Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwLJ_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_avx_256_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     real *           vdwioffsetptr1;
86     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     real *           vdwioffsetptr2;
88     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     real *           vdwioffsetptr3;
90     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m256d          dummy_mask,cutoff_mask;
106     __m128           tmpmask0,tmpmask1;
107     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
108     __m256d          one     = _mm256_set1_pd(1.0);
109     __m256d          two     = _mm256_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_pd(fr->ic->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm256_set1_pd(fr->ic->k_rf);
124     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
125     crf              = _mm256_set1_pd(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
133     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
134     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
135     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = jnrC = jnrD = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141     j_coord_offsetC = 0;
142     j_coord_offsetD = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
169
170         fix0             = _mm256_setzero_pd();
171         fiy0             = _mm256_setzero_pd();
172         fiz0             = _mm256_setzero_pd();
173         fix1             = _mm256_setzero_pd();
174         fiy1             = _mm256_setzero_pd();
175         fiz1             = _mm256_setzero_pd();
176         fix2             = _mm256_setzero_pd();
177         fiy2             = _mm256_setzero_pd();
178         fiz2             = _mm256_setzero_pd();
179         fix3             = _mm256_setzero_pd();
180         fiy3             = _mm256_setzero_pd();
181         fiz3             = _mm256_setzero_pd();
182
183         /* Reset potential sums */
184         velecsum         = _mm256_setzero_pd();
185         vvdwsum          = _mm256_setzero_pd();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             jnrC             = jjnr[jidx+2];
195             jnrD             = jjnr[jidx+3];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198             j_coord_offsetC  = DIM*jnrC;
199             j_coord_offsetD  = DIM*jnrD;
200
201             /* load j atom coordinates */
202             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
203                                                  x+j_coord_offsetC,x+j_coord_offsetD,
204                                                  &jx0,&jy0,&jz0);
205
206             /* Calculate displacement vector */
207             dx00             = _mm256_sub_pd(ix0,jx0);
208             dy00             = _mm256_sub_pd(iy0,jy0);
209             dz00             = _mm256_sub_pd(iz0,jz0);
210             dx10             = _mm256_sub_pd(ix1,jx0);
211             dy10             = _mm256_sub_pd(iy1,jy0);
212             dz10             = _mm256_sub_pd(iz1,jz0);
213             dx20             = _mm256_sub_pd(ix2,jx0);
214             dy20             = _mm256_sub_pd(iy2,jy0);
215             dz20             = _mm256_sub_pd(iz2,jz0);
216             dx30             = _mm256_sub_pd(ix3,jx0);
217             dy30             = _mm256_sub_pd(iy3,jy0);
218             dz30             = _mm256_sub_pd(iz3,jz0);
219
220             /* Calculate squared distance and things based on it */
221             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
222             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
223             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
224             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
225
226             rinv10           = avx256_invsqrt_d(rsq10);
227             rinv20           = avx256_invsqrt_d(rsq20);
228             rinv30           = avx256_invsqrt_d(rsq30);
229
230             rinvsq00         = avx256_inv_d(rsq00);
231             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
232             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
233             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
234
235             /* Load parameters for j particles */
236             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
237                                                                  charge+jnrC+0,charge+jnrD+0);
238             vdwjidx0A        = 2*vdwtype[jnrA+0];
239             vdwjidx0B        = 2*vdwtype[jnrB+0];
240             vdwjidx0C        = 2*vdwtype[jnrC+0];
241             vdwjidx0D        = 2*vdwtype[jnrD+0];
242
243             fjx0             = _mm256_setzero_pd();
244             fjy0             = _mm256_setzero_pd();
245             fjz0             = _mm256_setzero_pd();
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             /* Compute parameters for interactions between i and j atoms */
252             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
253                                             vdwioffsetptr0+vdwjidx0B,
254                                             vdwioffsetptr0+vdwjidx0C,
255                                             vdwioffsetptr0+vdwjidx0D,
