Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwLJ_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
98     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
105     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
106     __m256d          dummy_mask,cutoff_mask;
107     __m128           tmpmask0,tmpmask1;
108     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
109     __m256d          one     = _mm256_set1_pd(1.0);
110     __m256d          two     = _mm256_set1_pd(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm256_set1_pd(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     krf              = _mm256_set1_pd(fr->ic->k_rf);
125     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
126     crf              = _mm256_set1_pd(fr->ic->c_rf);
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
134     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
135     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
136     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
170
171         fix0             = _mm256_setzero_pd();
172         fiy0             = _mm256_setzero_pd();
173         fiz0             = _mm256_setzero_pd();
174         fix1             = _mm256_setzero_pd();
175         fiy1             = _mm256_setzero_pd();
176         fiz1             = _mm256_setzero_pd();
177         fix2             = _mm256_setzero_pd();
178         fiy2             = _mm256_setzero_pd();
179         fiz2             = _mm256_setzero_pd();
180         fix3             = _mm256_setzero_pd();
181         fiy3             = _mm256_setzero_pd();
182         fiz3             = _mm256_setzero_pd();
183
184         /* Reset potential sums */
185         velecsum         = _mm256_setzero_pd();
186         vvdwsum          = _mm256_setzero_pd();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             jnrC             = jjnr[jidx+2];
196             jnrD             = jjnr[jidx+3];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201
202             /* load j atom coordinates */
203             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
204                                                  x+j_coord_offsetC,x+j_coord_offsetD,
205                                                  &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm256_sub_pd(ix0,jx0);
209             dy00             = _mm256_sub_pd(iy0,jy0);
210             dz00             = _mm256_sub_pd(iz0,jz0);
211             dx10             = _mm256_sub_pd(ix1,jx0);
212             dy10             = _mm256_sub_pd(iy1,jy0);
213             dz10             = _mm256_sub_pd(iz1,jz0);
214             dx20             = _mm256_sub_pd(ix2,jx0);
215             dy20             = _mm256_sub_pd(iy2,jy0);
216             dz20             = _mm256_sub_pd(iz2,jz0);
217             dx30             = _mm256_sub_pd(ix3,jx0);
218             dy30             = _mm256_sub_pd(iy3,jy0);
219             dz30             = _mm256_sub_pd(iz3,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
223             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
224             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
225             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
226
227             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
228             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
229             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
230
231             rinvsq00         = gmx_mm256_inv_pd(rsq00);
232             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
233             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
234             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
235
236             /* Load parameters for j particles */
237             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
238                                                                  charge+jnrC+0,charge+jnrD+0);
239             vdwjidx0A        = 2*vdwtype[jnrA+0];
240             vdwjidx0B        = 2*vdwtype[jnrB+0];
241             vdwjidx0C        = 2*vdwtype[jnrC+0];
242             vdwjidx0D        = 2*vdwtype[jnrD+0];
243
244             fjx0             = _mm256_setzero_pd();
245             fjy0             = _mm256_setzero_pd();
246             fjz0             = _mm256_setzero_pd();
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             /* Compute parameters for interactions between i and j atoms */
253             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
254                                             vdwioffsetptr0+vdwjidx0B,
255                                             vdwioffsetptr0+vdwjidx0C,
256                                             vdwioffsetptr0+vdwjidx0D,
257                                             &c6_00,&c12_00);
258
259             /* LENNARD-JONES DISPERSION/REPULSION */
260
261             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
262             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
263             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
264             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
