f402fd954e88df96f73b266e1da01542ec916e64
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwNone_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     __m256d          dummy_mask,cutoff_mask;
92     __m128           tmpmask0,tmpmask1;
93     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
94     __m256d          one     = _mm256_set1_pd(1.0);
95     __m256d          two     = _mm256_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm256_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     krf              = _mm256_set1_pd(fr->ic->k_rf);
110     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
111     crf              = _mm256_set1_pd(fr->ic->c_rf);
112
113     /* Avoid stupid compiler warnings */
114     jnrA = jnrB = jnrC = jnrD = 0;
115     j_coord_offsetA = 0;
116     j_coord_offsetB = 0;
117     j_coord_offsetC = 0;
118     j_coord_offsetD = 0;
119
120     outeriter        = 0;
121     inneriter        = 0;
122
123     for(iidx=0;iidx<4*DIM;iidx++)
124     {
125         scratch[iidx] = 0.0;
126     }
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
144
145         fix0             = _mm256_setzero_pd();
146         fiy0             = _mm256_setzero_pd();
147         fiz0             = _mm256_setzero_pd();
148
149         /* Load parameters for i particles */
150         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
151
152         /* Reset potential sums */
153         velecsum         = _mm256_setzero_pd();
154
155         /* Start inner kernel loop */
156         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
157         {
158
159             /* Get j neighbor index, and coordinate index */
160             jnrA             = jjnr[jidx];
161             jnrB             = jjnr[jidx+1];
162             jnrC             = jjnr[jidx+2];
163             jnrD             = jjnr[jidx+3];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166             j_coord_offsetC  = DIM*jnrC;
167             j_coord_offsetD  = DIM*jnrD;
168
169             /* load j atom coordinates */
170             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
171                                                  x+j_coord_offsetC,x+j_coord_offsetD,
172                                                  &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm256_sub_pd(ix0,jx0);
176             dy00             = _mm256_sub_pd(iy0,jy0);
177             dz00             = _mm256_sub_pd(iz0,jz0);
178
179             /* Calculate squared distance and things based on it */
180             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
181
182             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
183
184             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
185
186             /* Load parameters for j particles */
187             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
188                                                                  charge+jnrC+0,charge+jnrD+0);
189
190             /**************************
191              * CALCULATE INTERACTIONS *
192              **************************/
193
194             /* Compute parameters for interactions between i and j atoms */
195             qq00             = _mm256_mul_pd(iq0,jq0);
196
197             /* REACTION-FIELD ELECTROSTATICS */
198             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
199             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
200
201             /* Update potential sum for this i atom from the interaction with this j atom. */
202             velecsum         = _mm256_add_pd(velecsum,velec);
203
204             fscal            = felec;
205
206             /* Calculate temporary vectorial force */
207             tx               = _mm256_mul_pd(fscal,dx00);
208             ty               = _mm256_mul_pd(fscal,dy00);
209             tz               = _mm256_mul_pd(fscal,dz00);
210
211             /* Update vectorial force */
212             fix0             = _mm256_add_pd(fix0,tx);
213             fiy0             = _mm256_add_pd(fiy0,ty);
214             fiz0             = _mm256_add_pd(fiz0,tz);
215
216             fjptrA             = f+j_coord_offsetA;
217             fjptrB             = f+j_coord_offsetB;
218             fjptrC             = f+j_coord_offsetC;
219             fjptrD             = f+j_coord_offsetD;
220             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
221
222             /* Inner loop uses 32 flops */
223         }
224
225         if(jidx<j_index_end)
226         {
227
228             /* Get j neighbor index, and coordinate index */
229             jnrlistA         = jjnr[jidx];
230             jnrlistB         = jjnr[jidx+1];
231             jnrlistC         = jjnr[jidx+2];
232             jnrlistD         = jjnr[jidx+3];
233             /* Sign of each element will be negative for non-real atoms.