256                                             &c6_00,&c12_00);
257
258             /* LENNARD-JONES DISPERSION/REPULSION */
259
260             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
261             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
262             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
263             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
264             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
268
269             fscal            = fvdw;
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm256_mul_pd(fscal,dx00);
273             ty               = _mm256_mul_pd(fscal,dy00);
274             tz               = _mm256_mul_pd(fscal,dz00);
275
276             /* Update vectorial force */
277             fix0             = _mm256_add_pd(fix0,tx);
278             fiy0             = _mm256_add_pd(fiy0,ty);
279             fiz0             = _mm256_add_pd(fiz0,tz);
280
281             fjx0             = _mm256_add_pd(fjx0,tx);
282             fjy0             = _mm256_add_pd(fjy0,ty);
283             fjz0             = _mm256_add_pd(fjz0,tz);
284
285             /**************************
286              * CALCULATE INTERACTIONS *
287              **************************/
288
289             /* Compute parameters for interactions between i and j atoms */
290             qq10             = _mm256_mul_pd(iq1,jq0);
291
292             /* REACTION-FIELD ELECTROSTATICS */
293             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
294             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             velecsum         = _mm256_add_pd(velecsum,velec);
298
299             fscal            = felec;
300
301             /* Calculate temporary vectorial force */
302             tx               = _mm256_mul_pd(fscal,dx10);
303             ty               = _mm256_mul_pd(fscal,dy10);
304             tz               = _mm256_mul_pd(fscal,dz10);
305
306             /* Update vectorial force */
307             fix1             = _mm256_add_pd(fix1,tx);
308             fiy1             = _mm256_add_pd(fiy1,ty);
309             fiz1             = _mm256_add_pd(fiz1,tz);
310
311             fjx0             = _mm256_add_pd(fjx0,tx);
312             fjy0             = _mm256_add_pd(fjy0,ty);
313             fjz0             = _mm256_add_pd(fjz0,tz);
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq20             = _mm256_mul_pd(iq2,jq0);
321
322             /* REACTION-FIELD ELECTROSTATICS */
323             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
324             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velecsum         = _mm256_add_pd(velecsum,velec);
328
329             fscal            = felec;
330
331             /* Calculate temporary vectorial force */
332             tx               = _mm256_mul_pd(fscal,dx20);
333             ty               = _mm256_mul_pd(fscal,dy20);
334             tz               = _mm256_mul_pd(fscal,dz20);
335
336             /* Update vectorial force */
337             fix2             = _mm256_add_pd(fix2,tx);
338             fiy2             = _mm256_add_pd(fiy2,ty);
339             fiz2             = _mm256_add_pd(fiz2,tz);
340
341             fjx0             = _mm256_add_pd(fjx0,tx);
342             fjy0             = _mm256_add_pd(fjy0,ty);
343             fjz0             = _mm256_add_pd(fjz0,tz);
344
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             /* Compute parameters for interactions between i and j atoms */
350             qq30             = _mm256_mul_pd(iq3,jq0);
351
352             /* REACTION-FIELD ELECTROSTATICS */
353             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
354             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velecsum         = _mm256_add_pd(velecsum,velec);
358
359             fscal            = felec;
360
361             /* Calculate temporary vectorial force */
362             tx               = _mm256_mul_pd(fscal,dx30);
363             ty               = _mm256_mul_pd(fscal,dy30);
364             tz               = _mm256_mul_pd(fscal,dz30);
365
366             /* Update vectorial force */
367             fix3             = _mm256_add_pd(fix3,tx);
368             fiy3             = _mm256_add_pd(fiy3,ty);
369             fiz3             = _mm256_add_pd(fiz3,tz);
370
371             fjx0             = _mm256_add_pd(fjx0,tx);
372             fjy0             = _mm256_add_pd(fjy0,ty);
373             fjz0             = _mm256_add_pd(fjz0,tz);
374
375             fjptrA             = f+j_coord_offsetA;
376             fjptrB             = f+j_coord_offsetB;
377             fjptrC             = f+j_coord_offsetC;
378             fjptrD             = f+j_coord_offsetD;
379
380             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
381
382             /* Inner loop uses 131 flops */
383         }
384
385         if(jidx<j_index_end)
386         {
387
388             /* Get j neighbor index, and coordinate index */
389             jnrlistA         = jjnr[jidx];
390             jnrlistB         = jjnr[jidx+1];
391             jnrlistC         = jjnr[jidx+2];
392             jnrlistD         = jjnr[jidx+3];
393             /* Sign of each element will be negative for non-real atoms.
