Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwNone_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m256d          dummy_mask,cutoff_mask;
94     __m128           tmpmask0,tmpmask1;
95     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
96     __m256d          one     = _mm256_set1_pd(1.0);
97     __m256d          two     = _mm256_set1_pd(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm256_set1_pd(fr->epsfac);
110     charge           = mdatoms->chargeA;
111     krf              = _mm256_set1_pd(fr->ic->k_rf);
112     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
113     crf              = _mm256_set1_pd(fr->ic->c_rf);
114
115     /* Avoid stupid compiler warnings */
116     jnrA = jnrB = jnrC = jnrD = 0;
117     j_coord_offsetA = 0;
118     j_coord_offsetB = 0;
119     j_coord_offsetC = 0;
120     j_coord_offsetD = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     for(iidx=0;iidx<4*DIM;iidx++)
126     {
127         scratch[iidx] = 0.0;
128     }
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
146
147         fix0             = _mm256_setzero_pd();
148         fiy0             = _mm256_setzero_pd();
149         fiz0             = _mm256_setzero_pd();
150
151         /* Load parameters for i particles */
152         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
153
154         /* Reset potential sums */
155         velecsum         = _mm256_setzero_pd();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             jnrC             = jjnr[jidx+2];
165             jnrD             = jjnr[jidx+3];
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168             j_coord_offsetC  = DIM*jnrC;
169             j_coord_offsetD  = DIM*jnrD;
170
171             /* load j atom coordinates */
172             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
173                                                  x+j_coord_offsetC,x+j_coord_offsetD,
174                                                  &jx0,&jy0,&jz0);
175
176             /* Calculate displacement vector */
177             dx00             = _mm256_sub_pd(ix0,jx0);
178             dy00             = _mm256_sub_pd(iy0,jy0);
179             dz00             = _mm256_sub_pd(iz0,jz0);
180
181             /* Calculate squared distance and things based on it */
182             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
183
184             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
185
186             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
187
188             /* Load parameters for j particles */
189             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
190                                                                  charge+jnrC+0,charge+jnrD+0);
191
192             /**************************
193              * CALCULATE INTERACTIONS *
194              **************************/
195
196             /* Compute parameters for interactions between i and j atoms */
197             qq00             = _mm256_mul_pd(iq0,jq0);
198
199             /* REACTION-FIELD ELECTROSTATICS */
200             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
201             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
202
203             /* Update potential sum for this i atom from the interaction with this j atom. */
204             velecsum         = _mm256_add_pd(velecsum,velec);
205
206             fscal            = felec;
207
208             /* Calculate temporary vectorial force */
209             tx               = _mm256_mul_pd(fscal,dx00);
210             ty               = _mm256_mul_pd(fscal,dy00);
211             tz               = _mm256_mul_pd(fscal,dz00);
212
213             /* Update vectorial force */
214             fix0             = _mm256_add_pd(fix0,tx);
215             fiy0             = _mm256_add_pd(fiy0,ty);
216             fiz0             = _mm256_add_pd(fiz0,tz);
217
218             fjptrA             = f+j_coord_offsetA;
219             fjptrB             = f+j_coord_offsetB;
220             fjptrC             = f+j_coord_offsetC;
221             fjptrD             = f+j_coord_offsetD;
222             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
223
224             /* Inner loop uses 32 flops */
225         }
226
227         if(jidx<j_index_end)
228         {
229
230             /* Get j neighbor index, and coordinate index */
231             jnrlistA         = jjnr[jidx];
232             jnrlistB         = jjnr[jidx+1];
233             jnrlistC         = jjnr[jidx+2];
234             jnrlistD         = jjnr[jidx+3];
235             /* Sign of each element will be negative for non-real atoms.