234              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
235              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
236              */
237             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
238
239             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
240             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
241             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
242
243             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
244             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
245             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
246             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
247             j_coord_offsetA  = DIM*jnrA;
248             j_coord_offsetB  = DIM*jnrB;
249             j_coord_offsetC  = DIM*jnrC;
250             j_coord_offsetD  = DIM*jnrD;
251
252             /* load j atom coordinates */
253             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
254                                                  x+j_coord_offsetC,x+j_coord_offsetD,
255                                                  &jx0,&jy0,&jz0);
256
257             /* Calculate displacement vector */
258             dx00             = _mm256_sub_pd(ix0,jx0);
259             dy00             = _mm256_sub_pd(iy0,jy0);
260             dz00             = _mm256_sub_pd(iz0,jz0);
261
262             /* Calculate squared distance and things based on it */
263             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
264
265             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
266
267             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
268
269             /* Load parameters for j particles */
270             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
271                                                                  charge+jnrC+0,charge+jnrD+0);
272
273             /**************************
274              * CALCULATE INTERACTIONS *
275              **************************/
276
277             /* Compute parameters for interactions between i and j atoms */
278             qq00             = _mm256_mul_pd(iq0,jq0);
279
280             /* REACTION-FIELD ELECTROSTATICS */
281             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
282             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             velec            = _mm256_andnot_pd(dummy_mask,velec);
286             velecsum         = _mm256_add_pd(velecsum,velec);
287
288             fscal            = felec;
289
290             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
291
292             /* Calculate temporary vectorial force */
293             tx               = _mm256_mul_pd(fscal,dx00);
294             ty               = _mm256_mul_pd(fscal,dy00);
295             tz               = _mm256_mul_pd(fscal,dz00);
296
297             /* Update vectorial force */
298             fix0             = _mm256_add_pd(fix0,tx);
299             fiy0             = _mm256_add_pd(fiy0,ty);
300             fiz0             = _mm256_add_pd(fiz0,tz);
301
302             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
303             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
304             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
305             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
306             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
307
308             /* Inner loop uses 32 flops */
309         }
310
311         /* End of innermost loop */
312
313         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
314                                                  f+i_coord_offset,fshift+i_shift_offset);
315
316         ggid                        = gid[iidx];
317         /* Update potential energies */
318         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
319
320         /* Increment number of inner iterations */
321         inneriter                  += j_index_end - j_index_start;
322
323         /* Outer loop uses 8 flops */
324     }
325
326     /* Increment number of outer iterations */
327     outeriter        += nri;
328
329     /* Update outer/inner flops */
330
331     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*32);
332 }
333 /*
334  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomP1P1_F_avx_256_double
335  * Electrostatics interaction: ReactionField
336  * VdW interaction:            None
337  * Geometry:                   Particle-Particle
338  * Calculate force/pot:        Force
339  */
340 void
341 nb_kernel_ElecRF_VdwNone_GeomP1P1_F_avx_256_double
342                     (t_nblist                    * gmx_restrict       nlist,
343                      rvec                        * gmx_restrict          xx,
344                      rvec                        * gmx_restrict          ff,
345                      t_forcerec                  * gmx_restrict          fr,
346                      t_mdatoms                   * gmx_restrict     mdatoms,
347                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
348                      t_nrnb                      * gmx_restrict        nrnb)
349 {
350     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
351      * just 0 for non-waters.
352      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
353      * jnr indices corresponding to data put in the four positions in the SIMD register.
354      */
355     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
356     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
357     int              jnrA,jnrB,jnrC,jnrD;
358     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
359     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
360     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
361     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
362     real             rcutoff_scalar;
363     real             *shiftvec,*fshift,*x,*f;
364     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
365     real             scratch[4*DIM];
366     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
367     real *           vdwioffsetptr0;
368     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
369     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
370     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
371     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
372     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
373     real             *charge;
374     __m256d          dummy_mask,cutoff_mask;
375     __m128           tmpmask0,tmpmask1;
376     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
377     __m256d          one     = _mm256_set1_pd(1.0);
378     __m256d          two     = _mm256_set1_pd(2.0);
379     x                = xx[0];
380     f                = ff[0];
381
382     nri              = nlist->nri;
383     iinr             = nlist->iinr;
384     jindex           = nlist->jindex;
385     jjnr             = nlist->jjnr;
386     shiftidx         = nlist->shift;
387     gid              = nlist->gid;
388     shiftvec         = fr->shift_vec[0];
389     fshift           = fr->fshift[0];
390     facel            = _mm256_set1_pd(fr->epsfac);
391     charge           = mdatoms->chargeA;
392     krf              = _mm256_set1_pd(fr->ic->k_rf);
393     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
394     crf              = _mm256_set1_pd(fr->ic->c_rf);
395
396     /* Avoid stupid compiler warnings */
397     jnrA = jnrB = jnrC = jnrD = 0;
398     j_coord_offsetA = 0;
399     j_coord_offsetB = 0;
400     j_coord_offsetC = 0;
401     j_coord_offsetD = 0;
402
403     outeriter        = 0;
404     inneriter        = 0;
405
406     for(iidx=0;iidx<4*DIM;iidx++)
407     {
408         scratch[iidx] = 0.0;
409     }
410
411     /* Start outer loop over neighborlists */
412     for(iidx=0; iidx<nri; iidx++)