394              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
395              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
396              */
397             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
398
399             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
400             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
401             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
402
403             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
404             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
405             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
406             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
407             j_coord_offsetA  = DIM*jnrA;
408             j_coord_offsetB  = DIM*jnrB;
409             j_coord_offsetC  = DIM*jnrC;
410             j_coord_offsetD  = DIM*jnrD;
411
412             /* load j atom coordinates */
413             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
414                                                  x+j_coord_offsetC,x+j_coord_offsetD,
415                                                  &jx0,&jy0,&jz0);
416
417             /* Calculate displacement vector */
418             dx00             = _mm256_sub_pd(ix0,jx0);
419             dy00             = _mm256_sub_pd(iy0,jy0);
420             dz00             = _mm256_sub_pd(iz0,jz0);
421             dx10             = _mm256_sub_pd(ix1,jx0);
422             dy10             = _mm256_sub_pd(iy1,jy0);
423             dz10             = _mm256_sub_pd(iz1,jz0);
424             dx20             = _mm256_sub_pd(ix2,jx0);
425             dy20             = _mm256_sub_pd(iy2,jy0);
426             dz20             = _mm256_sub_pd(iz2,jz0);
427             dx30             = _mm256_sub_pd(ix3,jx0);
428             dy30             = _mm256_sub_pd(iy3,jy0);
429             dz30             = _mm256_sub_pd(iz3,jz0);
430
431             /* Calculate squared distance and things based on it */
432             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
433             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
434             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
435             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
436
437             rinv10           = avx256_invsqrt_d(rsq10);
438             rinv20           = avx256_invsqrt_d(rsq20);
439             rinv30           = avx256_invsqrt_d(rsq30);
440
441             rinvsq00         = avx256_inv_d(rsq00);
442             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
443             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
444             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
445
446             /* Load parameters for j particles */
447             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
448                                                                  charge+jnrC+0,charge+jnrD+0);
449             vdwjidx0A        = 2*vdwtype[jnrA+0];
450             vdwjidx0B        = 2*vdwtype[jnrB+0];
451             vdwjidx0C        = 2*vdwtype[jnrC+0];
452             vdwjidx0D        = 2*vdwtype[jnrD+0];
453
454             fjx0             = _mm256_setzero_pd();
455             fjy0             = _mm256_setzero_pd();
456             fjz0             = _mm256_setzero_pd();
457
458             /**************************
459              * CALCULATE INTERACTIONS *
460              **************************/
461
462             /* Compute parameters for interactions between i and j atoms */
463             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
464                                             vdwioffsetptr0+vdwjidx0B,
465                                             vdwioffsetptr0+vdwjidx0C,
466                                             vdwioffsetptr0+vdwjidx0D,
467                                             &c6_00,&c12_00);
468
469             /* LENNARD-JONES DISPERSION/REPULSION */
470
471             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
472             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
473             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
474             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
475             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
476
477             /* Update potential sum for this i atom from the interaction with this j atom. */
478             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
479             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
480
481             fscal            = fvdw;
482
483             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
484
485             /* Calculate temporary vectorial force */
486             tx               = _mm256_mul_pd(fscal,dx00);
487             ty               = _mm256_mul_pd(fscal,dy00);
488             tz               = _mm256_mul_pd(fscal,dz00);
489
490             /* Update vectorial force */
491             fix0             = _mm256_add_pd(fix0,tx);
492             fiy0             = _mm256_add_pd(fiy0,ty);
493             fiz0             = _mm256_add_pd(fiz0,tz);
494
495             fjx0             = _mm256_add_pd(fjx0,tx);
496             fjy0             = _mm256_add_pd(fjy0,ty);
497             fjz0             = _mm256_add_pd(fjz0,tz);
498
499             /**************************
500              * CALCULATE INTERACTIONS *
501              **************************/
502
503             /* Compute parameters for interactions between i and j atoms */
504             qq10             = _mm256_mul_pd(iq1,jq0);
505
506             /* REACTION-FIELD ELECTROSTATICS */
507             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
508             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
509
510             /* Update potential sum for this i atom from the interaction with this j atom. */