236              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
237              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
238              */
239             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
240
241             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
242             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
243             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
244
245             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
246             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
247             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
248             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
249             j_coord_offsetA  = DIM*jnrA;
250             j_coord_offsetB  = DIM*jnrB;
251             j_coord_offsetC  = DIM*jnrC;
252             j_coord_offsetD  = DIM*jnrD;
253
254             /* load j atom coordinates */
255             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
256                                                  x+j_coord_offsetC,x+j_coord_offsetD,
257                                                  &jx0,&jy0,&jz0);
258
259             /* Calculate displacement vector */
260             dx00             = _mm256_sub_pd(ix0,jx0);
261             dy00             = _mm256_sub_pd(iy0,jy0);
262             dz00             = _mm256_sub_pd(iz0,jz0);
263
264             /* Calculate squared distance and things based on it */
265             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
266
267             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
268
269             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
270
271             /* Load parameters for j particles */
272             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
273                                                                  charge+jnrC+0,charge+jnrD+0);
274
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             /* Compute parameters for interactions between i and j atoms */
280             qq00             = _mm256_mul_pd(iq0,jq0);
281
282             /* REACTION-FIELD ELECTROSTATICS */
283             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
284             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             velec            = _mm256_andnot_pd(dummy_mask,velec);
288             velecsum         = _mm256_add_pd(velecsum,velec);
289
290             fscal            = felec;
291
292             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm256_mul_pd(fscal,dx00);
296             ty               = _mm256_mul_pd(fscal,dy00);
297             tz               = _mm256_mul_pd(fscal,dz00);
298
299             /* Update vectorial force */
300             fix0             = _mm256_add_pd(fix0,tx);
301             fiy0             = _mm256_add_pd(fiy0,ty);
302             fiz0             = _mm256_add_pd(fiz0,tz);
303
304             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
305             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
306             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
307             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
308             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
309
310             /* Inner loop uses 32 flops */
311         }
312
313         /* End of innermost loop */
314
315         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
316                                                  f+i_coord_offset,fshift+i_shift_offset);
317
318         ggid                        = gid[iidx];
319         /* Update potential energies */
320         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
321
322         /* Increment number of inner iterations */
323         inneriter                  += j_index_end - j_index_start;
324
325         /* Outer loop uses 8 flops */
326     }
327
328     /* Increment number of outer iterations */
329     outeriter        += nri;
330
331     /* Update outer/inner flops */
332
333     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*32);
334 }
335 /*
336  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomP1P1_F_avx_256_double
337  * Electrostatics interaction: ReactionField
338  * VdW interaction:            None
339  * Geometry:                   Particle-Particle
340  * Calculate force/pot:        Force
341  */
342 void
343 nb_kernel_ElecRF_VdwNone_GeomP1P1_F_avx_256_double
344                     (t_nblist                    * gmx_restrict       nlist,
345                      rvec                        * gmx_restrict          xx,
346                      rvec                        * gmx_restrict          ff,
347                      t_forcerec                  * gmx_restrict          fr,
348                      t_mdatoms                   * gmx_restrict     mdatoms,
349                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
350                      t_nrnb                      * gmx_restrict        nrnb)
351 {
352     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
353      * just 0 for non-waters.
354      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
355      * jnr indices corresponding to data put in the four positions in the SIMD register.
356      */
357     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
358     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
359     int              jnrA,jnrB,jnrC,jnrD;
360     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
361     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
362     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
363     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
364     real             rcutoff_scalar;
365     real             *shiftvec,*fshift,*x,*f;
366     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
367     real             scratch[4*DIM];
368     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
369     real *           vdwioffsetptr0;
370     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
371     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
372     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
373     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
374     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
375     real             *charge;
376     __m256d          dummy_mask,cutoff_mask;
377     __m128           tmpmask0,tmpmask1;
378     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
379     __m256d          one     = _mm256_set1_pd(1.0);
380     __m256d          two     = _mm256_set1_pd(2.0);
381     x                = xx[0];
382     f                = ff[0];
383
384     nri              = nlist->nri;
385     iinr             = nlist->iinr;
386     jindex           = nlist->jindex;
387     jjnr             = nlist->jjnr;
388     shiftidx         = nlist->shift;
389     gid              = nlist->gid;
390     shiftvec         = fr->shift_vec[0];
391     fshift           = fr->fshift[0];
392     facel            = _mm256_set1_pd(fr->epsfac);
393     charge           = mdatoms->chargeA;
394     krf              = _mm256_set1_pd(fr->ic->k_rf);
395     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
396     crf              = _mm256_set1_pd(fr->ic->c_rf);
397
398     /* Avoid stupid compiler warnings */
399     jnrA = jnrB = jnrC = jnrD = 0;
400     j_coord_offsetA = 0;
401     j_coord_offsetB = 0;
402     j_coord_offsetC = 0;
403     j_coord_offsetD = 0;
404
405     outeriter        = 0;
406     inneriter        = 0;
407
408     for(iidx=0;iidx<4*DIM;iidx++)
409     {
410         scratch[iidx] = 0.0;
411     }
412
413     /* Start outer loop over neighborlists */
414     for(iidx=0; iidx<nri; iidx++)
415     {
416         /* Load shift vector for this list */
417         i_shift_offset   = DIM*shiftidx[iidx];
