Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwNone_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            None
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwNone_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr1;
85     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     real *           vdwioffsetptr2;
87     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     real *           vdwioffsetptr3;
89     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
95     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     __m256d          dummy_mask,cutoff_mask;
98     __m128           tmpmask0,tmpmask1;
99     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
100     __m256d          one     = _mm256_set1_pd(1.0);
101     __m256d          two     = _mm256_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm256_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     krf              = _mm256_set1_pd(fr->ic->k_rf);
116     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
117     crf              = _mm256_set1_pd(fr->ic->c_rf);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
122     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
123     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = jnrC = jnrD = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129     j_coord_offsetC = 0;
130     j_coord_offsetD = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     for(iidx=0;iidx<4*DIM;iidx++)
136     {
137         scratch[iidx] = 0.0;
138     }
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
156                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
157
158         fix1             = _mm256_setzero_pd();
159         fiy1             = _mm256_setzero_pd();
160         fiz1             = _mm256_setzero_pd();
161         fix2             = _mm256_setzero_pd();
162         fiy2             = _mm256_setzero_pd();
163         fiz2             = _mm256_setzero_pd();
164         fix3             = _mm256_setzero_pd();
165         fiy3             = _mm256_setzero_pd();
166         fiz3             = _mm256_setzero_pd();
167
168         /* Reset potential sums */
169         velecsum         = _mm256_setzero_pd();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             jnrC             = jjnr[jidx+2];
179             jnrD             = jjnr[jidx+3];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182             j_coord_offsetC  = DIM*jnrC;
183             j_coord_offsetD  = DIM*jnrD;
184
185             /* load j atom coordinates */
186             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
187                                                  x+j_coord_offsetC,x+j_coord_offsetD,
188                                                  &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx10             = _mm256_sub_pd(ix1,jx0);
192             dy10             = _mm256_sub_pd(iy1,jy0);
193             dz10             = _mm256_sub_pd(iz1,jz0);
194             dx20             = _mm256_sub_pd(ix2,jx0);
195             dy20             = _mm256_sub_pd(iy2,jy0);
196             dz20             = _mm256_sub_pd(iz2,jz0);
197             dx30             = _mm256_sub_pd(ix3,jx0);
198             dy30             = _mm256_sub_pd(iy3,jy0);
199             dz30             = _mm256_sub_pd(iz3,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
203             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
204             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
205
206             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
207             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
208             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
209
210             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
211             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
212             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
216                                                                  charge+jnrC+0,charge+jnrD+0);
217
218             fjx0             = _mm256_setzero_pd();
219             fjy0             = _mm256_setzero_pd();
220             fjz0             = _mm256_setzero_pd();
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             /* Compute parameters for interactions between i and j atoms */
227             qq10             = _mm256_mul_pd(iq1,jq0);
228
229             /* REACTION-FIELD ELECTROSTATICS */
230             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
231             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
232
233             /* Update potential sum for this i atom from the interaction with this j atom. */
234             velecsum         = _mm256_add_pd(velecsum,velec);
235
236             fscal            = felec;
237
238             /* Calculate temporary vectorial force */
239             tx               = _mm256_mul_pd(fscal,dx10);
240             ty               = _mm256_mul_pd(fscal,dy10);
241             tz               = _mm256_mul_pd(fscal,dz10);
242
243             /* Update vectorial force */
244             fix1             = _mm256_add_pd(fix1,tx);
245             fiy1             = _mm256_add_pd(fiy1,ty);
246             fiz1             = _mm256_add_pd(fiz1,tz);
247
248             fjx0             = _mm256_add_pd(fjx0,tx);
249             fjy0             = _mm256_add_pd(fjy0,ty);
250             fjz0             = _mm256_add_pd(fjz0,tz);
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             /* Compute parameters for interactions between i and j atoms */
257             qq20             = _mm256_mul_pd(iq2,jq0);
258
259             /* REACTION-FIELD ELECTROSTATICS */
260             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
261             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
262
263             /* Update potential sum for this i atom from the interaction with this j atom. */
264             velecsum         = _mm256_add_pd(velecsum,velec);
265
266             fscal            = felec;
