Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwLJ_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
95     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
107     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
108     __m256d          dummy_mask,cutoff_mask;
109     __m128           tmpmask0,tmpmask1;
110     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
111     __m256d          one     = _mm256_set1_pd(1.0);
112     __m256d          two     = _mm256_set1_pd(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm256_set1_pd(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     krf              = _mm256_set1_pd(fr->ic->k_rf);
127     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
128     crf              = _mm256_set1_pd(fr->ic->c_rf);
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
136     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
137     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
138     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
172
173         fix0             = _mm256_setzero_pd();
174         fiy0             = _mm256_setzero_pd();
175         fiz0             = _mm256_setzero_pd();
176         fix1             = _mm256_setzero_pd();
177         fiy1             = _mm256_setzero_pd();
178         fiz1             = _mm256_setzero_pd();
179         fix2             = _mm256_setzero_pd();
180         fiy2             = _mm256_setzero_pd();
181         fiz2             = _mm256_setzero_pd();
182         fix3             = _mm256_setzero_pd();
183         fiy3             = _mm256_setzero_pd();
184         fiz3             = _mm256_setzero_pd();
185
186         /* Reset potential sums */
187         velecsum         = _mm256_setzero_pd();
188         vvdwsum          = _mm256_setzero_pd();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203
204             /* load j atom coordinates */
205             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
206                                                  x+j_coord_offsetC,x+j_coord_offsetD,
207                                                  &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm256_sub_pd(ix0,jx0);
211             dy00             = _mm256_sub_pd(iy0,jy0);
212             dz00             = _mm256_sub_pd(iz0,jz0);
213             dx10             = _mm256_sub_pd(ix1,jx0);
214             dy10             = _mm256_sub_pd(iy1,jy0);
215             dz10             = _mm256_sub_pd(iz1,jz0);
216             dx20             = _mm256_sub_pd(ix2,jx0);
217             dy20             = _mm256_sub_pd(iy2,jy0);
218             dz20             = _mm256_sub_pd(iz2,jz0);
219             dx30             = _mm256_sub_pd(ix3,jx0);
220             dy30             = _mm256_sub_pd(iy3,jy0);
221             dz30             = _mm256_sub_pd(iz3,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
225             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
226             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
227             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
228
229             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
230             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
231             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
232
233             rinvsq00         = gmx_mm256_inv_pd(rsq00);
234             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
235             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
236             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
237
238             /* Load parameters for j particles */
239             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
240                                                                  charge+jnrC+0,charge+jnrD+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243             vdwjidx0C        = 2*vdwtype[jnrC+0];
244             vdwjidx0D        = 2*vdwtype[jnrD+0];
245
246             fjx0             = _mm256_setzero_pd();
247             fjy0             = _mm256_setzero_pd();
248             fjz0             = _mm256_setzero_pd();
249
250             /**************************
251              * CALCULATE INTERACTIONS *
252              **************************/
253
254             /* Compute parameters for interactions between i and j atoms */
255             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
256                                             vdwioffsetptr0+vdwjidx0B,
257                                             vdwioffsetptr0+vdwjidx0C,
258                                             vdwioffsetptr0+vdwjidx0D,
259                                             &c6_00,&c12_00);
260
261             /* LENNARD-JONES DISPERSION/REPULSION */
262
263             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
264             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
265             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
266             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
