9dd864e9e48a61301faaa8f7cfb807da5a5be3af
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwNone_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            None
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwNone_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     __m256d          dummy_mask,cutoff_mask;
100     __m128           tmpmask0,tmpmask1;
101     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
102     __m256d          one     = _mm256_set1_pd(1.0);
103     __m256d          two     = _mm256_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm256_set1_pd(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     krf              = _mm256_set1_pd(fr->ic->k_rf);
118     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
119     crf              = _mm256_set1_pd(fr->ic->c_rf);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
124     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
125     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = jnrC = jnrD = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131     j_coord_offsetC = 0;
132     j_coord_offsetD = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     for(iidx=0;iidx<4*DIM;iidx++)
138     {
139         scratch[iidx] = 0.0;
140     }
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
158                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
159
160         fix0             = _mm256_setzero_pd();
161         fiy0             = _mm256_setzero_pd();
162         fiz0             = _mm256_setzero_pd();
163         fix1             = _mm256_setzero_pd();
164         fiy1             = _mm256_setzero_pd();
165         fiz1             = _mm256_setzero_pd();
166         fix2             = _mm256_setzero_pd();
167         fiy2             = _mm256_setzero_pd();
168         fiz2             = _mm256_setzero_pd();
169
170         /* Reset potential sums */
171         velecsum         = _mm256_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184             j_coord_offsetC  = DIM*jnrC;
185             j_coord_offsetD  = DIM*jnrD;
186
187             /* load j atom coordinates */
188             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
189                                                  x+j_coord_offsetC,x+j_coord_offsetD,
190                                                  &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm256_sub_pd(ix0,jx0);
194             dy00             = _mm256_sub_pd(iy0,jy0);
195             dz00             = _mm256_sub_pd(iz0,jz0);
196             dx10             = _mm256_sub_pd(ix1,jx0);
197             dy10             = _mm256_sub_pd(iy1,jy0);
198             dz10             = _mm256_sub_pd(iz1,jz0);
199             dx20             = _mm256_sub_pd(ix2,jx0);
200             dy20             = _mm256_sub_pd(iy2,jy0);
201             dz20             = _mm256_sub_pd(iz2,jz0);
202
203             /* Calculate squared distance and things based on it */
204             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
205             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
206             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
207
208             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
209             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
210             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
211
212             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
213             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
214             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
215
216             /* Load parameters for j particles */
217             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
218                                                                  charge+jnrC+0,charge+jnrD+0);
219
220             fjx0             = _mm256_setzero_pd();
221             fjy0             = _mm256_setzero_pd();
222             fjz0             = _mm256_setzero_pd();
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             /* Compute parameters for interactions between i and j atoms */
229             qq00             = _mm256_mul_pd(iq0,jq0);
230
231             /* REACTION-FIELD ELECTROSTATICS */
232             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
233             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
234
235             /* Update potential sum for this i atom from the interaction with this j atom. */
236             velecsum         = _mm256_add_pd(velecsum,velec);
237
238             fscal            = felec;
239
240             /* Calculate temporary vectorial force */
241             tx               = _mm256_mul_pd(fscal,dx00);
242             ty               = _mm256_mul_pd(fscal,dy00);
243             tz               = _mm256_mul_pd(fscal,dz00);
244
245             /* Update vectorial force */
246             fix0             = _mm256_add_pd(fix0,tx);
247             fiy0             = _mm256_add_pd(fiy0,ty);
248             fiz0             = _mm256_add_pd(fiz0,tz);
249
250             fjx0             = _mm256_add_pd(fjx0,tx);
251             fjy0             = _mm256_add_pd(fjy0,ty);