267
268             /* Calculate temporary vectorial force */
269             tx               = _mm256_mul_pd(fscal,dx20);
270             ty               = _mm256_mul_pd(fscal,dy20);
271             tz               = _mm256_mul_pd(fscal,dz20);
272
273             /* Update vectorial force */
274             fix2             = _mm256_add_pd(fix2,tx);
275             fiy2             = _mm256_add_pd(fiy2,ty);
276             fiz2             = _mm256_add_pd(fiz2,tz);
277
278             fjx0             = _mm256_add_pd(fjx0,tx);
279             fjy0             = _mm256_add_pd(fjy0,ty);
280             fjz0             = _mm256_add_pd(fjz0,tz);
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             /* Compute parameters for interactions between i and j atoms */
287             qq30             = _mm256_mul_pd(iq3,jq0);
288
289             /* REACTION-FIELD ELECTROSTATICS */
290             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
291             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             velecsum         = _mm256_add_pd(velecsum,velec);
295
296             fscal            = felec;
297
298             /* Calculate temporary vectorial force */
299             tx               = _mm256_mul_pd(fscal,dx30);
300             ty               = _mm256_mul_pd(fscal,dy30);
301             tz               = _mm256_mul_pd(fscal,dz30);
302
303             /* Update vectorial force */
304             fix3             = _mm256_add_pd(fix3,tx);
305             fiy3             = _mm256_add_pd(fiy3,ty);
306             fiz3             = _mm256_add_pd(fiz3,tz);
307
308             fjx0             = _mm256_add_pd(fjx0,tx);
309             fjy0             = _mm256_add_pd(fjy0,ty);
310             fjz0             = _mm256_add_pd(fjz0,tz);
311
312             fjptrA             = f+j_coord_offsetA;
313             fjptrB             = f+j_coord_offsetB;
314             fjptrC             = f+j_coord_offsetC;
315             fjptrD             = f+j_coord_offsetD;
316
317             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
318
319             /* Inner loop uses 99 flops */
320         }
321
322         if(jidx<j_index_end)
323         {
324
325             /* Get j neighbor index, and coordinate index */
326             jnrlistA         = jjnr[jidx];
327             jnrlistB         = jjnr[jidx+1];
328             jnrlistC         = jjnr[jidx+2];
329             jnrlistD         = jjnr[jidx+3];
330             /* Sign of each element will be negative for non-real atoms.
331              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
332              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
333              */
334             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
335
336             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
337             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
338             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
339
340             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
341             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
342             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
343             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
344             j_coord_offsetA  = DIM*jnrA;
345             j_coord_offsetB  = DIM*jnrB;
346             j_coord_offsetC  = DIM*jnrC;
347             j_coord_offsetD  = DIM*jnrD;
348
349             /* load j atom coordinates */
350             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
351                                                  x+j_coord_offsetC,x+j_coord_offsetD,
352                                                  &jx0,&jy0,&jz0);
353
354             /* Calculate displacement vector */
355             dx10             = _mm256_sub_pd(ix1,jx0);
356             dy10             = _mm256_sub_pd(iy1,jy0);
357             dz10             = _mm256_sub_pd(iz1,jz0);
358             dx20             = _mm256_sub_pd(ix2,jx0);
359             dy20             = _mm256_sub_pd(iy2,jy0);
360             dz20             = _mm256_sub_pd(iz2,jz0);
361             dx30             = _mm256_sub_pd(ix3,jx0);
362             dy30             = _mm256_sub_pd(iy3,jy0);
363             dz30             = _mm256_sub_pd(iz3,jz0);
364
365             /* Calculate squared distance and things based on it */
366             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
367             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
368             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
369
370             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
371             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
372             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
373
374             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
375             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
376             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
377
378             /* Load parameters for j particles */
379             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
380                                                                  charge+jnrC+0,charge+jnrD+0);
381
382             fjx0             = _mm256_setzero_pd();
383             fjy0             = _mm256_setzero_pd();
384             fjz0             = _mm256_setzero_pd();
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             /* Compute parameters for interactions between i and j atoms */
391             qq10             = _mm256_mul_pd(iq1,jq0);
392
393             /* REACTION-FIELD ELECTROSTATICS */
394             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
395             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
396
397             /* Update potential sum for this i atom from the interaction with this j atom. */
398             velec            = _mm256_andnot_pd(dummy_mask,velec);
399             velecsum         = _mm256_add_pd(velecsum,velec);
400