267             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
268
269             /* Update potential sum for this i atom from the interaction with this j atom. */
270             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
271
272             fscal            = fvdw;
273
274             /* Calculate temporary vectorial force */
275             tx               = _mm256_mul_pd(fscal,dx00);
276             ty               = _mm256_mul_pd(fscal,dy00);
277             tz               = _mm256_mul_pd(fscal,dz00);
278
279             /* Update vectorial force */
280             fix0             = _mm256_add_pd(fix0,tx);
281             fiy0             = _mm256_add_pd(fiy0,ty);
282             fiz0             = _mm256_add_pd(fiz0,tz);
283
284             fjx0             = _mm256_add_pd(fjx0,tx);
285             fjy0             = _mm256_add_pd(fjy0,ty);
286             fjz0             = _mm256_add_pd(fjz0,tz);
287
288             /**************************
289              * CALCULATE INTERACTIONS *
290              **************************/
291
292             /* Compute parameters for interactions between i and j atoms */
293             qq10             = _mm256_mul_pd(iq1,jq0);
294
295             /* REACTION-FIELD ELECTROSTATICS */
296             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
297             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velecsum         = _mm256_add_pd(velecsum,velec);
301
302             fscal            = felec;
303
304             /* Calculate temporary vectorial force */
305             tx               = _mm256_mul_pd(fscal,dx10);
306             ty               = _mm256_mul_pd(fscal,dy10);
307             tz               = _mm256_mul_pd(fscal,dz10);
308
309             /* Update vectorial force */
310             fix1             = _mm256_add_pd(fix1,tx);
311             fiy1             = _mm256_add_pd(fiy1,ty);
312             fiz1             = _mm256_add_pd(fiz1,tz);
313
314             fjx0             = _mm256_add_pd(fjx0,tx);
315             fjy0             = _mm256_add_pd(fjy0,ty);
316             fjz0             = _mm256_add_pd(fjz0,tz);
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq20             = _mm256_mul_pd(iq2,jq0);
324
325             /* REACTION-FIELD ELECTROSTATICS */
326             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
327             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velecsum         = _mm256_add_pd(velecsum,velec);
331
332             fscal            = felec;
333
334             /* Calculate temporary vectorial force */
335             tx               = _mm256_mul_pd(fscal,dx20);
336             ty               = _mm256_mul_pd(fscal,dy20);
337             tz               = _mm256_mul_pd(fscal,dz20);
338
339             /* Update vectorial force */
340             fix2             = _mm256_add_pd(fix2,tx);
341             fiy2             = _mm256_add_pd(fiy2,ty);
342             fiz2             = _mm256_add_pd(fiz2,tz);
343
344             fjx0             = _mm256_add_pd(fjx0,tx);
345             fjy0             = _mm256_add_pd(fjy0,ty);
346             fjz0             = _mm256_add_pd(fjz0,tz);
347
348             /**************************
349              * CALCULATE INTERACTIONS *
350              **************************/
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq30             = _mm256_mul_pd(iq3,jq0);
354
355             /* REACTION-FIELD ELECTROSTATICS */
356             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
357             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velecsum         = _mm256_add_pd(velecsum,velec);
361
362             fscal            = felec;
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm256_mul_pd(fscal,dx30);
366             ty               = _mm256_mul_pd(fscal,dy30);
367             tz               = _mm256_mul_pd(fscal,dz30);
368
369             /* Update vectorial force */
370             fix3             = _mm256_add_pd(fix3,tx);
371             fiy3             = _mm256_add_pd(fiy3,ty);
372             fiz3             = _mm256_add_pd(fiz3,tz);
373
374             fjx0             = _mm256_add_pd(fjx0,tx);
375             fjy0             = _mm256_add_pd(fjy0,ty);
376             fjz0             = _mm256_add_pd(fjz0,tz);
377
378             fjptrA             = f+j_coord_offsetA;
379             fjptrB             = f+j_coord_offsetB;
380             fjptrC             = f+j_coord_offsetC;
381             fjptrD             = f+j_coord_offsetD;
382
383             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
384
385             /* Inner loop uses 131 flops */
386         }
387
388         if(jidx<j_index_end)
389         {
390
391             /* Get j neighbor index, and coordinate index */
392             jnrlistA         = jjnr[jidx];
393             jnrlistB         = jjnr[jidx+1];
394             jnrlistC         = jjnr[jidx+2];
395             jnrlistD         = jjnr[jidx+3];
396             /* Sign of each element will be negative for non-real atoms.