252             fjz0             = _mm256_add_pd(fjz0,tz);
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             /* Compute parameters for interactions between i and j atoms */
259             qq10             = _mm256_mul_pd(iq1,jq0);
260
261             /* REACTION-FIELD ELECTROSTATICS */
262             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
263             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             velecsum         = _mm256_add_pd(velecsum,velec);
267
268             fscal            = felec;
269
270             /* Calculate temporary vectorial force */
271             tx               = _mm256_mul_pd(fscal,dx10);
272             ty               = _mm256_mul_pd(fscal,dy10);
273             tz               = _mm256_mul_pd(fscal,dz10);
274
275             /* Update vectorial force */
276             fix1             = _mm256_add_pd(fix1,tx);
277             fiy1             = _mm256_add_pd(fiy1,ty);
278             fiz1             = _mm256_add_pd(fiz1,tz);
279
280             fjx0             = _mm256_add_pd(fjx0,tx);
281             fjy0             = _mm256_add_pd(fjy0,ty);
282             fjz0             = _mm256_add_pd(fjz0,tz);
283
284             /**************************
285              * CALCULATE INTERACTIONS *
286              **************************/
287
288             /* Compute parameters for interactions between i and j atoms */
289             qq20             = _mm256_mul_pd(iq2,jq0);
290
291             /* REACTION-FIELD ELECTROSTATICS */
292             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
293             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velecsum         = _mm256_add_pd(velecsum,velec);
297
298             fscal            = felec;
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm256_mul_pd(fscal,dx20);
302             ty               = _mm256_mul_pd(fscal,dy20);
303             tz               = _mm256_mul_pd(fscal,dz20);
304
305             /* Update vectorial force */
306             fix2             = _mm256_add_pd(fix2,tx);
307             fiy2             = _mm256_add_pd(fiy2,ty);
308             fiz2             = _mm256_add_pd(fiz2,tz);
309
310             fjx0             = _mm256_add_pd(fjx0,tx);
311             fjy0             = _mm256_add_pd(fjy0,ty);
312             fjz0             = _mm256_add_pd(fjz0,tz);
313
314             fjptrA             = f+j_coord_offsetA;
315             fjptrB             = f+j_coord_offsetB;
316             fjptrC             = f+j_coord_offsetC;
317             fjptrD             = f+j_coord_offsetD;
318
319             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
320
321             /* Inner loop uses 99 flops */
322         }
323
324         if(jidx<j_index_end)
325         {
326
327             /* Get j neighbor index, and coordinate index */
328             jnrlistA         = jjnr[jidx];
329             jnrlistB         = jjnr[jidx+1];
330             jnrlistC         = jjnr[jidx+2];
331             jnrlistD         = jjnr[jidx+3];
332             /* Sign of each element will be negative for non-real atoms.
333              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
334              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
335              */
336             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
337
338             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
339             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
340             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
341
342             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
343             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
344             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
345             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
346             j_coord_offsetA  = DIM*jnrA;
347             j_coord_offsetB  = DIM*jnrB;
348             j_coord_offsetC  = DIM*jnrC;
349             j_coord_offsetD  = DIM*jnrD;
350
351             /* load j atom coordinates */
352             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
353                                                  x+j_coord_offsetC,x+j_coord_offsetD,
354                                                  &jx0,&jy0,&jz0);
355
356             /* Calculate displacement vector */
357             dx00             = _mm256_sub_pd(ix0,jx0);
358             dy00             = _mm256_sub_pd(iy0,jy0);
359             dz00             = _mm256_sub_pd(iz0,jz0);
360             dx10             = _mm256_sub_pd(ix1,jx0);
361             dy10             = _mm256_sub_pd(iy1,jy0);
362             dz10             = _mm256_sub_pd(iz1,jz0);
363             dx20             = _mm256_sub_pd(ix2,jx0);
364             dy20             = _mm256_sub_pd(iy2,jy0);
365             dz20             = _mm256_sub_pd(iz2,jz0);
366
367             /* Calculate squared distance and things based on it */
368             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
369             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