511             velec            = _mm256_andnot_pd(dummy_mask,velec);
512             velecsum         = _mm256_add_pd(velecsum,velec);
513
514             fscal            = felec;
515
516             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
517
518             /* Calculate temporary vectorial force */
519             tx               = _mm256_mul_pd(fscal,dx10);
520             ty               = _mm256_mul_pd(fscal,dy10);
521             tz               = _mm256_mul_pd(fscal,dz10);
522
523             /* Update vectorial force */
524             fix1             = _mm256_add_pd(fix1,tx);
525             fiy1             = _mm256_add_pd(fiy1,ty);
526             fiz1             = _mm256_add_pd(fiz1,tz);
527
528             fjx0             = _mm256_add_pd(fjx0,tx);
529             fjy0             = _mm256_add_pd(fjy0,ty);
530             fjz0             = _mm256_add_pd(fjz0,tz);
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq20             = _mm256_mul_pd(iq2,jq0);
538
539             /* REACTION-FIELD ELECTROSTATICS */
540             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
541             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
542
543             /* Update potential sum for this i atom from the interaction with this j atom. */
544             velec            = _mm256_andnot_pd(dummy_mask,velec);
545             velecsum         = _mm256_add_pd(velecsum,velec);
546
547             fscal            = felec;
548
549             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
550
551             /* Calculate temporary vectorial force */
552             tx               = _mm256_mul_pd(fscal,dx20);
553             ty               = _mm256_mul_pd(fscal,dy20);
554             tz               = _mm256_mul_pd(fscal,dz20);
555
556             /* Update vectorial force */
557             fix2             = _mm256_add_pd(fix2,tx);
558             fiy2             = _mm256_add_pd(fiy2,ty);
559             fiz2             = _mm256_add_pd(fiz2,tz);
560
561             fjx0             = _mm256_add_pd(fjx0,tx);
562             fjy0             = _mm256_add_pd(fjy0,ty);
563             fjz0             = _mm256_add_pd(fjz0,tz);
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             /* Compute parameters for interactions between i and j atoms */
570             qq30             = _mm256_mul_pd(iq3,jq0);
571
572             /* REACTION-FIELD ELECTROSTATICS */
573             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
574             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
575
576             /* Update potential sum for this i atom from the interaction with this j atom. */
577             velec            = _mm256_andnot_pd(dummy_mask,velec);
578             velecsum         = _mm256_add_pd(velecsum,velec);
579
580             fscal            = felec;
581
582             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
583
584             /* Calculate temporary vectorial force */
585             tx               = _mm256_mul_pd(fscal,dx30);
586             ty               = _mm256_mul_pd(fscal,dy30);
587             tz               = _mm256_mul_pd(fscal,dz30);
588
589             /* Update vectorial force */
590             fix3             = _mm256_add_pd(fix3,tx);
591             fiy3             = _mm256_add_pd(fiy3,ty);
592             fiz3             = _mm256_add_pd(fiz3,tz);
593
594             fjx0             = _mm256_add_pd(fjx0,tx);
595             fjy0             = _mm256_add_pd(fjy0,ty);
596             fjz0             = _mm256_add_pd(fjz0,tz);
597
598             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
599             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
600             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
601             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
602
603             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
604
605             /* Inner loop uses 131 flops */
606         }
607
608         /* End of innermost loop */
609
610         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
611                                                  f+i_coord_offset,fshift+i_shift_offset);
612
613         ggid                        = gid[iidx];
614         /* Update potential energies */
615         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
616         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
617
618         /* Increment number of inner iterations */
619         inneriter                  += j_index_end - j_index_start;
620
621         /* Outer loop uses 26 flops */
622     }
623
624     /* Increment number of outer iterations */
625     outeriter        += nri;
626
627     /* Update outer/inner flops */
628
629     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*131);
630 }
631 /*
632  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_avx_256_double
633  * Electrostatics interaction: ReactionField
634  * VdW interaction:            LennardJones
635  * Geometry:                   Water4-Particle
636  * Calculate force/pot:        Force
637  */
638 void
639 nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_avx_256_double
640                     (t_nblist                    * gmx_restrict       nlist,
641                      rvec                        * gmx_restrict          xx,
642                      rvec                        * gmx_restrict          ff,
643                      struct t_forcerec           * gmx_restrict          fr,
644                      t_mdatoms                   * gmx_restrict     mdatoms,
645                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
646                      t_nrnb                      * gmx_restrict        nrnb)
647 {
648     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
649      * just 0 for non-waters.