397              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
398              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
399              */
400             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
401
402             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
403             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
404             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
405
406             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
407             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
408             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
409             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
410             j_coord_offsetA  = DIM*jnrA;
411             j_coord_offsetB  = DIM*jnrB;
412             j_coord_offsetC  = DIM*jnrC;
413             j_coord_offsetD  = DIM*jnrD;
414
415             /* load j atom coordinates */
416             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
417                                                  x+j_coord_offsetC,x+j_coord_offsetD,
418                                                  &jx0,&jy0,&jz0);
419
420             /* Calculate displacement vector */
421             dx00             = _mm256_sub_pd(ix0,jx0);
422             dy00             = _mm256_sub_pd(iy0,jy0);
423             dz00             = _mm256_sub_pd(iz0,jz0);
424             dx10             = _mm256_sub_pd(ix1,jx0);
425             dy10             = _mm256_sub_pd(iy1,jy0);
426             dz10             = _mm256_sub_pd(iz1,jz0);
427             dx20             = _mm256_sub_pd(ix2,jx0);
428             dy20             = _mm256_sub_pd(iy2,jy0);
429             dz20             = _mm256_sub_pd(iz2,jz0);
430             dx30             = _mm256_sub_pd(ix3,jx0);
431             dy30             = _mm256_sub_pd(iy3,jy0);
432             dz30             = _mm256_sub_pd(iz3,jz0);
433
434             /* Calculate squared distance and things based on it */
435             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
436             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
437             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
438             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
439
440             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
441             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
442             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
443
444             rinvsq00         = gmx_mm256_inv_pd(rsq00);
445             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
446             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
447             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
448
449             /* Load parameters for j particles */
450             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
451                                                                  charge+jnrC+0,charge+jnrD+0);
452             vdwjidx0A        = 2*vdwtype[jnrA+0];
453             vdwjidx0B        = 2*vdwtype[jnrB+0];
454             vdwjidx0C        = 2*vdwtype[jnrC+0];
455             vdwjidx0D        = 2*vdwtype[jnrD+0];
456
457             fjx0             = _mm256_setzero_pd();
458             fjy0             = _mm256_setzero_pd();
459             fjz0             = _mm256_setzero_pd();
460
461             /**************************
462              * CALCULATE INTERACTIONS *
463              **************************/
464
465             /* Compute parameters for interactions between i and j atoms */
466             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
467                                             vdwioffsetptr0+vdwjidx0B,
468                                             vdwioffsetptr0+vdwjidx0C,
469                                             vdwioffsetptr0+vdwjidx0D,
470                                             &c6_00,&c12_00);
471
472             /* LENNARD-JONES DISPERSION/REPULSION */
473
474             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
475             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
476             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
477             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
478             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
479
480             /* Update potential sum for this i atom from the interaction with this j atom. */
481             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
482             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
483
484             fscal            = fvdw;
485
486             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
487
488             /* Calculate temporary vectorial force */
489             tx               = _mm256_mul_pd(fscal,dx00);
490             ty               = _mm256_mul_pd(fscal,dy00);
491             tz               = _mm256_mul_pd(fscal,dz00);
492
493             /* Update vectorial force */
494             fix0             = _mm256_add_pd(fix0,tx);
495             fiy0             = _mm256_add_pd(fiy0,ty);
496             fiz0             = _mm256_add_pd(fiz0,tz);
497
498             fjx0             = _mm256_add_pd(fjx0,tx);
499             fjy0             = _mm256_add_pd(fjy0,ty);
500             fjz0             = _mm256_add_pd(fjz0,tz);
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             /* Compute parameters for interactions between i and j atoms */
507             qq10             = _mm256_mul_pd(iq1,jq0);
508
509             /* REACTION-FIELD ELECTROSTATICS */
510             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
511             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
512
513             /* Update potential sum for this i atom from the interaction with this j atom. */
514             velec            = _mm256_andnot_pd(dummy_mask,velec);
515             velecsum         = _mm256_add_pd(velecsum,velec);