265             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
266
267             /* Update potential sum for this i atom from the interaction with this j atom. */
268             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
269
270             fscal            = fvdw;
271
272             /* Calculate temporary vectorial force */
273             tx               = _mm256_mul_pd(fscal,dx00);
274             ty               = _mm256_mul_pd(fscal,dy00);
275             tz               = _mm256_mul_pd(fscal,dz00);
276
277             /* Update vectorial force */
278             fix0             = _mm256_add_pd(fix0,tx);
279             fiy0             = _mm256_add_pd(fiy0,ty);
280             fiz0             = _mm256_add_pd(fiz0,tz);
281
282             fjx0             = _mm256_add_pd(fjx0,tx);
283             fjy0             = _mm256_add_pd(fjy0,ty);
284             fjz0             = _mm256_add_pd(fjz0,tz);
285
286             /**************************
287              * CALCULATE INTERACTIONS *
288              **************************/
289
290             /* Compute parameters for interactions between i and j atoms */
291             qq10             = _mm256_mul_pd(iq1,jq0);
292
293             /* REACTION-FIELD ELECTROSTATICS */
294             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
295             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velecsum         = _mm256_add_pd(velecsum,velec);
299
300             fscal            = felec;
301
302             /* Calculate temporary vectorial force */
303             tx               = _mm256_mul_pd(fscal,dx10);
304             ty               = _mm256_mul_pd(fscal,dy10);
305             tz               = _mm256_mul_pd(fscal,dz10);
306
307             /* Update vectorial force */
308             fix1             = _mm256_add_pd(fix1,tx);
309             fiy1             = _mm256_add_pd(fiy1,ty);
310             fiz1             = _mm256_add_pd(fiz1,tz);
311
312             fjx0             = _mm256_add_pd(fjx0,tx);
313             fjy0             = _mm256_add_pd(fjy0,ty);
314             fjz0             = _mm256_add_pd(fjz0,tz);
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq20             = _mm256_mul_pd(iq2,jq0);
322
323             /* REACTION-FIELD ELECTROSTATICS */
324             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
325             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
326
327             /* Update potential sum for this i atom from the interaction with this j atom. */
328             velecsum         = _mm256_add_pd(velecsum,velec);
329
330             fscal            = felec;
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm256_mul_pd(fscal,dx20);
334             ty               = _mm256_mul_pd(fscal,dy20);
335             tz               = _mm256_mul_pd(fscal,dz20);
336
337             /* Update vectorial force */
338             fix2             = _mm256_add_pd(fix2,tx);
339             fiy2             = _mm256_add_pd(fiy2,ty);
340             fiz2             = _mm256_add_pd(fiz2,tz);
341
342             fjx0             = _mm256_add_pd(fjx0,tx);
343             fjy0             = _mm256_add_pd(fjy0,ty);
344             fjz0             = _mm256_add_pd(fjz0,tz);
345
346             /**************************
347              * CALCULATE INTERACTIONS *
348              **************************/
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq30             = _mm256_mul_pd(iq3,jq0);
352
353             /* REACTION-FIELD ELECTROSTATICS */
354             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
355             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velecsum         = _mm256_add_pd(velecsum,velec);
359
360             fscal            = felec;
361
362             /* Calculate temporary vectorial force */
363             tx               = _mm256_mul_pd(fscal,dx30);
364             ty               = _mm256_mul_pd(fscal,dy30);
365             tz               = _mm256_mul_pd(fscal,dz30);
366
367             /* Update vectorial force */
368             fix3             = _mm256_add_pd(fix3,tx);
369             fiy3             = _mm256_add_pd(fiy3,ty);
370             fiz3             = _mm256_add_pd(fiz3,tz);
371
372             fjx0             = _mm256_add_pd(fjx0,tx);
373             fjy0             = _mm256_add_pd(fjy0,ty);
374             fjz0             = _mm256_add_pd(fjz0,tz);
375
376             fjptrA             = f+j_coord_offsetA;
377             fjptrB             = f+j_coord_offsetB;
378             fjptrC             = f+j_coord_offsetC;
379             fjptrD             = f+j_coord_offsetD;
380
381             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
382
383             /* Inner loop uses 131 flops */
384         }
385
386         if(jidx<j_index_end)
387         {
388
389             /* Get j neighbor index, and coordinate index */
390             jnrlistA         = jjnr[jidx];
391             jnrlistB         = jjnr[jidx+1];
392             jnrlistC         = jjnr[jidx+2];
393             jnrlistD         = jjnr[jidx+3];
394             /* Sign of each element will be negative for non-real atoms.