650      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
651      * jnr indices corresponding to data put in the four positions in the SIMD register.
652      */
653     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
654     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
655     int              jnrA,jnrB,jnrC,jnrD;
656     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
657     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
658     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
659     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
660     real             rcutoff_scalar;
661     real             *shiftvec,*fshift,*x,*f;
662     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
663     real             scratch[4*DIM];
664     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
665     real *           vdwioffsetptr0;
666     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
667     real *           vdwioffsetptr1;
668     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
669     real *           vdwioffsetptr2;
670     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
671     real *           vdwioffsetptr3;
672     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
673     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
674     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
675     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
676     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
677     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
678     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
679     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
680     real             *charge;
681     int              nvdwtype;
682     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
683     int              *vdwtype;
684     real             *vdwparam;
685     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
686     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
687     __m256d          dummy_mask,cutoff_mask;
688     __m128           tmpmask0,tmpmask1;
689     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
690     __m256d          one     = _mm256_set1_pd(1.0);
691     __m256d          two     = _mm256_set1_pd(2.0);
692     x                = xx[0];
693     f                = ff[0];
694
695     nri              = nlist->nri;
696     iinr             = nlist->iinr;
697     jindex           = nlist->jindex;
698     jjnr             = nlist->jjnr;
699     shiftidx         = nlist->shift;
700     gid              = nlist->gid;
701     shiftvec         = fr->shift_vec[0];
702     fshift           = fr->fshift[0];
703     facel            = _mm256_set1_pd(fr->ic->epsfac);
704     charge           = mdatoms->chargeA;
705     krf              = _mm256_set1_pd(fr->ic->k_rf);
706     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
707     crf              = _mm256_set1_pd(fr->ic->c_rf);
708     nvdwtype         = fr->ntype;
709     vdwparam         = fr->nbfp;
710     vdwtype          = mdatoms->typeA;
711
712     /* Setup water-specific parameters */
713     inr              = nlist->iinr[0];
714     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
715     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
716     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
717     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
718
719     /* Avoid stupid compiler warnings */
720     jnrA = jnrB = jnrC = jnrD = 0;
721     j_coord_offsetA = 0;
722     j_coord_offsetB = 0;
723     j_coord_offsetC = 0;
724     j_coord_offsetD = 0;
725
726     outeriter        = 0;
727     inneriter        = 0;
728
729     for(iidx=0;iidx<4*DIM;iidx++)
730     {
731         scratch[iidx] = 0.0;
732     }
733
734     /* Start outer loop over neighborlists */
735     for(iidx=0; iidx<nri; iidx++)
736     {
737         /* Load shift vector for this list */
738         i_shift_offset   = DIM*shiftidx[iidx];
739
740         /* Load limits for loop over neighbors */
741         j_index_start    = jindex[iidx];
742         j_index_end      = jindex[iidx+1];
743
744         /* Get outer coordinate index */
745         inr              = iinr[iidx];
746         i_coord_offset   = DIM*inr;
747
748         /* Load i particle coords and add shift vector */
749         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
750                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
751
752         fix0             = _mm256_setzero_pd();
753         fiy0             = _mm256_setzero_pd();