516
517             fscal            = felec;
518
519             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
520
521             /* Calculate temporary vectorial force */
522             tx               = _mm256_mul_pd(fscal,dx10);
523             ty               = _mm256_mul_pd(fscal,dy10);
524             tz               = _mm256_mul_pd(fscal,dz10);
525
526             /* Update vectorial force */
527             fix1             = _mm256_add_pd(fix1,tx);
528             fiy1             = _mm256_add_pd(fiy1,ty);
529             fiz1             = _mm256_add_pd(fiz1,tz);
530
531             fjx0             = _mm256_add_pd(fjx0,tx);
532             fjy0             = _mm256_add_pd(fjy0,ty);
533             fjz0             = _mm256_add_pd(fjz0,tz);
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             /* Compute parameters for interactions between i and j atoms */
540             qq20             = _mm256_mul_pd(iq2,jq0);
541
542             /* REACTION-FIELD ELECTROSTATICS */
543             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
544             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
545
546             /* Update potential sum for this i atom from the interaction with this j atom. */
547             velec            = _mm256_andnot_pd(dummy_mask,velec);
548             velecsum         = _mm256_add_pd(velecsum,velec);
549
550             fscal            = felec;
551
552             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
553
554             /* Calculate temporary vectorial force */
555             tx               = _mm256_mul_pd(fscal,dx20);
556             ty               = _mm256_mul_pd(fscal,dy20);
557             tz               = _mm256_mul_pd(fscal,dz20);
558
559             /* Update vectorial force */
560             fix2             = _mm256_add_pd(fix2,tx);
561             fiy2             = _mm256_add_pd(fiy2,ty);
562             fiz2             = _mm256_add_pd(fiz2,tz);
563
564             fjx0             = _mm256_add_pd(fjx0,tx);
565             fjy0             = _mm256_add_pd(fjy0,ty);
566             fjz0             = _mm256_add_pd(fjz0,tz);
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             /* Compute parameters for interactions between i and j atoms */
573             qq30             = _mm256_mul_pd(iq3,jq0);
574
575             /* REACTION-FIELD ELECTROSTATICS */
576             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
577             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
578
579             /* Update potential sum for this i atom from the interaction with this j atom. */
580             velec            = _mm256_andnot_pd(dummy_mask,velec);
581             velecsum         = _mm256_add_pd(velecsum,velec);
582
583             fscal            = felec;
584
585             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
586
587             /* Calculate temporary vectorial force */
588             tx               = _mm256_mul_pd(fscal,dx30);
589             ty               = _mm256_mul_pd(fscal,dy30);
590             tz               = _mm256_mul_pd(fscal,dz30);
591
592             /* Update vectorial force */
593             fix3             = _mm256_add_pd(fix3,tx);
594             fiy3             = _mm256_add_pd(fiy3,ty);
595             fiz3             = _mm256_add_pd(fiz3,tz);
596
597             fjx0             = _mm256_add_pd(fjx0,tx);
598             fjy0             = _mm256_add_pd(fjy0,ty);
599             fjz0             = _mm256_add_pd(fjz0,tz);
600
601             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
602             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
603             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
604             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
605
606             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
607
608             /* Inner loop uses 131 flops */
609         }
610
611         /* End of innermost loop */
612
613         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
614                                                  f+i_coord_offset,fshift+i_shift_offset);
615
616         ggid                        = gid[iidx];
617         /* Update potential energies */
618         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
619         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
620
621         /* Increment number of inner iterations */
622         inneriter                  += j_index_end - j_index_start;
623
624         /* Outer loop uses 26 flops */
625     }
626
627     /* Increment number of outer iterations */
628     outeriter        += nri;
629
630     /* Update outer/inner flops */
631
632     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*131);
633 }
634 /*
635  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_avx_256_double
636  * Electrostatics interaction: ReactionField
637  * VdW interaction:            LennardJones
638  * Geometry:                   Water4-Particle
639  * Calculate force/pot:        Force
640  */
641 void
642 nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_avx_256_double
643                     (t_nblist                    * gmx_restrict       nlist,
644                      rvec                        * gmx_restrict          xx,
645                      rvec                        * gmx_restrict          ff,
646                      t_forcerec                  * gmx_restrict          fr,
647                      t_mdatoms                   * gmx_restrict     mdatoms,
648                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
649                      t_nrnb                      * gmx_restrict        nrnb)
650 {
651     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
652      * just 0 for non-waters.
653      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
654      * jnr indices corresponding to data put in the four positions in the SIMD register.