370             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
371
372             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
373             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
374             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
375
376             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
377             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
378             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
379
380             /* Load parameters for j particles */
381             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
382                                                                  charge+jnrC+0,charge+jnrD+0);
383
384             fjx0             = _mm256_setzero_pd();
385             fjy0             = _mm256_setzero_pd();
386             fjz0             = _mm256_setzero_pd();
387
388             /**************************
389              * CALCULATE INTERACTIONS *
390              **************************/
391
392             /* Compute parameters for interactions between i and j atoms */
393             qq00             = _mm256_mul_pd(iq0,jq0);
394
395             /* REACTION-FIELD ELECTROSTATICS */
396             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
397             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
398
399             /* Update potential sum for this i atom from the interaction with this j atom. */
400             velec            = _mm256_andnot_pd(dummy_mask,velec);
401             velecsum         = _mm256_add_pd(velecsum,velec);
402
403             fscal            = felec;
404
405             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
406
407             /* Calculate temporary vectorial force */
408             tx               = _mm256_mul_pd(fscal,dx00);
409             ty               = _mm256_mul_pd(fscal,dy00);
410             tz               = _mm256_mul_pd(fscal,dz00);
411
412             /* Update vectorial force */
413             fix0             = _mm256_add_pd(fix0,tx);
414             fiy0             = _mm256_add_pd(fiy0,ty);
415             fiz0             = _mm256_add_pd(fiz0,tz);
416
417             fjx0             = _mm256_add_pd(fjx0,tx);
418             fjy0             = _mm256_add_pd(fjy0,ty);
419             fjz0             = _mm256_add_pd(fjz0,tz);
420
421             /**************************
422              * CALCULATE INTERACTIONS *
423              **************************/
424
425             /* Compute parameters for interactions between i and j atoms */
426             qq10             = _mm256_mul_pd(iq1,jq0);
427
428             /* REACTION-FIELD ELECTROSTATICS */
429             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
430             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
431
432             /* Update potential sum for this i atom from the interaction with this j atom. */
433             velec            = _mm256_andnot_pd(dummy_mask,velec);
434             velecsum         = _mm256_add_pd(velecsum,velec);
435
436             fscal            = felec;
437
438             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
439
440             /* Calculate temporary vectorial force */
441             tx               = _mm256_mul_pd(fscal,dx10);
442             ty               = _mm256_mul_pd(fscal,dy10);
443             tz               = _mm256_mul_pd(fscal,dz10);
444
445             /* Update vectorial force */
446             fix1             = _mm256_add_pd(fix1,tx);
447             fiy1             = _mm256_add_pd(fiy1,ty);
448             fiz1             = _mm256_add_pd(fiz1,tz);
449
450             fjx0             = _mm256_add_pd(fjx0,tx);
451             fjy0             = _mm256_add_pd(fjy0,ty);
452             fjz0             = _mm256_add_pd(fjz0,tz);
453
454             /**************************
455              * CALCULATE INTERACTIONS *
456              **************************/
457
458             /* Compute parameters for interactions between i and j atoms */
459             qq20             = _mm256_mul_pd(iq2,jq0);
460
461             /* REACTION-FIELD ELECTROSTATICS */
462             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
463             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
464
465             /* Update potential sum for this i atom from the interaction with this j atom. */
466             velec            = _mm256_andnot_pd(dummy_mask,velec);
467             velecsum         = _mm256_add_pd(velecsum,velec);
468
469             fscal            = felec;
470
471             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
472
473             /* Calculate temporary vectorial force */
474             tx               = _mm256_mul_pd(fscal,dx20);
475             ty               = _mm256_mul_pd(fscal,dy20);
476             tz               = _mm256_mul_pd(fscal,dz20);
477
478             /* Update vectorial force */
479             fix2             = _mm256_add_pd(fix2,tx);
480             fiy2             = _mm256_add_pd(fiy2,ty);
481             fiz2             = _mm256_add_pd(fiz2,tz);
482