754         fiz0             = _mm256_setzero_pd();
755         fix1             = _mm256_setzero_pd();
756         fiy1             = _mm256_setzero_pd();
757         fiz1             = _mm256_setzero_pd();
758         fix2             = _mm256_setzero_pd();
759         fiy2             = _mm256_setzero_pd();
760         fiz2             = _mm256_setzero_pd();
761         fix3             = _mm256_setzero_pd();
762         fiy3             = _mm256_setzero_pd();
763         fiz3             = _mm256_setzero_pd();
764
765         /* Start inner kernel loop */
766         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
767         {
768
769             /* Get j neighbor index, and coordinate index */
770             jnrA             = jjnr[jidx];
771             jnrB             = jjnr[jidx+1];
772             jnrC             = jjnr[jidx+2];
773             jnrD             = jjnr[jidx+3];
774             j_coord_offsetA  = DIM*jnrA;
775             j_coord_offsetB  = DIM*jnrB;
776             j_coord_offsetC  = DIM*jnrC;
777             j_coord_offsetD  = DIM*jnrD;
778
779             /* load j atom coordinates */
780             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
781                                                  x+j_coord_offsetC,x+j_coord_offsetD,
782                                                  &jx0,&jy0,&jz0);
783
784             /* Calculate displacement vector */
785             dx00             = _mm256_sub_pd(ix0,jx0);
786             dy00             = _mm256_sub_pd(iy0,jy0);
787             dz00             = _mm256_sub_pd(iz0,jz0);
788             dx10             = _mm256_sub_pd(ix1,jx0);
789             dy10             = _mm256_sub_pd(iy1,jy0);
790             dz10             = _mm256_sub_pd(iz1,jz0);
791             dx20             = _mm256_sub_pd(ix2,jx0);
792             dy20             = _mm256_sub_pd(iy2,jy0);
793             dz20             = _mm256_sub_pd(iz2,jz0);
794             dx30             = _mm256_sub_pd(ix3,jx0);
795             dy30             = _mm256_sub_pd(iy3,jy0);
796             dz30             = _mm256_sub_pd(iz3,jz0);
797
798             /* Calculate squared distance and things based on it */
799             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
800             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
801             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
802             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
803
804             rinv10           = avx256_invsqrt_d(rsq10);
805             rinv20           = avx256_invsqrt_d(rsq20);
806             rinv30           = avx256_invsqrt_d(rsq30);
807
808             rinvsq00         = avx256_inv_d(rsq00);
809             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
810             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
811             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
812
813             /* Load parameters for j particles */
814             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
815                                                                  charge+jnrC+0,charge+jnrD+0);
816             vdwjidx0A        = 2*vdwtype[jnrA+0];
817             vdwjidx0B        = 2*vdwtype[jnrB+0];
818             vdwjidx0C        = 2*vdwtype[jnrC+0];
819             vdwjidx0D        = 2*vdwtype[jnrD+0];
820
821             fjx0             = _mm256_setzero_pd();
822             fjy0             = _mm256_setzero_pd();
823             fjz0             = _mm256_setzero_pd();
824
825             /**************************
826              * CALCULATE INTERACTIONS *
827              **************************/
828
829             /* Compute parameters for interactions between i and j atoms */
830             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
831                                             vdwioffsetptr0+vdwjidx0B,
832                                             vdwioffsetptr0+vdwjidx0C,
833                                             vdwioffsetptr0+vdwjidx0D,
834                                             &c6_00,&c12_00);
835
836             /* LENNARD-JONES DISPERSION/REPULSION */
837
838             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
839             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
840
841             fscal            = fvdw;
842
843             /* Calculate temporary vectorial force */
844             tx               = _mm256_mul_pd(fscal,dx00);
845             ty               = _mm256_mul_pd(fscal,dy00);