655      */
656     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
657     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
658     int              jnrA,jnrB,jnrC,jnrD;
659     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
660     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
661     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
662     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
663     real             rcutoff_scalar;
664     real             *shiftvec,*fshift,*x,*f;
665     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
666     real             scratch[4*DIM];
667     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
668     real *           vdwioffsetptr0;
669     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
670     real *           vdwioffsetptr1;
671     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
672     real *           vdwioffsetptr2;
673     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
674     real *           vdwioffsetptr3;
675     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
676     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
677     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
678     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
679     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
680     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
681     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
682     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
683     real             *charge;
684     int              nvdwtype;
685     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
686     int              *vdwtype;
687     real             *vdwparam;
688     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
689     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
690     __m256d          dummy_mask,cutoff_mask;
691     __m128           tmpmask0,tmpmask1;
692     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
693     __m256d          one     = _mm256_set1_pd(1.0);
694     __m256d          two     = _mm256_set1_pd(2.0);
695     x                = xx[0];
696     f                = ff[0];
697
698     nri              = nlist->nri;
699     iinr             = nlist->iinr;
700     jindex           = nlist->jindex;
701     jjnr             = nlist->jjnr;
702     shiftidx         = nlist->shift;
703     gid              = nlist->gid;
704     shiftvec         = fr->shift_vec[0];
705     fshift           = fr->fshift[0];
706     facel            = _mm256_set1_pd(fr->epsfac);
707     charge           = mdatoms->chargeA;
708     krf              = _mm256_set1_pd(fr->ic->k_rf);
709     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
710     crf              = _mm256_set1_pd(fr->ic->c_rf);
711     nvdwtype         = fr->ntype;
712     vdwparam         = fr->nbfp;
713     vdwtype          = mdatoms->typeA;
714
715     /* Setup water-specific parameters */
716     inr              = nlist->iinr[0];
717     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
718     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
719     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
720     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
721
722     /* Avoid stupid compiler warnings */
723     jnrA = jnrB = jnrC = jnrD = 0;
724     j_coord_offsetA = 0;
725     j_coord_offsetB = 0;
726     j_coord_offsetC = 0;
727     j_coord_offsetD = 0;
728
729     outeriter        = 0;
730     inneriter        = 0;
731
732     for(iidx=0;iidx<4*DIM;iidx++)
733     {
734         scratch[iidx] = 0.0;
735     }
736
737     /* Start outer loop over neighborlists */
738     for(iidx=0; iidx<nri; iidx++)
739     {
740         /* Load shift vector for this list */
741         i_shift_offset   = DIM*shiftidx[iidx];
742
743         /* Load limits for loop over neighbors */
744         j_index_start    = jindex[iidx];
745         j_index_end      = jindex[iidx+1];
746
747         /* Get outer coordinate index */
748         inr              = iinr[iidx];
749         i_coord_offset   = DIM*inr;
750
751         /* Load i particle coords and add shift vector */
752         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
753                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
754
755         fix0             = _mm256_setzero_pd();
756         fiy0             = _mm256_setzero_pd();
757         fiz0             = _mm256_setzero_pd();
758         fix1             = _mm256_setzero_pd();
759         fiy1             = _mm256_setzero_pd();
760         fiz1             = _mm256_setzero_pd();
761         fix2             = _mm256_setzero_pd();
762         fiy2             = _mm256_setzero_pd();
763         fiz2             = _mm256_setzero_pd();
764         fix3             = _mm256_setzero_pd();
765         fiy3             = _mm256_setzero_pd();
766         fiz3             = _mm256_setzero_pd();
767
768         /* Start inner kernel loop */
769         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
770         {
771
772             /* Get j neighbor index, and coordinate index */
773             jnrA             = jjnr[jidx];
774             jnrB             = jjnr[jidx+1];
775             jnrC             = jjnr[jidx+2];
776             jnrD             = jjnr[jidx+3];
777             j_coord_offsetA  = DIM*jnrA;
778             j_coord_offsetB  = DIM*jnrB;
779             j_coord_offsetC  = DIM*jnrC;
780             j_coord_offsetD  = DIM*jnrD;
781
782             /* load j atom coordinates */
783             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
784                                                  x+j_coord_offsetC,x+j_coord_offsetD,
785                                                  &jx0,&jy0,&jz0);
786
787             /* Calculate displacement vector */
788             dx00             = _mm256_sub_pd(ix0,jx0);
789             dy00             = _mm256_sub_pd(iy0,jy0);
790             dz00             = _mm256_sub_pd(iz0,jz0);
791             dx10             = _mm256_sub_pd(ix1,jx0);
792             dy10             = _mm256_sub_pd(iy1,jy0);
793             dz10             = _mm256_sub_pd(iz1,jz0);
794             dx20             = _mm256_sub_pd(ix2,jx0);
795             dy20             = _mm256_sub_pd(iy2,jy0);
796             dz20             = _mm256_sub_pd(iz2,jz0);
797             dx30             = _mm256_sub_pd(ix3,jx0);
798             dy30             = _mm256_sub_pd(iy3,jy0);
799             dz30             = _mm256_sub_pd(iz3,jz0);
800
801             /* Calculate squared distance and things based on it */
802             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
803             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