413     {
414         /* Load shift vector for this list */
415         i_shift_offset   = DIM*shiftidx[iidx];
416
417         /* Load limits for loop over neighbors */
418         j_index_start    = jindex[iidx];
419         j_index_end      = jindex[iidx+1];
420
421         /* Get outer coordinate index */
422         inr              = iinr[iidx];
423         i_coord_offset   = DIM*inr;
424
425         /* Load i particle coords and add shift vector */
426         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
427
428         fix0             = _mm256_setzero_pd();
429         fiy0             = _mm256_setzero_pd();
430         fiz0             = _mm256_setzero_pd();
431
432         /* Load parameters for i particles */
433         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
434
435         /* Start inner kernel loop */
436         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
437         {
438
439             /* Get j neighbor index, and coordinate index */
440             jnrA             = jjnr[jidx];
441             jnrB             = jjnr[jidx+1];
442             jnrC             = jjnr[jidx+2];
443             jnrD             = jjnr[jidx+3];
444             j_coord_offsetA  = DIM*jnrA;
445             j_coord_offsetB  = DIM*jnrB;
446             j_coord_offsetC  = DIM*jnrC;
447             j_coord_offsetD  = DIM*jnrD;
448
449             /* load j atom coordinates */
450             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
451                                                  x+j_coord_offsetC,x+j_coord_offsetD,
452                                                  &jx0,&jy0,&jz0);
453
454             /* Calculate displacement vector */
455             dx00             = _mm256_sub_pd(ix0,jx0);
456             dy00             = _mm256_sub_pd(iy0,jy0);
457             dz00             = _mm256_sub_pd(iz0,jz0);
458
459             /* Calculate squared distance and things based on it */
460             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
461
462             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
463
464             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
465
466             /* Load parameters for j particles */
467             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
468                                                                  charge+jnrC+0,charge+jnrD+0);
469
470             /**************************
471              * CALCULATE INTERACTIONS *
472              **************************/
473
474             /* Compute parameters for interactions between i and j atoms */
475             qq00             = _mm256_mul_pd(iq0,jq0);
476
477             /* REACTION-FIELD ELECTROSTATICS */
478             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
479
480             fscal            = felec;
481
482             /* Calculate temporary vectorial force */
483             tx               = _mm256_mul_pd(fscal,dx00);
484             ty               = _mm256_mul_pd(fscal,dy00);
485             tz               = _mm256_mul_pd(fscal,dz00);
486
487             /* Update vectorial force */
488             fix0             = _mm256_add_pd(fix0,tx);
489             fiy0             = _mm256_add_pd(fiy0,ty);
490             fiz0             = _mm256_add_pd(fiz0,tz);
491
492             fjptrA             = f+j_coord_offsetA;
493             fjptrB             = f+j_coord_offsetB;
494             fjptrC             = f+j_coord_offsetC;
495             fjptrD             = f+j_coord_offsetD;
496             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
497
498             /* Inner loop uses 27 flops */
499         }
500
501         if(jidx<j_index_end)
502         {
503
504             /* Get j neighbor index, and coordinate index */
505             jnrlistA         = jjnr[jidx];
506             jnrlistB         = jjnr[jidx+1];
507             jnrlistC         = jjnr[jidx+2];
508             jnrlistD         = jjnr[jidx+3];
509             /* Sign of each element will be negative for non-real atoms.
510              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
511              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
512              */
513             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
514
515             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
516             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
517             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
518
519             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
520             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
521             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
522             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
523             j_coord_offsetA  = DIM*jnrA;
524             j_coord_offsetB  = DIM*jnrB;
525             j_coord_offsetC  = DIM*jnrC;
526             j_coord_offsetD  = DIM*jnrD;
527
528             /* load j atom coordinates */
529             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
530                                                  x+j_coord_offsetC,x+j_coord_offsetD,
531                                                  &jx0,&jy0,&jz0);
532
533             /* Calculate displacement vector */
534             dx00             = _mm256_sub_pd(ix0,jx0);
535             dy00             = _mm256_sub_pd(iy0,jy0);
536             dz00             = _mm256_sub_pd(iz0,jz0);
537
538             /* Calculate squared distance and things based on it */
539             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
540
541             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
542
543             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
544
545             /* Load parameters for j particles */
546             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
547                                                                  charge+jnrC+0,charge+jnrD+0);
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             /* Compute parameters for interactions between i and j atoms */
554             qq00             = _mm256_mul_pd(iq0,jq0);
555
556             /* REACTION-FIELD ELECTROSTATICS */
557             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
558
559             fscal            = felec;
560
561             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
562
563             /* Calculate temporary vectorial force */
564             tx               = _mm256_mul_pd(fscal,dx00);
565             ty               = _mm256_mul_pd(fscal,dy00);
566             tz               = _mm256_mul_pd(fscal,dz00);
567
568             /* Update vectorial force */
569             fix0             = _mm256_add_pd(fix0,tx);
570             fiy0             = _mm256_add_pd(fiy0,ty);
571             fiz0             = _mm256_add_pd(fiz0,tz);
572
573             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
574             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
575             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
576             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
577             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
578
579             /* Inner loop uses 27 flops */
580         }
581
582         /* End of innermost loop */
583
584         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
585                                                  f+i_coord_offset,fshift+i_shift_offset);
586
587         /* Increment number of inner iterations */
588         inneriter                  += j_index_end - j_index_start;
589
590         /* Outer loop uses 7 flops */
591     }
592
593     /* Increment number of outer iterations */
594     outeriter        += nri;
595
596     /* Update outer/inner flops */
597
598     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*27);
599 }