401             fscal            = felec;
402
403             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
404
405             /* Calculate temporary vectorial force */
406             tx               = _mm256_mul_pd(fscal,dx10);
407             ty               = _mm256_mul_pd(fscal,dy10);
408             tz               = _mm256_mul_pd(fscal,dz10);
409
410             /* Update vectorial force */
411             fix1             = _mm256_add_pd(fix1,tx);
412             fiy1             = _mm256_add_pd(fiy1,ty);
413             fiz1             = _mm256_add_pd(fiz1,tz);
414
415             fjx0             = _mm256_add_pd(fjx0,tx);
416             fjy0             = _mm256_add_pd(fjy0,ty);
417             fjz0             = _mm256_add_pd(fjz0,tz);
418
419             /**************************
420              * CALCULATE INTERACTIONS *
421              **************************/
422
423             /* Compute parameters for interactions between i and j atoms */
424             qq20             = _mm256_mul_pd(iq2,jq0);
425
426             /* REACTION-FIELD ELECTROSTATICS */
427             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
428             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
429
430             /* Update potential sum for this i atom from the interaction with this j atom. */
431             velec            = _mm256_andnot_pd(dummy_mask,velec);
432             velecsum         = _mm256_add_pd(velecsum,velec);
433
434             fscal            = felec;
435
436             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
437
438             /* Calculate temporary vectorial force */
439             tx               = _mm256_mul_pd(fscal,dx20);
440             ty               = _mm256_mul_pd(fscal,dy20);
441             tz               = _mm256_mul_pd(fscal,dz20);
442
443             /* Update vectorial force */
444             fix2             = _mm256_add_pd(fix2,tx);
445             fiy2             = _mm256_add_pd(fiy2,ty);
446             fiz2             = _mm256_add_pd(fiz2,tz);
447
448             fjx0             = _mm256_add_pd(fjx0,tx);
449             fjy0             = _mm256_add_pd(fjy0,ty);
450             fjz0             = _mm256_add_pd(fjz0,tz);
451
452             /**************************
453              * CALCULATE INTERACTIONS *
454              **************************/
455
456             /* Compute parameters for interactions between i and j atoms */
457             qq30             = _mm256_mul_pd(iq3,jq0);
458
459             /* REACTION-FIELD ELECTROSTATICS */
460             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
461             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
462
463             /* Update potential sum for this i atom from the interaction with this j atom. */
464             velec            = _mm256_andnot_pd(dummy_mask,velec);
465             velecsum         = _mm256_add_pd(velecsum,velec);
466
467             fscal            = felec;
468
469             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
470
471             /* Calculate temporary vectorial force */
472             tx               = _mm256_mul_pd(fscal,dx30);
473             ty               = _mm256_mul_pd(fscal,dy30);
474             tz               = _mm256_mul_pd(fscal,dz30);
475
476             /* Update vectorial force */
477             fix3             = _mm256_add_pd(fix3,tx);
478             fiy3             = _mm256_add_pd(fiy3,ty);
479             fiz3             = _mm256_add_pd(fiz3,tz);
480
481             fjx0             = _mm256_add_pd(fjx0,tx);
482             fjy0             = _mm256_add_pd(fjy0,ty);
483             fjz0             = _mm256_add_pd(fjz0,tz);
484
485             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
486             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
487             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
488             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
489
490             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
491
492             /* Inner loop uses 99 flops */
493         }
494
495         /* End of innermost loop */
496
497         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
498                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
499
500         ggid                        = gid[iidx];
501         /* Update potential energies */
502         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
503
504         /* Increment number of inner iterations */
505         inneriter                  += j_index_end - j_index_start;
506
507         /* Outer loop uses 19 flops */
508     }
509
510     /* Increment number of outer iterations */
511     outeriter        += nri;
512
513     /* Update outer/inner flops */
514
515     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*99);
516 }
517 /*
518  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomW4P1_F_avx_256_double
519  * Electrostatics interaction: ReactionField
520  * VdW interaction:            None
521  * Geometry:                   Water4-Particle
522  * Calculate force/pot:        Force
523  */
524 void
525 nb_kernel_ElecRF_VdwNone_GeomW4P1_F_avx_256_double
526                     (t_nblist                    * gmx_restrict       nlist,
527                      rvec                        * gmx_restrict          xx,
528                      rvec                        * gmx_restrict          ff,
529                      t_forcerec                  * gmx_restrict          fr,
530                      t_mdatoms                   * gmx_restrict     mdatoms,
531                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
532                      t_nrnb                      * gmx_restrict        nrnb)
533 {
534     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
535      * just 0 for non-waters.
536      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
537      * jnr indices corresponding to data put in the four positions in the SIMD register.