804             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
805             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
806
807             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
808             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
809             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
810
811             rinvsq00         = gmx_mm256_inv_pd(rsq00);
812             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
813             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
814             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
815
816             /* Load parameters for j particles */
817             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
818                                                                  charge+jnrC+0,charge+jnrD+0);
819             vdwjidx0A        = 2*vdwtype[jnrA+0];
820             vdwjidx0B        = 2*vdwtype[jnrB+0];
821             vdwjidx0C        = 2*vdwtype[jnrC+0];
822             vdwjidx0D        = 2*vdwtype[jnrD+0];
823
824             fjx0             = _mm256_setzero_pd();
825             fjy0             = _mm256_setzero_pd();
826             fjz0             = _mm256_setzero_pd();
827
828             /**************************
829              * CALCULATE INTERACTIONS *
830              **************************/
831
832             /* Compute parameters for interactions between i and j atoms */
833             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
834                                             vdwioffsetptr0+vdwjidx0B,
835                                             vdwioffsetptr0+vdwjidx0C,
836                                             vdwioffsetptr0+vdwjidx0D,
837                                             &c6_00,&c12_00);
838
839             /* LENNARD-JONES DISPERSION/REPULSION */
840
841             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
842             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
843
844             fscal            = fvdw;
845
846             /* Calculate temporary vectorial force */
847             tx               = _mm256_mul_pd(fscal,dx00);
848             ty               = _mm256_mul_pd(fscal,dy00);
849             tz               = _mm256_mul_pd(fscal,dz00);
850
851             /* Update vectorial force */
852             fix0             = _mm256_add_pd(fix0,tx);
853             fiy0             = _mm256_add_pd(fiy0,ty);
854             fiz0             = _mm256_add_pd(fiz0,tz);
855
856             fjx0             = _mm256_add_pd(fjx0,tx);
857             fjy0             = _mm256_add_pd(fjy0,ty);
858             fjz0             = _mm256_add_pd(fjz0,tz);
859
860             /**************************
861              * CALCULATE INTERACTIONS *
862              **************************/
863
864             /* Compute parameters for interactions between i and j atoms */
865             qq10             = _mm256_mul_pd(iq1,jq0);
866
867             /* REACTION-FIELD ELECTROSTATICS */
868             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
869
870             fscal            = felec;
871
872             /* Calculate temporary vectorial force */
873             tx               = _mm256_mul_pd(fscal,dx10);
874             ty               = _mm256_mul_pd(fscal,dy10);
875             tz               = _mm256_mul_pd(fscal,dz10);
876
877             /* Update vectorial force */
878             fix1             = _mm256_add_pd(fix1,tx);
879             fiy1             = _mm256_add_pd(fiy1,ty);
880             fiz1             = _mm256_add_pd(fiz1,tz);
881
882             fjx0             = _mm256_add_pd(fjx0,tx);
883             fjy0             = _mm256_add_pd(fjy0,ty);
884             fjz0             = _mm256_add_pd(fjz0,tz);
885
886             /**************************
887              * CALCULATE INTERACTIONS *
888              **************************/
889
890             /* Compute parameters for interactions between i and j atoms */
891             qq20             = _mm256_mul_pd(iq2,jq0);
892
893             /* REACTION-FIELD ELECTROSTATICS */
894             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
895
896             fscal            = felec;
897
898             /* Calculate temporary vectorial force */
899             tx               = _mm256_mul_pd(fscal,dx20);
900             ty               = _mm256_mul_pd(fscal,dy20);
901             tz               = _mm256_mul_pd(fscal,dz20);
902
903             /* Update vectorial force */
904             fix2             = _mm256_add_pd(fix2,tx);
905             fiy2             = _mm256_add_pd(fiy2,ty);
906             fiz2             = _mm256_add_pd(fiz2,tz);
907
908             fjx0             = _mm256_add_pd(fjx0,tx);
909             fjy0             = _mm256_add_pd(fjy0,ty);
910             fjz0             = _mm256_add_pd(fjz0,tz);
911
912             /**************************
913              * CALCULATE INTERACTIONS *
914              **************************/
915
916             /* Compute parameters for interactions between i and j atoms */
917             qq30             = _mm256_mul_pd(iq3,jq0);
918
919             /* REACTION-FIELD ELECTROSTATICS */
920             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
921
922             fscal            = felec;
923
924             /* Calculate temporary vectorial force */
925             tx               = _mm256_mul_pd(fscal,dx30);
926             ty               = _mm256_mul_pd(fscal,dy30);
927             tz               = _mm256_mul_pd(fscal,dz30);
928
929             /* Update vectorial force */
930             fix3             = _mm256_add_pd(fix3,tx);
931             fiy3             = _mm256_add_pd(fiy3,ty);
932             fiz3             = _mm256_add_pd(fiz3,tz);
933
934             fjx0             = _mm256_add_pd(fjx0,tx);
935             fjy0             = _mm256_add_pd(fjy0,ty);
936             fjz0             = _mm256_add_pd(fjz0,tz);
937
938             fjptrA             = f+j_coord_offsetA;
939             fjptrB             = f+j_coord_offsetB;
940             fjptrC             = f+j_coord_offsetC;
941             fjptrD             = f+j_coord_offsetD;
942
943             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
944
945             /* Inner loop uses 111 flops */
946         }
947
948         if(jidx<j_index_end)
949         {
950
951             /* Get j neighbor index, and coordinate index */
952             jnrlistA         = jjnr[jidx];
953             jnrlistB         = jjnr[jidx+1];
954             jnrlistC         = jjnr[jidx+2];
955             jnrlistD         = jjnr[jidx+3];
956             /* Sign of each element will be negative for non-real atoms.