483             fjx0             = _mm256_add_pd(fjx0,tx);
484             fjy0             = _mm256_add_pd(fjy0,ty);
485             fjz0             = _mm256_add_pd(fjz0,tz);
486
487             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
488             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
489             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
490             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
491
492             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
493
494             /* Inner loop uses 99 flops */
495         }
496
497         /* End of innermost loop */
498
499         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
500                                                  f+i_coord_offset,fshift+i_shift_offset);
501
502         ggid                        = gid[iidx];
503         /* Update potential energies */
504         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
505
506         /* Increment number of inner iterations */
507         inneriter                  += j_index_end - j_index_start;
508
509         /* Outer loop uses 19 flops */
510     }
511
512     /* Increment number of outer iterations */
513     outeriter        += nri;
514
515     /* Update outer/inner flops */
516
517     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*99);
518 }
519 /*
520  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomW3P1_F_avx_256_double
521  * Electrostatics interaction: ReactionField
522  * VdW interaction:            None
523  * Geometry:                   Water3-Particle
524  * Calculate force/pot:        Force
525  */
526 void
527 nb_kernel_ElecRF_VdwNone_GeomW3P1_F_avx_256_double
528                     (t_nblist                    * gmx_restrict       nlist,
529                      rvec                        * gmx_restrict          xx,
530                      rvec                        * gmx_restrict          ff,
531                      t_forcerec                  * gmx_restrict          fr,
532                      t_mdatoms                   * gmx_restrict     mdatoms,
533                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
534                      t_nrnb                      * gmx_restrict        nrnb)
535 {
536     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
537      * just 0 for non-waters.
538      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
539      * jnr indices corresponding to data put in the four positions in the SIMD register.
540      */
541     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
542     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
543     int              jnrA,jnrB,jnrC,jnrD;
544     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
545     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
546     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
547     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
548     real             rcutoff_scalar;
549     real             *shiftvec,*fshift,*x,*f;
550     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
551     real             scratch[4*DIM];
552     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
553     real *           vdwioffsetptr0;
554     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
555     real *           vdwioffsetptr1;
556     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
557     real *           vdwioffsetptr2;
558     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
559     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
560     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
561     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
562     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
563     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
564     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
565     real             *charge;
566     __m256d          dummy_mask,cutoff_mask;
567     __m128           tmpmask0,tmpmask1;
568     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
569     __m256d          one     = _mm256_set1_pd(1.0);
570     __m256d          two     = _mm256_set1_pd(2.0);
571     x                = xx[0];
572     f                = ff[0];
573
574     nri              = nlist->nri;
575     iinr             = nlist->iinr;
576     jindex           = nlist->jindex;
577     jjnr             = nlist->jjnr;
578     shiftidx         = nlist->shift;
579     gid              = nlist->gid;
580     shiftvec         = fr->shift_vec[0];
581     fshift           = fr->fshift[0];
582     facel            = _mm256_set1_pd(fr->epsfac);
583     charge           = mdatoms->chargeA;
584     krf              = _mm256_set1_pd(fr->ic->k_rf);
585     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
586     crf              = _mm256_set1_pd(fr->ic->c_rf);
587
588     /* Setup water-specific parameters */
589     inr              = nlist->iinr[0];
590     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
591     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
592     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
593
594     /* Avoid stupid compiler warnings */