846             tz               = _mm256_mul_pd(fscal,dz00);
847
848             /* Update vectorial force */
849             fix0             = _mm256_add_pd(fix0,tx);
850             fiy0             = _mm256_add_pd(fiy0,ty);
851             fiz0             = _mm256_add_pd(fiz0,tz);
852
853             fjx0             = _mm256_add_pd(fjx0,tx);
854             fjy0             = _mm256_add_pd(fjy0,ty);
855             fjz0             = _mm256_add_pd(fjz0,tz);
856
857             /**************************
858              * CALCULATE INTERACTIONS *
859              **************************/
860
861             /* Compute parameters for interactions between i and j atoms */
862             qq10             = _mm256_mul_pd(iq1,jq0);
863
864             /* REACTION-FIELD ELECTROSTATICS */
865             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
866
867             fscal            = felec;
868
869             /* Calculate temporary vectorial force */
870             tx               = _mm256_mul_pd(fscal,dx10);
871             ty               = _mm256_mul_pd(fscal,dy10);
872             tz               = _mm256_mul_pd(fscal,dz10);
873
874             /* Update vectorial force */
875             fix1             = _mm256_add_pd(fix1,tx);
876             fiy1             = _mm256_add_pd(fiy1,ty);
877             fiz1             = _mm256_add_pd(fiz1,tz);
878
879             fjx0             = _mm256_add_pd(fjx0,tx);
880             fjy0             = _mm256_add_pd(fjy0,ty);
881             fjz0             = _mm256_add_pd(fjz0,tz);
882
883             /**************************
884              * CALCULATE INTERACTIONS *
885              **************************/
886
887             /* Compute parameters for interactions between i and j atoms */
888             qq20             = _mm256_mul_pd(iq2,jq0);
889
890             /* REACTION-FIELD ELECTROSTATICS */
891             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
892
893             fscal            = felec;
894
895             /* Calculate temporary vectorial force */
896             tx               = _mm256_mul_pd(fscal,dx20);
897             ty               = _mm256_mul_pd(fscal,dy20);
898             tz               = _mm256_mul_pd(fscal,dz20);
899
900             /* Update vectorial force */
901             fix2             = _mm256_add_pd(fix2,tx);
902             fiy2             = _mm256_add_pd(fiy2,ty);
903             fiz2             = _mm256_add_pd(fiz2,tz);
904
905             fjx0             = _mm256_add_pd(fjx0,tx);
906             fjy0             = _mm256_add_pd(fjy0,ty);
907             fjz0             = _mm256_add_pd(fjz0,tz);
908
909             /**************************
910              * CALCULATE INTERACTIONS *
911              **************************/
912
913             /* Compute parameters for interactions between i and j atoms */
914             qq30             = _mm256_mul_pd(iq3,jq0);
915
916             /* REACTION-FIELD ELECTROSTATICS */
917             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
918
919             fscal            = felec;
920
921             /* Calculate temporary vectorial force */
922             tx               = _mm256_mul_pd(fscal,dx30);
923             ty               = _mm256_mul_pd(fscal,dy30);
924             tz               = _mm256_mul_pd(fscal,dz30);
925
926             /* Update vectorial force */
927             fix3             = _mm256_add_pd(fix3,tx);
928             fiy3             = _mm256_add_pd(fiy3,ty);
929             fiz3             = _mm256_add_pd(fiz3,tz);
930
931             fjx0             = _mm256_add_pd(fjx0,tx);
932             fjy0             = _mm256_add_pd(fjy0,ty);
933             fjz0             = _mm256_add_pd(fjz0,tz);
934
935             fjptrA             = f+j_coord_offsetA;
936             fjptrB             = f+j_coord_offsetB;
937             fjptrC             = f+j_coord_offsetC;
938             fjptrD             = f+j_coord_offsetD;
939
940             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
941
942             /* Inner loop uses 111 flops */
943         }
944
945         if(jidx<j_index_end)
946         {
947
948             /* Get j neighbor index, and coordinate index */
949             jnrlistA         = jjnr[jidx];
950             jnrlistB         = jjnr[jidx+1];
951             jnrlistC         = jjnr[jidx+2];
952             jnrlistD         = jjnr[jidx+3];
953             /* Sign of each element will be negative for non-real atoms.