395              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
396              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
397              */
398             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
399
400             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
401             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
402             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
403
404             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
405             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
406             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
407             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
408             j_coord_offsetA  = DIM*jnrA;
409             j_coord_offsetB  = DIM*jnrB;
410             j_coord_offsetC  = DIM*jnrC;
411             j_coord_offsetD  = DIM*jnrD;
412
413             /* load j atom coordinates */
414             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
415                                                  x+j_coord_offsetC,x+j_coord_offsetD,
416                                                  &jx0,&jy0,&jz0);
417
418             /* Calculate displacement vector */
419             dx00             = _mm256_sub_pd(ix0,jx0);
420             dy00             = _mm256_sub_pd(iy0,jy0);
421             dz00             = _mm256_sub_pd(iz0,jz0);
422             dx10             = _mm256_sub_pd(ix1,jx0);
423             dy10             = _mm256_sub_pd(iy1,jy0);
424             dz10             = _mm256_sub_pd(iz1,jz0);
425             dx20             = _mm256_sub_pd(ix2,jx0);
426             dy20             = _mm256_sub_pd(iy2,jy0);
427             dz20             = _mm256_sub_pd(iz2,jz0);
428             dx30             = _mm256_sub_pd(ix3,jx0);
429             dy30             = _mm256_sub_pd(iy3,jy0);
430             dz30             = _mm256_sub_pd(iz3,jz0);
431
432             /* Calculate squared distance and things based on it */
433             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
434             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
435             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
436             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
437
438             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
439             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
440             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
441
442             rinvsq00         = gmx_mm256_inv_pd(rsq00);
443             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
444             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
445             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
446
447             /* Load parameters for j particles */
448             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
449                                                                  charge+jnrC+0,charge+jnrD+0);
450             vdwjidx0A        = 2*vdwtype[jnrA+0];
451             vdwjidx0B        = 2*vdwtype[jnrB+0];
452             vdwjidx0C        = 2*vdwtype[jnrC+0];
453             vdwjidx0D        = 2*vdwtype[jnrD+0];
454
455             fjx0             = _mm256_setzero_pd();
456             fjy0             = _mm256_setzero_pd();
457             fjz0             = _mm256_setzero_pd();
458
459             /**************************
460              * CALCULATE INTERACTIONS *
461              **************************/
462
463             /* Compute parameters for interactions between i and j atoms */
464             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
465                                             vdwioffsetptr0+vdwjidx0B,
466                                             vdwioffsetptr0+vdwjidx0C,
467                                             vdwioffsetptr0+vdwjidx0D,
468                                             &c6_00,&c12_00);
469
470             /* LENNARD-JONES DISPERSION/REPULSION */
471
472             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
473             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
474             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
475             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
476             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
477
478             /* Update potential sum for this i atom from the interaction with this j atom. */
479             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
480             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
481
482             fscal            = fvdw;
483
484             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
485
486             /* Calculate temporary vectorial force */
487             tx               = _mm256_mul_pd(fscal,dx00);
488             ty               = _mm256_mul_pd(fscal,dy00);
489             tz               = _mm256_mul_pd(fscal,dz00);
490
491             /* Update vectorial force */
492             fix0             = _mm256_add_pd(fix0,tx);
493             fiy0             = _mm256_add_pd(fiy0,ty);
494             fiz0             = _mm256_add_pd(fiz0,tz);
495
496             fjx0             = _mm256_add_pd(fjx0,tx);
497             fjy0             = _mm256_add_pd(fjy0,ty);
498             fjz0             = _mm256_add_pd(fjz0,tz);
499
500             /**************************
501              * CALCULATE INTERACTIONS *
502              **************************/
503
504             /* Compute parameters for interactions between i and j atoms */
505             qq10             = _mm256_mul_pd(iq1,jq0);
506
507             /* REACTION-FIELD ELECTROSTATICS */
508             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
509             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
510
511             /* Update potential sum for this i atom from the interaction with this j atom. */
512             velec            = _mm256_andnot_pd(dummy_mask,velec);