595     jnrA = jnrB = jnrC = jnrD = 0;
596     j_coord_offsetA = 0;
597     j_coord_offsetB = 0;
598     j_coord_offsetC = 0;
599     j_coord_offsetD = 0;
600
601     outeriter        = 0;
602     inneriter        = 0;
603
604     for(iidx=0;iidx<4*DIM;iidx++)
605     {
606         scratch[iidx] = 0.0;
607     }
608
609     /* Start outer loop over neighborlists */
610     for(iidx=0; iidx<nri; iidx++)
611     {
612         /* Load shift vector for this list */
613         i_shift_offset   = DIM*shiftidx[iidx];
614
615         /* Load limits for loop over neighbors */
616         j_index_start    = jindex[iidx];
617         j_index_end      = jindex[iidx+1];
618
619         /* Get outer coordinate index */
620         inr              = iinr[iidx];
621         i_coord_offset   = DIM*inr;
622
623         /* Load i particle coords and add shift vector */
624         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
625                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
626
627         fix0             = _mm256_setzero_pd();
628         fiy0             = _mm256_setzero_pd();
629         fiz0             = _mm256_setzero_pd();
630         fix1             = _mm256_setzero_pd();
631         fiy1             = _mm256_setzero_pd();
632         fiz1             = _mm256_setzero_pd();
633         fix2             = _mm256_setzero_pd();
634         fiy2             = _mm256_setzero_pd();
635         fiz2             = _mm256_setzero_pd();
636
637         /* Start inner kernel loop */
638         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
639         {
640
641             /* Get j neighbor index, and coordinate index */
642             jnrA             = jjnr[jidx];
643             jnrB             = jjnr[jidx+1];
644             jnrC             = jjnr[jidx+2];
645             jnrD             = jjnr[jidx+3];
646             j_coord_offsetA  = DIM*jnrA;
647             j_coord_offsetB  = DIM*jnrB;
648             j_coord_offsetC  = DIM*jnrC;
649             j_coord_offsetD  = DIM*jnrD;
650
651             /* load j atom coordinates */
652             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
653                                                  x+j_coord_offsetC,x+j_coord_offsetD,
654                                                  &jx0,&jy0,&jz0);
655
656             /* Calculate displacement vector */
657             dx00             = _mm256_sub_pd(ix0,jx0);
658             dy00             = _mm256_sub_pd(iy0,jy0);
659             dz00             = _mm256_sub_pd(iz0,jz0);
660             dx10             = _mm256_sub_pd(ix1,jx0);
661             dy10             = _mm256_sub_pd(iy1,jy0);
662             dz10             = _mm256_sub_pd(iz1,jz0);
663             dx20             = _mm256_sub_pd(ix2,jx0);
664             dy20             = _mm256_sub_pd(iy2,jy0);
665             dz20             = _mm256_sub_pd(iz2,jz0);
666
667             /* Calculate squared distance and things based on it */
668             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
669             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
670             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
671
672             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
673             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
674             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
675
676             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
677             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
678             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
679
680             /* Load parameters for j particles */
681             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
682                                                                  charge+jnrC+0,charge+jnrD+0);
683
684             fjx0             = _mm256_setzero_pd();
685             fjy0             = _mm256_setzero_pd();
686             fjz0             = _mm256_setzero_pd();
687
688             /**************************
689              * CALCULATE INTERACTIONS *
690              **************************/
691
692             /* Compute parameters for interactions between i and j atoms */
693             qq00             = _mm256_mul_pd(iq0,jq0);
694
695             /* REACTION-FIELD ELECTROSTATICS */
696             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
697
698             fscal            = felec;
699
700             /* Calculate temporary vectorial force */
701             tx               = _mm256_mul_pd(fscal,dx00);
702             ty               = _mm256_mul_pd(fscal,dy00);
703             tz               = _mm256_mul_pd(fscal,dz00);
704
705             /* Update vectorial force */
706             fix0             = _mm256_add_pd(fix0,tx);
707             fiy0             = _mm256_add_pd(fiy0,ty);
708             fiz0             = _mm256_add_pd(fiz0,tz);
709
710             fjx0             = _mm256_add_pd(fjx0,tx);
711             fjy0             = _mm256_add_pd(fjy0,ty);
712             fjz0             = _mm256_add_pd(fjz0,tz);
713
714             /**************************
