1454                                                                  charge+jnrG+0,charge+jnrH+0);
1455             vdwjidx0A        = 2*vdwtype[jnrA+0];
1456             vdwjidx0B        = 2*vdwtype[jnrB+0];
1457             vdwjidx0C        = 2*vdwtype[jnrC+0];
1458             vdwjidx0D        = 2*vdwtype[jnrD+0];
1459             vdwjidx0E        = 2*vdwtype[jnrE+0];
1460             vdwjidx0F        = 2*vdwtype[jnrF+0];
1461             vdwjidx0G        = 2*vdwtype[jnrG+0];
1462             vdwjidx0H        = 2*vdwtype[jnrH+0];
1463
1464             fjx0             = _mm256_setzero_ps();
1465             fjy0             = _mm256_setzero_ps();
1466             fjz0             = _mm256_setzero_ps();
1467
1468             /**************************
1469              * CALCULATE INTERACTIONS *
1470              **************************/
1471
1472             r00              = _mm256_mul_ps(rsq00,rinv00);
1473             r00              = _mm256_andnot_ps(dummy_mask,r00);
1474
1475             /* Compute parameters for interactions between i and j atoms */
1476             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1477                                             vdwioffsetptr0+vdwjidx0B,
1478                                             vdwioffsetptr0+vdwjidx0C,
1479                                             vdwioffsetptr0+vdwjidx0D,
1480                                             vdwioffsetptr0+vdwjidx0E,
1481                                             vdwioffsetptr0+vdwjidx0F,
1482                                             vdwioffsetptr0+vdwjidx0G,
1483                                             vdwioffsetptr0+vdwjidx0H,
1484                                             &c6_00,&c12_00);
1485
1486             /* Calculate table index by multiplying r with table scale and truncate to integer */
1487             rt               = _mm256_mul_ps(r00,vftabscale);
1488             vfitab           = _mm256_cvttps_epi32(rt);
1489             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1490             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1491             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1492             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1493             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
1494             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
1495
1496             /* CUBIC SPLINE TABLE DISPERSION */
1497             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1498             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1499             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1500                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1501             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1502                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1503             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1504                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1505             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1506                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1507             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1508             Heps             = _mm256_mul_ps(vfeps,H);
1509             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1510             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1511             fvdw6            = _mm256_mul_ps(c6_00,FF);
1512
1513             /* CUBIC SPLINE TABLE REPULSION */
1514             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1515             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1516             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1517                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1518             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1519                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1520             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1521                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1522             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1523                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1524             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1525             Heps             = _mm256_mul_ps(vfeps,H);
1526             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1527             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1528             fvdw12           = _mm256_mul_ps(c12_00,FF);
1529             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1530
1531             fscal            = fvdw;
1532
1533             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1534
1535             /* Calculate temporary vectorial force */
1536             tx               = _mm256_mul_ps(fscal,dx00);
1537             ty               = _mm256_mul_ps(fscal,dy00);
1538             tz               = _mm256_mul_ps(fscal,dz00);
1539
1540             /* Update vectorial force */
1541             fix0             = _mm256_add_ps(fix0,tx);
1542             fiy0             = _mm256_add_ps(fiy0,ty);
1543             fiz0             = _mm256_add_ps(fiz0,tz);
1544
1545             fjx0             = _mm256_add_ps(fjx0,tx);
1546             fjy0             = _mm256_add_ps(fjy0,ty);
1547             fjz0             = _mm256_add_ps(fjz0,tz);
1548
1549             /**************************
1550              * CALCULATE INTERACTIONS *
1551              **************************/
1552
1553             r10              = _mm256_mul_ps(rsq10,rinv10);
1554             r10              = _mm256_andnot_ps(dummy_mask,r10);
1555
1556             /* Compute parameters for interactions between i and j atoms */
1557             qq10             = _mm256_mul_ps(iq1,jq0);
1558
1559             /* Calculate table index by multiplying r with table scale and truncate to integer */
1560             rt               = _mm256_mul_ps(r10,vftabscale);
1561             vfitab           = _mm256_cvttps_epi32(rt);
1562             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1563             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1564             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1565             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1566             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
1567             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
1568
1569             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1570             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1571                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1572             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1573                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1574             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1575                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1576             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1577                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1578             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1579             Heps             = _mm256_mul_ps(vfeps,H);
1580             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1581             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1582             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1583
1584             fscal            = felec;
1585
1586             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1587
1588             /* Calculate temporary vectorial force */