513             velecsum         = _mm256_add_pd(velecsum,velec);
514
515             fscal            = felec;
516
517             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
518
519             /* Calculate temporary vectorial force */
520             tx               = _mm256_mul_pd(fscal,dx10);
521             ty               = _mm256_mul_pd(fscal,dy10);
522             tz               = _mm256_mul_pd(fscal,dz10);
523
524             /* Update vectorial force */
525             fix1             = _mm256_add_pd(fix1,tx);
526             fiy1             = _mm256_add_pd(fiy1,ty);
527             fiz1             = _mm256_add_pd(fiz1,tz);
528
529             fjx0             = _mm256_add_pd(fjx0,tx);
530             fjy0             = _mm256_add_pd(fjy0,ty);
531             fjz0             = _mm256_add_pd(fjz0,tz);
532
533             /**************************
534              * CALCULATE INTERACTIONS *
535              **************************/
536
537             /* Compute parameters for interactions between i and j atoms */
538             qq20             = _mm256_mul_pd(iq2,jq0);
539
540             /* REACTION-FIELD ELECTROSTATICS */
541             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
542             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
543
544             /* Update potential sum for this i atom from the interaction with this j atom. */
545             velec            = _mm256_andnot_pd(dummy_mask,velec);
546             velecsum         = _mm256_add_pd(velecsum,velec);
547
548             fscal            = felec;
549
550             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
551
552             /* Calculate temporary vectorial force */
553             tx               = _mm256_mul_pd(fscal,dx20);
554             ty               = _mm256_mul_pd(fscal,dy20);
555             tz               = _mm256_mul_pd(fscal,dz20);
556
557             /* Update vectorial force */
558             fix2             = _mm256_add_pd(fix2,tx);
559             fiy2             = _mm256_add_pd(fiy2,ty);
560             fiz2             = _mm256_add_pd(fiz2,tz);
561
562             fjx0             = _mm256_add_pd(fjx0,tx);
563             fjy0             = _mm256_add_pd(fjy0,ty);
564             fjz0             = _mm256_add_pd(fjz0,tz);
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             /* Compute parameters for interactions between i and j atoms */
571             qq30             = _mm256_mul_pd(iq3,jq0);
572
573             /* REACTION-FIELD ELECTROSTATICS */
574             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
575             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
576
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             velec            = _mm256_andnot_pd(dummy_mask,velec);
579             velecsum         = _mm256_add_pd(velecsum,velec);
580
581             fscal            = felec;
582
583             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
584
585             /* Calculate temporary vectorial force */
586             tx               = _mm256_mul_pd(fscal,dx30);
587             ty               = _mm256_mul_pd(fscal,dy30);
588             tz               = _mm256_mul_pd(fscal,dz30);
589
590             /* Update vectorial force */
591             fix3             = _mm256_add_pd(fix3,tx);
592             fiy3             = _mm256_add_pd(fiy3,ty);
593             fiz3             = _mm256_add_pd(fiz3,tz);
594
595             fjx0             = _mm256_add_pd(fjx0,tx);
596             fjy0             = _mm256_add_pd(fjy0,ty);
597             fjz0             = _mm256_add_pd(fjz0,tz);
598
599             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
600             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
601             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
602             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
603
604             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
605
606             /* Inner loop uses 131 flops */
607         }
608
609         /* End of innermost loop */
610
611         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
612                                                  f+i_coord_offset,fshift+i_shift_offset);
613
614         ggid                        = gid[iidx];
615         /* Update potential energies */
616         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
617         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
618
619         /* Increment number of inner iterations */
620         inneriter                  += j_index_end - j_index_start;
621
622         /* Outer loop uses 26 flops */
623     }
624
625     /* Increment number of outer iterations */
626     outeriter        += nri;
627
628     /* Update outer/inner flops */
629
630     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*131);
631 }
632 /*
633  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_avx_256_double
634  * Electrostatics interaction: ReactionField
635  * VdW interaction:            LennardJones
636  * Geometry:                   Water4-Particle
637  * Calculate force/pot:        Force
638  */
639 void
640 nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_avx_256_double
641                     (t_nblist                    * gmx_restrict       nlist,
642                      rvec                        * gmx_restrict          xx,
643                      rvec                        * gmx_restrict          ff,
644                      t_forcerec                  * gmx_restrict          fr,
645                      t_mdatoms                   * gmx_restrict     mdatoms,
646                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
647                      t_nrnb                      * gmx_restrict        nrnb)
648 {
649     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
650      * just 0 for non-waters.
651      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
652      * jnr indices corresponding to data put in the four positions in the SIMD register.