957              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
958              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
959              */
960             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
961
962             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
963             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
964             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
965
966             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
967             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
968             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
969             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
970             j_coord_offsetA  = DIM*jnrA;
971             j_coord_offsetB  = DIM*jnrB;
972             j_coord_offsetC  = DIM*jnrC;
973             j_coord_offsetD  = DIM*jnrD;
974
975             /* load j atom coordinates */
976             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
977                                                  x+j_coord_offsetC,x+j_coord_offsetD,
978                                                  &jx0,&jy0,&jz0);
979
980             /* Calculate displacement vector */
981             dx00             = _mm256_sub_pd(ix0,jx0);
982             dy00             = _mm256_sub_pd(iy0,jy0);
983             dz00             = _mm256_sub_pd(iz0,jz0);
984             dx10             = _mm256_sub_pd(ix1,jx0);
985             dy10             = _mm256_sub_pd(iy1,jy0);
986             dz10             = _mm256_sub_pd(iz1,jz0);
987             dx20             = _mm256_sub_pd(ix2,jx0);
988             dy20             = _mm256_sub_pd(iy2,jy0);
989             dz20             = _mm256_sub_pd(iz2,jz0);
990             dx30             = _mm256_sub_pd(ix3,jx0);
991             dy30             = _mm256_sub_pd(iy3,jy0);
992             dz30             = _mm256_sub_pd(iz3,jz0);
993
994             /* Calculate squared distance and things based on it */
995             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
996             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
997             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
998             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
999
1000             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1001             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1002             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1003
1004             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1005             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1006             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1007             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1008
1009             /* Load parameters for j particles */
1010             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1011                                                                  charge+jnrC+0,charge+jnrD+0);
1012             vdwjidx0A        = 2*vdwtype[jnrA+0];
1013             vdwjidx0B        = 2*vdwtype[jnrB+0];
1014             vdwjidx0C        = 2*vdwtype[jnrC+0];
1015             vdwjidx0D        = 2*vdwtype[jnrD+0];
1016
1017             fjx0             = _mm256_setzero_pd();
1018             fjy0             = _mm256_setzero_pd();
1019             fjz0             = _mm256_setzero_pd();
1020
1021             /**************************
1022              * CALCULATE INTERACTIONS *
1023              **************************/
1024
1025             /* Compute parameters for interactions between i and j atoms */
1026             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1027                                             vdwioffsetptr0+vdwjidx0B,
1028                                             vdwioffsetptr0+vdwjidx0C,
1029                                             vdwioffsetptr0+vdwjidx0D,
1030                                             &c6_00,&c12_00);
1031
1032             /* LENNARD-JONES DISPERSION/REPULSION */
1033
1034             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1035             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1036
1037             fscal            = fvdw;
1038
1039             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1040
1041             /* Calculate temporary vectorial force */
1042             tx               = _mm256_mul_pd(fscal,dx00);
1043             ty               = _mm256_mul_pd(fscal,dy00);
1044             tz               = _mm256_mul_pd(fscal,dz00);
1045
1046             /* Update vectorial force */
1047             fix0             = _mm256_add_pd(fix0,tx);
1048             fiy0             = _mm256_add_pd(fiy0,ty);
1049             fiz0             = _mm256_add_pd(fiz0,tz);
1050