418
419         /* Load limits for loop over neighbors */
420         j_index_start    = jindex[iidx];
421         j_index_end      = jindex[iidx+1];
422
423         /* Get outer coordinate index */
424         inr              = iinr[iidx];
425         i_coord_offset   = DIM*inr;
426
427         /* Load i particle coords and add shift vector */
428         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
429
430         fix0             = _mm256_setzero_pd();
431         fiy0             = _mm256_setzero_pd();
432         fiz0             = _mm256_setzero_pd();
433
434         /* Load parameters for i particles */
435         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
436
437         /* Start inner kernel loop */
438         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
439         {
440
441             /* Get j neighbor index, and coordinate index */
442             jnrA             = jjnr[jidx];
443             jnrB             = jjnr[jidx+1];
444             jnrC             = jjnr[jidx+2];
445             jnrD             = jjnr[jidx+3];
446             j_coord_offsetA  = DIM*jnrA;
447             j_coord_offsetB  = DIM*jnrB;
448             j_coord_offsetC  = DIM*jnrC;
449             j_coord_offsetD  = DIM*jnrD;
450
451             /* load j atom coordinates */
452             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
453                                                  x+j_coord_offsetC,x+j_coord_offsetD,
454                                                  &jx0,&jy0,&jz0);
455
456             /* Calculate displacement vector */
457             dx00             = _mm256_sub_pd(ix0,jx0);
458             dy00             = _mm256_sub_pd(iy0,jy0);
459             dz00             = _mm256_sub_pd(iz0,jz0);
460
461             /* Calculate squared distance and things based on it */
462             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
463
464             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
465
466             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
467
468             /* Load parameters for j particles */
469             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
470                                                                  charge+jnrC+0,charge+jnrD+0);
471
472             /**************************
473              * CALCULATE INTERACTIONS *
474              **************************/
475
476             /* Compute parameters for interactions between i and j atoms */
477             qq00             = _mm256_mul_pd(iq0,jq0);
478
479             /* REACTION-FIELD ELECTROSTATICS */
480             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
481
482             fscal            = felec;
483
484             /* Calculate temporary vectorial force */
485             tx               = _mm256_mul_pd(fscal,dx00);
486             ty               = _mm256_mul_pd(fscal,dy00);
487             tz               = _mm256_mul_pd(fscal,dz00);
488
489             /* Update vectorial force */
490             fix0             = _mm256_add_pd(fix0,tx);
491             fiy0             = _mm256_add_pd(fiy0,ty);
492             fiz0             = _mm256_add_pd(fiz0,tz);
493
494             fjptrA             = f+j_coord_offsetA;
495             fjptrB             = f+j_coord_offsetB;
496             fjptrC             = f+j_coord_offsetC;
497             fjptrD             = f+j_coord_offsetD;
498             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
499
500             /* Inner loop uses 27 flops */
501         }
502
503         if(jidx<j_index_end)
504         {
505
506             /* Get j neighbor index, and coordinate index */
507             jnrlistA         = jjnr[jidx];
508             jnrlistB         = jjnr[jidx+1];
509             jnrlistC         = jjnr[jidx+2];
510             jnrlistD         = jjnr[jidx+3];
511             /* Sign of each element will be negative for non-real atoms.
512              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
513              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
514              */
515             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
516
517             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
518             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
519             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
520
521             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
522             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
523             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
524             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
525             j_coord_offsetA  = DIM*jnrA;
526             j_coord_offsetB  = DIM*jnrB;
527             j_coord_offsetC  = DIM*jnrC;
528             j_coord_offsetD  = DIM*jnrD;
529
530             /* load j atom coordinates */
531             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
532                                                  x+j_coord_offsetC,x+j_coord_offsetD,
533                                                  &jx0,&jy0,&jz0);
534
535             /* Calculate displacement vector */
536             dx00             = _mm256_sub_pd(ix0,jx0);
537             dy00             = _mm256_sub_pd(iy0,jy0);
538             dz00             = _mm256_sub_pd(iz0,jz0);
539
540             /* Calculate squared distance and things based on it */
541             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
542
543             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
544
545             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
546
547             /* Load parameters for j particles */
548             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
549                                                                  charge+jnrC+0,charge+jnrD+0);
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             /* Compute parameters for interactions between i and j atoms */
556             qq00             = _mm256_mul_pd(iq0,jq0);
557
558             /* REACTION-FIELD ELECTROSTATICS */
559             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
560
561             fscal            = felec;
562
563             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
564
565             /* Calculate temporary vectorial force */
566             tx               = _mm256_mul_pd(fscal,dx00);
567             ty               = _mm256_mul_pd(fscal,dy00);
568             tz               = _mm256_mul_pd(fscal,dz00);
569
570             /* Update vectorial force */
571             fix0             = _mm256_add_pd(fix0,tx);
572             fiy0             = _mm256_add_pd(fiy0,ty);
573             fiz0             = _mm256_add_pd(fiz0,tz);
574
575             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
576             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
577             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
578             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
579             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
580
581             /* Inner loop uses 27 flops */
582         }
583
584         /* End of innermost loop */
585
586         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
587                                                  f+i_coord_offset,fshift+i_shift_offset);
588
589         /* Increment number of inner iterations */
590         inneriter                  += j_index_end - j_index_start;
591
592         /* Outer loop uses 7 flops */
593     }
594
595     /* Increment number of outer iterations */
596     outeriter        += nri;
597
598     /* Update outer/inner flops */
599
600     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*27);
601 }