653      */
654     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
655     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
656     int              jnrA,jnrB,jnrC,jnrD;
657     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
658     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
659     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
660     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
661     real             rcutoff_scalar;
662     real             *shiftvec,*fshift,*x,*f;
663     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
664     real             scratch[4*DIM];
665     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
666     real *           vdwioffsetptr0;
667     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
668     real *           vdwioffsetptr1;
669     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
670     real *           vdwioffsetptr2;
671     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
672     real *           vdwioffsetptr3;
673     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
674     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
675     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
676     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
677     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
678     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
679     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
680     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
681     real             *charge;
682     int              nvdwtype;
683     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
684     int              *vdwtype;
685     real             *vdwparam;
686     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
687     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
688     __m256d          dummy_mask,cutoff_mask;
689     __m128           tmpmask0,tmpmask1;
690     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
691     __m256d          one     = _mm256_set1_pd(1.0);
692     __m256d          two     = _mm256_set1_pd(2.0);
693     x                = xx[0];
694     f                = ff[0];
695
696     nri              = nlist->nri;
697     iinr             = nlist->iinr;
698     jindex           = nlist->jindex;
699     jjnr             = nlist->jjnr;
700     shiftidx         = nlist->shift;
701     gid              = nlist->gid;
702     shiftvec         = fr->shift_vec[0];
703     fshift           = fr->fshift[0];
704     facel            = _mm256_set1_pd(fr->epsfac);
705     charge           = mdatoms->chargeA;
706     krf              = _mm256_set1_pd(fr->ic->k_rf);
707     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
708     crf              = _mm256_set1_pd(fr->ic->c_rf);
709     nvdwtype         = fr->ntype;
710     vdwparam         = fr->nbfp;
711     vdwtype          = mdatoms->typeA;
712
713     /* Setup water-specific parameters */
714     inr              = nlist->iinr[0];
715     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
716     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
717     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
718     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
719
720     /* Avoid stupid compiler warnings */
721     jnrA = jnrB = jnrC = jnrD = 0;
722     j_coord_offsetA = 0;
723     j_coord_offsetB = 0;
724     j_coord_offsetC = 0;
725     j_coord_offsetD = 0;
726
727     outeriter        = 0;
728     inneriter        = 0;
729
730     for(iidx=0;iidx<4*DIM;iidx++)
731     {
732         scratch[iidx] = 0.0;
733     }
734
735     /* Start outer loop over neighborlists */
736     for(iidx=0; iidx<nri; iidx++)
737     {
738         /* Load shift vector for this list */
739         i_shift_offset   = DIM*shiftidx[iidx];
740
741         /* Load limits for loop over neighbors */
742         j_index_start    = jindex[iidx];
743         j_index_end      = jindex[iidx+1];
744
745         /* Get outer coordinate index */
746         inr              = iinr[iidx];
747         i_coord_offset   = DIM*inr;
748
749         /* Load i particle coords and add shift vector */
750         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
751                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
752
753         fix0             = _mm256_setzero_pd();
754         fiy0             = _mm256_setzero_pd();
755         fiz0             = _mm256_setzero_pd();
756         fix1             = _mm256_setzero_pd();
757         fiy1             = _mm256_setzero_pd();
758         fiz1             = _mm256_setzero_pd();
759         fix2             = _mm256_setzero_pd();
760         fiy2             = _mm256_setzero_pd();
761         fiz2             = _mm256_setzero_pd();
762         fix3             = _mm256_setzero_pd();
763         fiy3             = _mm256_setzero_pd();
764         fiz3             = _mm256_setzero_pd();
765
766         /* Start inner kernel loop */
767         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
768         {
769
770             /* Get j neighbor index, and coordinate index */
771             jnrA             = jjnr[jidx];
772             jnrB             = jjnr[jidx+1];
773             jnrC             = jjnr[jidx+2];
774             jnrD             = jjnr[jidx+3];
775             j_coord_offsetA  = DIM*jnrA;
776             j_coord_offsetB  = DIM*jnrB;
777             j_coord_offsetC  = DIM*jnrC;
778             j_coord_offsetD  = DIM*jnrD;
779
780             /* load j atom coordinates */
781             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
782                                                  x+j_coord_offsetC,x+j_coord_offsetD,
783                                                  &jx0,&jy0,&jz0);
784