538      */
539     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
540     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
541     int              jnrA,jnrB,jnrC,jnrD;
542     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
543     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
544     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
545     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
546     real             rcutoff_scalar;
547     real             *shiftvec,*fshift,*x,*f;
548     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
549     real             scratch[4*DIM];
550     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
551     real *           vdwioffsetptr1;
552     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
553     real *           vdwioffsetptr2;
554     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
555     real *           vdwioffsetptr3;
556     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
557     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
558     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
559     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
560     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
561     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
562     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
563     real             *charge;
564     __m256d          dummy_mask,cutoff_mask;
565     __m128           tmpmask0,tmpmask1;
566     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
567     __m256d          one     = _mm256_set1_pd(1.0);
568     __m256d          two     = _mm256_set1_pd(2.0);
569     x                = xx[0];
570     f                = ff[0];
571
572     nri              = nlist->nri;
573     iinr             = nlist->iinr;
574     jindex           = nlist->jindex;
575     jjnr             = nlist->jjnr;
576     shiftidx         = nlist->shift;
577     gid              = nlist->gid;
578     shiftvec         = fr->shift_vec[0];
579     fshift           = fr->fshift[0];
580     facel            = _mm256_set1_pd(fr->epsfac);
581     charge           = mdatoms->chargeA;
582     krf              = _mm256_set1_pd(fr->ic->k_rf);
583     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
584     crf              = _mm256_set1_pd(fr->ic->c_rf);
585
586     /* Setup water-specific parameters */
587     inr              = nlist->iinr[0];
588     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
589     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
590     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
591
592     /* Avoid stupid compiler warnings */
593     jnrA = jnrB = jnrC = jnrD = 0;
594     j_coord_offsetA = 0;
595     j_coord_offsetB = 0;
596     j_coord_offsetC = 0;
597     j_coord_offsetD = 0;
598
599     outeriter        = 0;
600     inneriter        = 0;
601
602     for(iidx=0;iidx<4*DIM;iidx++)
603     {
604         scratch[iidx] = 0.0;
605     }
606
607     /* Start outer loop over neighborlists */
608     for(iidx=0; iidx<nri; iidx++)
609     {
610         /* Load shift vector for this list */
611         i_shift_offset   = DIM*shiftidx[iidx];
612
613         /* Load limits for loop over neighbors */
614         j_index_start    = jindex[iidx];
615         j_index_end      = jindex[iidx+1];
616
617         /* Get outer coordinate index */
618         inr              = iinr[iidx];
619         i_coord_offset   = DIM*inr;
620
621         /* Load i particle coords and add shift vector */
622         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
623                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
624
625         fix1             = _mm256_setzero_pd();
626         fiy1             = _mm256_setzero_pd();
627         fiz1             = _mm256_setzero_pd();
628         fix2             = _mm256_setzero_pd();
629         fiy2             = _mm256_setzero_pd();
630         fiz2             = _mm256_setzero_pd();
631         fix3             = _mm256_setzero_pd();
632         fiy3             = _mm256_setzero_pd();
633         fiz3             = _mm256_setzero_pd();
634
635         /* Start inner kernel loop */
636         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
637         {
638
639             /* Get j neighbor index, and coordinate index */
640             jnrA             = jjnr[jidx];
641             jnrB             = jjnr[jidx+1];
642             jnrC             = jjnr[jidx+2];
643             jnrD             = jjnr[jidx+3];
644             j_coord_offsetA  = DIM*jnrA;
645             j_coord_offsetB  = DIM*jnrB;
646             j_coord_offsetC  = DIM*jnrC;
647             j_coord_offsetD  = DIM*jnrD;
648
649             /* load j atom coordinates */
650             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
651                                                  x+j_coord_offsetC,x+j_coord_offsetD,
652                                                  &jx0,&jy0,&jz0);
653
654             /* Calculate displacement vector */
655             dx10             = _mm256_sub_pd(ix1,jx0);
656             dy10             = _mm256_sub_pd(iy1,jy0);
657             dz10             = _mm256_sub_pd(iz1,jz0);
658             dx20             = _mm256_sub_pd(ix2,jx0);
659             dy20             = _mm256_sub_pd(iy2,jy0);
660             dz20             = _mm256_sub_pd(iz2,jz0);