1051             fjx0             = _mm256_add_pd(fjx0,tx);
1052             fjy0             = _mm256_add_pd(fjy0,ty);
1053             fjz0             = _mm256_add_pd(fjz0,tz);
1054
1055             /**************************
1056              * CALCULATE INTERACTIONS *
1057              **************************/
1058
1059             /* Compute parameters for interactions between i and j atoms */
1060             qq10             = _mm256_mul_pd(iq1,jq0);
1061
1062             /* REACTION-FIELD ELECTROSTATICS */
1063             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1064
1065             fscal            = felec;
1066
1067             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1068
1069             /* Calculate temporary vectorial force */
1070             tx               = _mm256_mul_pd(fscal,dx10);
1071             ty               = _mm256_mul_pd(fscal,dy10);
1072             tz               = _mm256_mul_pd(fscal,dz10);
1073
1074             /* Update vectorial force */
1075             fix1             = _mm256_add_pd(fix1,tx);
1076             fiy1             = _mm256_add_pd(fiy1,ty);
1077             fiz1             = _mm256_add_pd(fiz1,tz);
1078
1079             fjx0             = _mm256_add_pd(fjx0,tx);
1080             fjy0             = _mm256_add_pd(fjy0,ty);
1081             fjz0             = _mm256_add_pd(fjz0,tz);
1082
1083             /**************************
1084              * CALCULATE INTERACTIONS *
1085              **************************/
1086
1087             /* Compute parameters for interactions between i and j atoms */
1088             qq20             = _mm256_mul_pd(iq2,jq0);
1089
1090             /* REACTION-FIELD ELECTROSTATICS */
1091             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1092
1093             fscal            = felec;
1094
1095             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1096
1097             /* Calculate temporary vectorial force */
1098             tx               = _mm256_mul_pd(fscal,dx20);
1099             ty               = _mm256_mul_pd(fscal,dy20);
1100             tz               = _mm256_mul_pd(fscal,dz20);
1101
1102             /* Update vectorial force */
1103             fix2             = _mm256_add_pd(fix2,tx);
1104             fiy2             = _mm256_add_pd(fiy2,ty);
1105             fiz2             = _mm256_add_pd(fiz2,tz);
1106
1107             fjx0             = _mm256_add_pd(fjx0,tx);
1108             fjy0             = _mm256_add_pd(fjy0,ty);
1109             fjz0             = _mm256_add_pd(fjz0,tz);
1110
1111             /**************************
1112              * CALCULATE INTERACTIONS *
1113              **************************/
1114
1115             /* Compute parameters for interactions between i and j atoms */
1116             qq30             = _mm256_mul_pd(iq3,jq0);
1117
1118             /* REACTION-FIELD ELECTROSTATICS */
1119             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1120
1121             fscal            = felec;
1122
1123             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1124
1125             /* Calculate temporary vectorial force */
1126             tx               = _mm256_mul_pd(fscal,dx30);
1127             ty               = _mm256_mul_pd(fscal,dy30);
1128             tz               = _mm256_mul_pd(fscal,dz30);
1129
1130             /* Update vectorial force */
1131             fix3             = _mm256_add_pd(fix3,tx);
1132             fiy3             = _mm256_add_pd(fiy3,ty);
1133             fiz3             = _mm256_add_pd(fiz3,tz);
1134
1135             fjx0             = _mm256_add_pd(fjx0,tx);
1136             fjy0             = _mm256_add_pd(fjy0,ty);
1137             fjz0             = _mm256_add_pd(fjz0,tz);
1138
1139             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1140             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1141             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1142             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1143
1144             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1145
1146             /* Inner loop uses 111 flops */
1147         }
1148
1149         /* End of innermost loop */
1150
1151         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1152                                                  f+i_coord_offset,fshift+i_shift_offset);
1153
1154         /* Increment number of inner iterations */
1155         inneriter                  += j_index_end - j_index_start;
1156
1157         /* Outer loop uses 24 flops */
1158     }
1159
1160     /* Increment number of outer iterations */
1161     outeriter        += nri;
1162
1163     /* Update outer/inner flops */
1164
1165     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*111);
1166 }