785             /* Calculate displacement vector */
786             dx00             = _mm256_sub_pd(ix0,jx0);
787             dy00             = _mm256_sub_pd(iy0,jy0);
788             dz00             = _mm256_sub_pd(iz0,jz0);
789             dx10             = _mm256_sub_pd(ix1,jx0);
790             dy10             = _mm256_sub_pd(iy1,jy0);
791             dz10             = _mm256_sub_pd(iz1,jz0);
792             dx20             = _mm256_sub_pd(ix2,jx0);
793             dy20             = _mm256_sub_pd(iy2,jy0);
794             dz20             = _mm256_sub_pd(iz2,jz0);
795             dx30             = _mm256_sub_pd(ix3,jx0);
796             dy30             = _mm256_sub_pd(iy3,jy0);
797             dz30             = _mm256_sub_pd(iz3,jz0);
798
799             /* Calculate squared distance and things based on it */
800             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
801             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
802             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
803             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
804
805             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
806             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
807             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
808
809             rinvsq00         = gmx_mm256_inv_pd(rsq00);
810             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
811             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
812             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
813
814             /* Load parameters for j particles */
815             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
816                                                                  charge+jnrC+0,charge+jnrD+0);
817             vdwjidx0A        = 2*vdwtype[jnrA+0];
818             vdwjidx0B        = 2*vdwtype[jnrB+0];
819             vdwjidx0C        = 2*vdwtype[jnrC+0];
820             vdwjidx0D        = 2*vdwtype[jnrD+0];
821
822             fjx0             = _mm256_setzero_pd();
823             fjy0             = _mm256_setzero_pd();
824             fjz0             = _mm256_setzero_pd();
825
826             /**************************
827              * CALCULATE INTERACTIONS *
828              **************************/
829
830             /* Compute parameters for interactions between i and j atoms */
831             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
832                                             vdwioffsetptr0+vdwjidx0B,
833                                             vdwioffsetptr0+vdwjidx0C,
834                                             vdwioffsetptr0+vdwjidx0D,
835                                             &c6_00,&c12_00);
836
837             /* LENNARD-JONES DISPERSION/REPULSION */
838
839             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
840             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
841
842             fscal            = fvdw;
843
844             /* Calculate temporary vectorial force */
845             tx               = _mm256_mul_pd(fscal,dx00);
846             ty               = _mm256_mul_pd(fscal,dy00);
847             tz               = _mm256_mul_pd(fscal,dz00);
848
849             /* Update vectorial force */
850             fix0             = _mm256_add_pd(fix0,tx);
851             fiy0             = _mm256_add_pd(fiy0,ty);
852             fiz0             = _mm256_add_pd(fiz0,tz);
853
854             fjx0             = _mm256_add_pd(fjx0,tx);
855             fjy0             = _mm256_add_pd(fjy0,ty);
856             fjz0             = _mm256_add_pd(fjz0,tz);
857
858             /**************************
859              * CALCULATE INTERACTIONS *
860              **************************/
861
862             /* Compute parameters for interactions between i and j atoms */
863             qq10             = _mm256_mul_pd(iq1,jq0);
864
865             /* REACTION-FIELD ELECTROSTATICS */
866             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
867
868             fscal            = felec;
869
870             /* Calculate temporary vectorial force */
871             tx               = _mm256_mul_pd(fscal,dx10);
872             ty               = _mm256_mul_pd(fscal,dy10);
873             tz               = _mm256_mul_pd(fscal,dz10);
874
875             /* Update vectorial force */
876             fix1             = _mm256_add_pd(fix1,tx);
877             fiy1             = _mm256_add_pd(fiy1,ty);
878             fiz1             = _mm256_add_pd(fiz1,tz);
879
880             fjx0             = _mm256_add_pd(fjx0,tx);
881             fjy0             = _mm256_add_pd(fjy0,ty);
882             fjz0             = _mm256_add_pd(fjz0,tz);
883
884             /**************************
885              * CALCULATE INTERACTIONS *
886              **************************/
887
888             /* Compute parameters for interactions between i and j atoms */
889             qq20             = _mm256_mul_pd(iq2,jq0);
890
891             /* REACTION-FIELD ELECTROSTATICS */
892             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
893
894             fscal            = felec;
895
896             /* Calculate temporary vectorial force */
897             tx               = _mm256_mul_pd(fscal,dx20);
898             ty               = _mm256_mul_pd(fscal,dy20);
899             tz               = _mm256_mul_pd(fscal,dz20);
900
901             /* Update vectorial force */
902             fix2             = _mm256_add_pd(fix2,tx);
903             fiy2             = _mm256_add_pd(fiy2,ty);
904             fiz2             = _mm256_add_pd(fiz2,tz);
905
906             fjx0             = _mm256_add_pd(fjx0,tx);
907             fjy0             = _mm256_add_pd(fjy0,ty);