661             dx30             = _mm256_sub_pd(ix3,jx0);
662             dy30             = _mm256_sub_pd(iy3,jy0);
663             dz30             = _mm256_sub_pd(iz3,jz0);
664
665             /* Calculate squared distance and things based on it */
666             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
667             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
668             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
669
670             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
671             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
672             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
673
674             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
675             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
676             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
677
678             /* Load parameters for j particles */
679             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
680                                                                  charge+jnrC+0,charge+jnrD+0);
681
682             fjx0             = _mm256_setzero_pd();
683             fjy0             = _mm256_setzero_pd();
684             fjz0             = _mm256_setzero_pd();
685
686             /**************************
687              * CALCULATE INTERACTIONS *
688              **************************/
689
690             /* Compute parameters for interactions between i and j atoms */
691             qq10             = _mm256_mul_pd(iq1,jq0);
692
693             /* REACTION-FIELD ELECTROSTATICS */
694             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
695
696             fscal            = felec;
697
698             /* Calculate temporary vectorial force */
699             tx               = _mm256_mul_pd(fscal,dx10);
700             ty               = _mm256_mul_pd(fscal,dy10);
701             tz               = _mm256_mul_pd(fscal,dz10);
702
703             /* Update vectorial force */
704             fix1             = _mm256_add_pd(fix1,tx);
705             fiy1             = _mm256_add_pd(fiy1,ty);
706             fiz1             = _mm256_add_pd(fiz1,tz);
707
708             fjx0             = _mm256_add_pd(fjx0,tx);
709             fjy0             = _mm256_add_pd(fjy0,ty);
710             fjz0             = _mm256_add_pd(fjz0,tz);
711
712             /**************************
713              * CALCULATE INTERACTIONS *
714              **************************/
715
716             /* Compute parameters for interactions between i and j atoms */
717             qq20             = _mm256_mul_pd(iq2,jq0);
718
719             /* REACTION-FIELD ELECTROSTATICS */
720             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
721
722             fscal            = felec;
723
724             /* Calculate temporary vectorial force */
725             tx               = _mm256_mul_pd(fscal,dx20);
726             ty               = _mm256_mul_pd(fscal,dy20);
727             tz               = _mm256_mul_pd(fscal,dz20);
728
729             /* Update vectorial force */
730             fix2             = _mm256_add_pd(fix2,tx);
731             fiy2             = _mm256_add_pd(fiy2,ty);
732             fiz2             = _mm256_add_pd(fiz2,tz);
733
734             fjx0             = _mm256_add_pd(fjx0,tx);
735             fjy0             = _mm256_add_pd(fjy0,ty);
736             fjz0             = _mm256_add_pd(fjz0,tz);
737
738             /**************************
739              * CALCULATE INTERACTIONS *
740              **************************/
741
742             /* Compute parameters for interactions between i and j atoms */
743             qq30             = _mm256_mul_pd(iq3,jq0);
744
745             /* REACTION-FIELD ELECTROSTATICS */
746             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
747
748             fscal            = felec;
749
750             /* Calculate temporary vectorial force */
751             tx               = _mm256_mul_pd(fscal,dx30);
752             ty               = _mm256_mul_pd(fscal,dy30);
753             tz               = _mm256_mul_pd(fscal,dz30);
754
755             /* Update vectorial force */
756             fix3             = _mm256_add_pd(fix3,tx);
757             fiy3             = _mm256_add_pd(fiy3,ty);
758             fiz3             = _mm256_add_pd(fiz3,tz);
759
760             fjx0             = _mm256_add_pd(fjx0,tx);
761             fjy0             = _mm256_add_pd(fjy0,ty);
762             fjz0             = _mm256_add_pd(fjz0,tz);
763
764             fjptrA             = f+j_coord_offsetA;
765             fjptrB             = f+j_coord_offsetB;
766             fjptrC             = f+j_coord_offsetC;
767             fjptrD             = f+j_coord_offsetD;
768
769             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
770
771             /* Inner loop uses 84 flops */
772         }
773
774         if(jidx<j_index_end)
775         {
776
777             /* Get j neighbor index, and coordinate index */
778             jnrlistA         = jjnr[jidx];
779             jnrlistB         = jjnr[jidx+1];
780             jnrlistC         = jjnr[jidx+2];
781             jnrlistD         = jjnr[jidx+3];
782             /* Sign of each element will be negative for non-real atoms.