715              * CALCULATE INTERACTIONS *
716              **************************/
717
718             /* Compute parameters for interactions between i and j atoms */
719             qq10             = _mm256_mul_pd(iq1,jq0);
720
721             /* REACTION-FIELD ELECTROSTATICS */
722             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
723
724             fscal            = felec;
725
726             /* Calculate temporary vectorial force */
727             tx               = _mm256_mul_pd(fscal,dx10);
728             ty               = _mm256_mul_pd(fscal,dy10);
729             tz               = _mm256_mul_pd(fscal,dz10);
730
731             /* Update vectorial force */
732             fix1             = _mm256_add_pd(fix1,tx);
733             fiy1             = _mm256_add_pd(fiy1,ty);
734             fiz1             = _mm256_add_pd(fiz1,tz);
735
736             fjx0             = _mm256_add_pd(fjx0,tx);
737             fjy0             = _mm256_add_pd(fjy0,ty);
738             fjz0             = _mm256_add_pd(fjz0,tz);
739
740             /**************************
741              * CALCULATE INTERACTIONS *
742              **************************/
743
744             /* Compute parameters for interactions between i and j atoms */
745             qq20             = _mm256_mul_pd(iq2,jq0);
746
747             /* REACTION-FIELD ELECTROSTATICS */
748             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
749
750             fscal            = felec;
751
752             /* Calculate temporary vectorial force */
753             tx               = _mm256_mul_pd(fscal,dx20);
754             ty               = _mm256_mul_pd(fscal,dy20);
755             tz               = _mm256_mul_pd(fscal,dz20);
756
757             /* Update vectorial force */
758             fix2             = _mm256_add_pd(fix2,tx);
759             fiy2             = _mm256_add_pd(fiy2,ty);
760             fiz2             = _mm256_add_pd(fiz2,tz);
761
762             fjx0             = _mm256_add_pd(fjx0,tx);
763             fjy0             = _mm256_add_pd(fjy0,ty);
764             fjz0             = _mm256_add_pd(fjz0,tz);
765
766             fjptrA             = f+j_coord_offsetA;
767             fjptrB             = f+j_coord_offsetB;
768             fjptrC             = f+j_coord_offsetC;
769             fjptrD             = f+j_coord_offsetD;
770
771             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
772
773             /* Inner loop uses 84 flops */
774         }
775
776         if(jidx<j_index_end)
777         {
778
779             /* Get j neighbor index, and coordinate index */
780             jnrlistA         = jjnr[jidx];
781             jnrlistB         = jjnr[jidx+1];
782             jnrlistC         = jjnr[jidx+2];
783             jnrlistD         = jjnr[jidx+3];
784             /* Sign of each element will be negative for non-real atoms.
785              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
786              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
787              */
788             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
789
790             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
791             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
792             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
793
794             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
795             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
796             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
797             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
798             j_coord_offsetA  = DIM*jnrA;
799             j_coord_offsetB  = DIM*jnrB;
800             j_coord_offsetC  = DIM*jnrC;
801             j_coord_offsetD  = DIM*jnrD;
802
803             /* load j atom coordinates */
804             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
805                                                  x+j_coord_offsetC,x+j_coord_offsetD,
806                                                  &jx0,&jy0,&jz0);
807
808             /* Calculate displacement vector */
809             dx00             = _mm256_sub_pd(ix0,jx0);
810             dy00             = _mm256_sub_pd(iy0,jy0);
811             dz00             = _mm256_sub_pd(iz0,jz0);
812             dx10             = _mm256_sub_pd(ix1,jx0);
813             dy10             = _mm256_sub_pd(iy1,jy0);
814             dz10             = _mm256_sub_pd(iz1,jz0);
815             dx20             = _mm256_sub_pd(ix2,jx0);
816             dy20             = _mm256_sub_pd(iy2,jy0);
817             dz20             = _mm256_sub_pd(iz2,jz0);
818
819             /* Calculate squared distance and things based on it */
820             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
821             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
822             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
823
824             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
825             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
826             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