908             fjz0             = _mm256_add_pd(fjz0,tz);
909
910             /**************************
911              * CALCULATE INTERACTIONS *
912              **************************/
913
914             /* Compute parameters for interactions between i and j atoms */
915             qq30             = _mm256_mul_pd(iq3,jq0);
916
917             /* REACTION-FIELD ELECTROSTATICS */
918             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
919
920             fscal            = felec;
921
922             /* Calculate temporary vectorial force */
923             tx               = _mm256_mul_pd(fscal,dx30);
924             ty               = _mm256_mul_pd(fscal,dy30);
925             tz               = _mm256_mul_pd(fscal,dz30);
926
927             /* Update vectorial force */
928             fix3             = _mm256_add_pd(fix3,tx);
929             fiy3             = _mm256_add_pd(fiy3,ty);
930             fiz3             = _mm256_add_pd(fiz3,tz);
931
932             fjx0             = _mm256_add_pd(fjx0,tx);
933             fjy0             = _mm256_add_pd(fjy0,ty);
934             fjz0             = _mm256_add_pd(fjz0,tz);
935
936             fjptrA             = f+j_coord_offsetA;
937             fjptrB             = f+j_coord_offsetB;
938             fjptrC             = f+j_coord_offsetC;
939             fjptrD             = f+j_coord_offsetD;
940
941             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
942
943             /* Inner loop uses 111 flops */
944         }
945
946         if(jidx<j_index_end)
947         {
948
949             /* Get j neighbor index, and coordinate index */
950             jnrlistA         = jjnr[jidx];
951             jnrlistB         = jjnr[jidx+1];
952             jnrlistC         = jjnr[jidx+2];
953             jnrlistD         = jjnr[jidx+3];
954             /* Sign of each element will be negative for non-real atoms.
955              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
956              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
957              */
958             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
959
960             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
961             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
962             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
963
964             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
965             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
966             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
967             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
968             j_coord_offsetA  = DIM*jnrA;
969             j_coord_offsetB  = DIM*jnrB;
970             j_coord_offsetC  = DIM*jnrC;
971             j_coord_offsetD  = DIM*jnrD;
972
973             /* load j atom coordinates */
974             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
975                                                  x+j_coord_offsetC,x+j_coord_offsetD,
976                                                  &jx0,&jy0,&jz0);
977
978             /* Calculate displacement vector */
979             dx00             = _mm256_sub_pd(ix0,jx0);
980             dy00             = _mm256_sub_pd(iy0,jy0);
981             dz00             = _mm256_sub_pd(iz0,jz0);
982             dx10             = _mm256_sub_pd(ix1,jx0);
983             dy10             = _mm256_sub_pd(iy1,jy0);
984             dz10             = _mm256_sub_pd(iz1,jz0);
985             dx20             = _mm256_sub_pd(ix2,jx0);
986             dy20             = _mm256_sub_pd(iy2,jy0);
987             dz20             = _mm256_sub_pd(iz2,jz0);
988             dx30             = _mm256_sub_pd(ix3,jx0);
989             dy30             = _mm256_sub_pd(iy3,jy0);
990             dz30             = _mm256_sub_pd(iz3,jz0);
991
992             /* Calculate squared distance and things based on it */
993             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
994             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
995             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
996             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
997
998             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
999             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1000             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1001
1002             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1003             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1004             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1005             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1006
1007             /* Load parameters for j particles */
1008             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1009                                                                  charge+jnrC+0,charge+jnrD+0);
1010             vdwjidx0A        = 2*vdwtype[jnrA+0];
1011             vdwjidx0B        = 2*vdwtype[jnrB+0];
1012             vdwjidx0C        = 2*vdwtype[jnrC+0];
1013             vdwjidx0D        = 2*vdwtype[jnrD+0];
1014
1015             fjx0             = _mm256_setzero_pd();
1016             fjy0             = _mm256_setzero_pd();
1017             fjz0             = _mm256_setzero_pd();
1018
1019             /**************************
1020              * CALCULATE INTERACTIONS *
1021              **************************/
1022
1023             /* Compute parameters for interactions between i and j atoms */
1024             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1025                                             vdwioffsetptr0+vdwjidx0B,
1026                                             vdwioffsetptr0+vdwjidx0C,