783              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
784              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
785              */
786             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
787
788             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
789             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
790             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
791
792             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
793             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
794             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
795             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
796             j_coord_offsetA  = DIM*jnrA;
797             j_coord_offsetB  = DIM*jnrB;
798             j_coord_offsetC  = DIM*jnrC;
799             j_coord_offsetD  = DIM*jnrD;
800
801             /* load j atom coordinates */
802             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
803                                                  x+j_coord_offsetC,x+j_coord_offsetD,
804                                                  &jx0,&jy0,&jz0);
805
806             /* Calculate displacement vector */
807             dx10             = _mm256_sub_pd(ix1,jx0);
808             dy10             = _mm256_sub_pd(iy1,jy0);
809             dz10             = _mm256_sub_pd(iz1,jz0);
810             dx20             = _mm256_sub_pd(ix2,jx0);
811             dy20             = _mm256_sub_pd(iy2,jy0);
812             dz20             = _mm256_sub_pd(iz2,jz0);
813             dx30             = _mm256_sub_pd(ix3,jx0);
814             dy30             = _mm256_sub_pd(iy3,jy0);
815             dz30             = _mm256_sub_pd(iz3,jz0);
816
817             /* Calculate squared distance and things based on it */
818             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
819             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
820             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
821
822             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
823             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
824             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
825
826             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
827             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
828             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
829
830             /* Load parameters for j particles */
831             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
832                                                                  charge+jnrC+0,charge+jnrD+0);
833
834             fjx0             = _mm256_setzero_pd();
835             fjy0             = _mm256_setzero_pd();
836             fjz0             = _mm256_setzero_pd();
837
838             /**************************
839              * CALCULATE INTERACTIONS *
840              **************************/
841
842             /* Compute parameters for interactions between i and j atoms */
843             qq10             = _mm256_mul_pd(iq1,jq0);
844
845             /* REACTION-FIELD ELECTROSTATICS */
846             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
847
848             fscal            = felec;
849
850             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
851
852             /* Calculate temporary vectorial force */
853             tx               = _mm256_mul_pd(fscal,dx10);
854             ty               = _mm256_mul_pd(fscal,dy10);
855             tz               = _mm256_mul_pd(fscal,dz10);
856
857             /* Update vectorial force */
858             fix1             = _mm256_add_pd(fix1,tx);
859             fiy1             = _mm256_add_pd(fiy1,ty);
860             fiz1             = _mm256_add_pd(fiz1,tz);
861
862             fjx0             = _mm256_add_pd(fjx0,tx);
863             fjy0             = _mm256_add_pd(fjy0,ty);
864             fjz0             = _mm256_add_pd(fjz0,tz);
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             /* Compute parameters for interactions between i and j atoms */
871             qq20             = _mm256_mul_pd(iq2,jq0);
872
873             /* REACTION-FIELD ELECTROSTATICS */
874             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
875
876             fscal            = felec;
877
878             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
879
880             /* Calculate temporary vectorial force */
881             tx               = _mm256_mul_pd(fscal,dx20);
882             ty               = _mm256_mul_pd(fscal,dy20);
883             tz               = _mm256_mul_pd(fscal,dz20);
884
885             /* Update vectorial force */
886             fix2             = _mm256_add_pd(fix2,tx);
887             fiy2             = _mm256_add_pd(fiy2,ty);
888             fiz2             = _mm256_add_pd(fiz2,tz);
889
890             fjx0             = _mm256_add_pd(fjx0,tx);
891             fjy0             = _mm256_add_pd(fjy0,ty);
892             fjz0             = _mm256_add_pd(fjz0,tz);
893
894             /**************************
895              * CALCULATE INTERACTIONS *
896              **************************/
897
898             /* Compute parameters for interactions between i and j atoms */
899             qq30             = _mm256_mul_pd(iq3,jq0);
900
901             /* REACTION-FIELD ELECTROSTATICS */
902             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
903
904             fscal            = felec;
905
906             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
907
908             /* Calculate temporary vectorial force */
909             tx               = _mm256_mul_pd(fscal,dx30);
910             ty               = _mm256_mul_pd(fscal,dy30);
911             tz               = _mm256_mul_pd(fscal,dz30);
912
913             /* Update vectorial force */
914             fix3             = _mm256_add_pd(fix3,tx);
915             fiy3             = _mm256_add_pd(fiy3,ty);
916             fiz3             = _mm256_add_pd(fiz3,tz);
917
918             fjx0             = _mm256_add_pd(fjx0,tx);
919             fjy0             = _mm256_add_pd(fjy0,ty);
920             fjz0             = _mm256_add_pd(fjz0,tz);
921
922             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
923             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
924             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
925             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
926
927             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
928
929             /* Inner loop uses 84 flops */
930         }
931
932         /* End of innermost loop */
933
934         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
935                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
936
937         /* Increment number of inner iterations */
938         inneriter                  += j_index_end - j_index_start;
939
940         /* Outer loop uses 18 flops */
941     }
942
943     /* Increment number of outer iterations */
944     outeriter        += nri;
945
946     /* Update outer/inner flops */
947
948     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*84);
949 }