827
828             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
829             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
830             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
831
832             /* Load parameters for j particles */
833             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
834                                                                  charge+jnrC+0,charge+jnrD+0);
835
836             fjx0             = _mm256_setzero_pd();
837             fjy0             = _mm256_setzero_pd();
838             fjz0             = _mm256_setzero_pd();
839
840             /**************************
841              * CALCULATE INTERACTIONS *
842              **************************/
843
844             /* Compute parameters for interactions between i and j atoms */
845             qq00             = _mm256_mul_pd(iq0,jq0);
846
847             /* REACTION-FIELD ELECTROSTATICS */
848             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
849
850             fscal            = felec;
851
852             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
853
854             /* Calculate temporary vectorial force */
855             tx               = _mm256_mul_pd(fscal,dx00);
856             ty               = _mm256_mul_pd(fscal,dy00);
857             tz               = _mm256_mul_pd(fscal,dz00);
858
859             /* Update vectorial force */
860             fix0             = _mm256_add_pd(fix0,tx);
861             fiy0             = _mm256_add_pd(fiy0,ty);
862             fiz0             = _mm256_add_pd(fiz0,tz);
863
864             fjx0             = _mm256_add_pd(fjx0,tx);
865             fjy0             = _mm256_add_pd(fjy0,ty);
866             fjz0             = _mm256_add_pd(fjz0,tz);
867
868             /**************************
869              * CALCULATE INTERACTIONS *
870              **************************/
871
872             /* Compute parameters for interactions between i and j atoms */
873             qq10             = _mm256_mul_pd(iq1,jq0);
874
875             /* REACTION-FIELD ELECTROSTATICS */
876             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
877
878             fscal            = felec;
879
880             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
881
882             /* Calculate temporary vectorial force */
883             tx               = _mm256_mul_pd(fscal,dx10);
884             ty               = _mm256_mul_pd(fscal,dy10);
885             tz               = _mm256_mul_pd(fscal,dz10);
886
887             /* Update vectorial force */
888             fix1             = _mm256_add_pd(fix1,tx);
889             fiy1             = _mm256_add_pd(fiy1,ty);
890             fiz1             = _mm256_add_pd(fiz1,tz);
891
892             fjx0             = _mm256_add_pd(fjx0,tx);
893             fjy0             = _mm256_add_pd(fjy0,ty);
894             fjz0             = _mm256_add_pd(fjz0,tz);
895
896             /**************************
897              * CALCULATE INTERACTIONS *
898              **************************/
899
900             /* Compute parameters for interactions between i and j atoms */
901             qq20             = _mm256_mul_pd(iq2,jq0);
902
903             /* REACTION-FIELD ELECTROSTATICS */
904             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
905
906             fscal            = felec;
907
908             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
909
910             /* Calculate temporary vectorial force */
911             tx               = _mm256_mul_pd(fscal,dx20);
912             ty               = _mm256_mul_pd(fscal,dy20);
913             tz               = _mm256_mul_pd(fscal,dz20);
914
915             /* Update vectorial force */
916             fix2             = _mm256_add_pd(fix2,tx);
917             fiy2             = _mm256_add_pd(fiy2,ty);
918             fiz2             = _mm256_add_pd(fiz2,tz);
919
920             fjx0             = _mm256_add_pd(fjx0,tx);
921             fjy0             = _mm256_add_pd(fjy0,ty);
922             fjz0             = _mm256_add_pd(fjz0,tz);
923
924             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
925             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
926             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
927             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
928
929             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
930
931             /* Inner loop uses 84 flops */
932         }
933
934         /* End of innermost loop */
935
936         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
937                                                  f+i_coord_offset,fshift+i_shift_offset);
938
939         /* Increment number of inner iterations */
940         inneriter                  += j_index_end - j_index_start;
941
942         /* Outer loop uses 18 flops */
943     }
944
945     /* Increment number of outer iterations */
946     outeriter        += nri;
947
948     /* Update outer/inner flops */
949
950     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*84);
951 }