1589             tx               = _mm256_mul_ps(fscal,dx10);
1590             ty               = _mm256_mul_ps(fscal,dy10);
1591             tz               = _mm256_mul_ps(fscal,dz10);
1592
1593             /* Update vectorial force */
1594             fix1             = _mm256_add_ps(fix1,tx);
1595             fiy1             = _mm256_add_ps(fiy1,ty);
1596             fiz1             = _mm256_add_ps(fiz1,tz);
1597
1598             fjx0             = _mm256_add_ps(fjx0,tx);
1599             fjy0             = _mm256_add_ps(fjy0,ty);
1600             fjz0             = _mm256_add_ps(fjz0,tz);
1601
1602             /**************************
1603              * CALCULATE INTERACTIONS *
1604              **************************/
1605
1606             r20              = _mm256_mul_ps(rsq20,rinv20);
1607             r20              = _mm256_andnot_ps(dummy_mask,r20);
1608
1609             /* Compute parameters for interactions between i and j atoms */
1610             qq20             = _mm256_mul_ps(iq2,jq0);
1611
1612             /* Calculate table index by multiplying r with table scale and truncate to integer */
1613             rt               = _mm256_mul_ps(r20,vftabscale);
1614             vfitab           = _mm256_cvttps_epi32(rt);
1615             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1616             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1617             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1618             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1619             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
1620             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
1621
1622             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1623             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1624                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1625             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1626                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1627             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1628                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1629             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1630                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1631             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1632             Heps             = _mm256_mul_ps(vfeps,H);
1633             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1634             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1635             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1636
1637             fscal            = felec;
1638
1639             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1640
1641             /* Calculate temporary vectorial force */
1642             tx               = _mm256_mul_ps(fscal,dx20);
1643             ty               = _mm256_mul_ps(fscal,dy20);
1644             tz               = _mm256_mul_ps(fscal,dz20);
1645
1646             /* Update vectorial force */
1647             fix2             = _mm256_add_ps(fix2,tx);
1648             fiy2             = _mm256_add_ps(fiy2,ty);
1649             fiz2             = _mm256_add_ps(fiz2,tz);
1650
1651             fjx0             = _mm256_add_ps(fjx0,tx);
1652             fjy0             = _mm256_add_ps(fjy0,ty);
1653             fjz0             = _mm256_add_ps(fjz0,tz);
1654
1655             /**************************
1656              * CALCULATE INTERACTIONS *
1657              **************************/
1658
1659             r30              = _mm256_mul_ps(rsq30,rinv30);
1660             r30              = _mm256_andnot_ps(dummy_mask,r30);
1661
1662             /* Compute parameters for interactions between i and j atoms */
1663             qq30             = _mm256_mul_ps(iq3,jq0);
1664
1665             /* Calculate table index by multiplying r with table scale and truncate to integer */
1666             rt               = _mm256_mul_ps(r30,vftabscale);
1667             vfitab           = _mm256_cvttps_epi32(rt);
1668             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1669             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1670             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1671             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1672             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
1673             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
1674
1675             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1676             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1677                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1678             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1679                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1680             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1681                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1682             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1683                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1684             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1685             Heps             = _mm256_mul_ps(vfeps,H);
1686             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1687             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1688             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq30,FF),_mm256_mul_ps(vftabscale,rinv30)));
1689
1690             fscal            = felec;
1691
1692             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1693
1694             /* Calculate temporary vectorial force */
1695             tx               = _mm256_mul_ps(fscal,dx30);
1696             ty               = _mm256_mul_ps(fscal,dy30);
1697             tz               = _mm256_mul_ps(fscal,dz30);
1698
1699             /* Update vectorial force */
1700             fix3             = _mm256_add_ps(fix3,tx);
1701             fiy3             = _mm256_add_ps(fiy3,ty);
1702             fiz3             = _mm256_add_ps(fiz3,tz);
1703
1704             fjx0             = _mm256_add_ps(fjx0,tx);
1705             fjy0             = _mm256_add_ps(fjy0,ty);
1706             fjz0             = _mm256_add_ps(fjz0,tz);
1707
1708             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1709             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1710             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1711             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1712             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1713             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1714             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1715             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1716
1717             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1718
1719             /* Inner loop uses 172 flops */
1720         }
1721
1722         /* End of innermost loop */
1723
1724         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1725                                                  f+i_coord_offset,fshift+i_shift_offset);
1726
1727         /* Increment number of inner iterations */
1728         inneriter                  += j_index_end - j_index_start;
1729
1730         /* Outer loop uses 24 flops */
1731     }
1732
1733     /* Increment number of outer iterations */
1734     outeriter        += nri;
1735
1736     /* Update outer/inner flops */
1737
1738     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*172);
1739 }