1027                                             vdwioffsetptr0+vdwjidx0D,
1028                                             &c6_00,&c12_00);
1029
1030             /* LENNARD-JONES DISPERSION/REPULSION */
1031
1032             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1033             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1034
1035             fscal            = fvdw;
1036
1037             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1038
1039             /* Calculate temporary vectorial force */
1040             tx               = _mm256_mul_pd(fscal,dx00);
1041             ty               = _mm256_mul_pd(fscal,dy00);
1042             tz               = _mm256_mul_pd(fscal,dz00);
1043
1044             /* Update vectorial force */
1045             fix0             = _mm256_add_pd(fix0,tx);
1046             fiy0             = _mm256_add_pd(fiy0,ty);
1047             fiz0             = _mm256_add_pd(fiz0,tz);
1048
1049             fjx0             = _mm256_add_pd(fjx0,tx);
1050             fjy0             = _mm256_add_pd(fjy0,ty);
1051             fjz0             = _mm256_add_pd(fjz0,tz);
1052
1053             /**************************
1054              * CALCULATE INTERACTIONS *
1055              **************************/
1056
1057             /* Compute parameters for interactions between i and j atoms */
1058             qq10             = _mm256_mul_pd(iq1,jq0);
1059
1060             /* REACTION-FIELD ELECTROSTATICS */
1061             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1062
1063             fscal            = felec;
1064
1065             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1066
1067             /* Calculate temporary vectorial force */
1068             tx               = _mm256_mul_pd(fscal,dx10);
1069             ty               = _mm256_mul_pd(fscal,dy10);
1070             tz               = _mm256_mul_pd(fscal,dz10);
1071
1072             /* Update vectorial force */
1073             fix1             = _mm256_add_pd(fix1,tx);
1074             fiy1             = _mm256_add_pd(fiy1,ty);
1075             fiz1             = _mm256_add_pd(fiz1,tz);
1076
1077             fjx0             = _mm256_add_pd(fjx0,tx);
1078             fjy0             = _mm256_add_pd(fjy0,ty);
1079             fjz0             = _mm256_add_pd(fjz0,tz);
1080
1081             /**************************
1082              * CALCULATE INTERACTIONS *
1083              **************************/
1084
1085             /* Compute parameters for interactions between i and j atoms */
1086             qq20             = _mm256_mul_pd(iq2,jq0);
1087
1088             /* REACTION-FIELD ELECTROSTATICS */
1089             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1090
1091             fscal            = felec;
1092
1093             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1094
1095             /* Calculate temporary vectorial force */
1096             tx               = _mm256_mul_pd(fscal,dx20);
1097             ty               = _mm256_mul_pd(fscal,dy20);
1098             tz               = _mm256_mul_pd(fscal,dz20);
1099
1100             /* Update vectorial force */
1101             fix2             = _mm256_add_pd(fix2,tx);
1102             fiy2             = _mm256_add_pd(fiy2,ty);
1103             fiz2             = _mm256_add_pd(fiz2,tz);
1104
1105             fjx0             = _mm256_add_pd(fjx0,tx);
1106             fjy0             = _mm256_add_pd(fjy0,ty);
1107             fjz0             = _mm256_add_pd(fjz0,tz);
1108
1109             /**************************
1110              * CALCULATE INTERACTIONS *
1111              **************************/
1112
1113             /* Compute parameters for interactions between i and j atoms */
1114             qq30             = _mm256_mul_pd(iq3,jq0);
1115
1116             /* REACTION-FIELD ELECTROSTATICS */
1117             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1118
1119             fscal            = felec;
1120
1121             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1122
1123             /* Calculate temporary vectorial force */
1124             tx               = _mm256_mul_pd(fscal,dx30);
1125             ty               = _mm256_mul_pd(fscal,dy30);
1126             tz               = _mm256_mul_pd(fscal,dz30);
1127
1128             /* Update vectorial force */
1129             fix3             = _mm256_add_pd(fix3,tx);
1130             fiy3             = _mm256_add_pd(fiy3,ty);
1131             fiz3             = _mm256_add_pd(fiz3,tz);
1132
1133             fjx0             = _mm256_add_pd(fjx0,tx);
1134             fjy0             = _mm256_add_pd(fjy0,ty);
1135             fjz0             = _mm256_add_pd(fjz0,tz);
1136
1137             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1138             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1139             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1140             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1141
1142             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1143
1144             /* Inner loop uses 111 flops */
1145         }
1146
1147         /* End of innermost loop */
1148
1149         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1150                                                  f+i_coord_offset,fshift+i_shift_offset);
1151
1152         /* Increment number of inner iterations */
1153         inneriter                  += j_index_end - j_index_start;
1154
1155         /* Outer loop uses 24 flops */
1156     }
1157
1158     /* Increment number of outer iterations */
1159     outeriter        += nri;
1160
1161     /* Update outer/inner flops */
1162
1163     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*111);
1164 }