954              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
955              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
956              */
957             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
958
959             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
960             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
961             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
962
963             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
964             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
965             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
966             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
967             j_coord_offsetA  = DIM*jnrA;
968             j_coord_offsetB  = DIM*jnrB;
969             j_coord_offsetC  = DIM*jnrC;
970             j_coord_offsetD  = DIM*jnrD;
971
972             /* load j atom coordinates */
973             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
974                                                  x+j_coord_offsetC,x+j_coord_offsetD,
975                                                  &jx0,&jy0,&jz0);
976
977             /* Calculate displacement vector */
978             dx00             = _mm256_sub_pd(ix0,jx0);
979             dy00             = _mm256_sub_pd(iy0,jy0);
980             dz00             = _mm256_sub_pd(iz0,jz0);
981             dx10             = _mm256_sub_pd(ix1,jx0);
982             dy10             = _mm256_sub_pd(iy1,jy0);
983             dz10             = _mm256_sub_pd(iz1,jz0);
984             dx20             = _mm256_sub_pd(ix2,jx0);
985             dy20             = _mm256_sub_pd(iy2,jy0);
986             dz20             = _mm256_sub_pd(iz2,jz0);
987             dx30             = _mm256_sub_pd(ix3,jx0);
988             dy30             = _mm256_sub_pd(iy3,jy0);
989             dz30             = _mm256_sub_pd(iz3,jz0);
990
991             /* Calculate squared distance and things based on it */
992             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
993             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
994             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
995             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
996
997             rinv10           = avx256_invsqrt_d(rsq10);
998             rinv20           = avx256_invsqrt_d(rsq20);
999             rinv30           = avx256_invsqrt_d(rsq30);
1000
1001             rinvsq00         = avx256_inv_d(rsq00);
1002             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1003             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1004             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1005
1006             /* Load parameters for j particles */
1007             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1008                                                                  charge+jnrC+0,charge+jnrD+0);
1009             vdwjidx0A        = 2*vdwtype[jnrA+0];
1010             vdwjidx0B        = 2*vdwtype[jnrB+0];
1011             vdwjidx0C        = 2*vdwtype[jnrC+0];
1012             vdwjidx0D        = 2*vdwtype[jnrD+0];
1013
1014             fjx0             = _mm256_setzero_pd();
1015             fjy0             = _mm256_setzero_pd();
1016             fjz0             = _mm256_setzero_pd();
1017
1018             /**************************
1019              * CALCULATE INTERACTIONS *
1020              **************************/
1021
1022             /* Compute parameters for interactions between i and j atoms */
1023             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1024                                             vdwioffsetptr0+vdwjidx0B,
1025                                             vdwioffsetptr0+vdwjidx0C,
1026                                             vdwioffsetptr0+vdwjidx0D,
1027                                             &c6_00,&c12_00);
1028
1029             /* LENNARD-JONES DISPERSION/REPULSION */
1030
1031             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1032             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1033
1034             fscal            = fvdw;
1035
1036             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1037
1038             /* Calculate temporary vectorial force */
1039             tx               = _mm256_mul_pd(fscal,dx00);
1040             ty               = _mm256_mul_pd(fscal,dy00);
1041             tz               = _mm256_mul_pd(fscal,dz00);
1042
1043             /* Update vectorial force */
1044             fix0             = _mm256_add_pd(fix0,tx);
1045             fiy0             = _mm256_add_pd(fiy0,ty);
1046             fiz0             = _mm256_add_pd(fiz0,tz);
1047
1048             fjx0             = _mm256_add_pd(fjx0,tx);
1049             fjy0             = _mm256_add_pd(fjy0,ty);
1050             fjz0             = _mm256_add_pd(fjz0,tz);
1051
1052             /**************************
1053              * CALCULATE INTERACTIONS *
1054              **************************/
1055
1056             /* Compute parameters for interactions between i and j atoms */
1057             qq10             = _mm256_mul_pd(iq1,jq0);
1058
1059             /* REACTION-FIELD ELECTROSTATICS */
1060             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1061
1062             fscal            = felec;
1063
1064             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1065
1066             /* Calculate temporary vectorial force */
1067             tx               = _mm256_mul_pd(fscal,dx10);
1068             ty               = _mm256_mul_pd(fscal,dy10);
1069             tz               = _mm256_mul_pd(fscal,dz10);
1070
1071             /* Update vectorial force */
1072             fix1             = _mm256_add_pd(fix1,tx);
1073             fiy1             = _mm256_add_pd(fiy1,ty);
1074             fiz1             = _mm256_add_pd(fiz1,tz);
1075
1076             fjx0             = _mm256_add_pd(fjx0,tx);
1077             fjy0             = _mm256_add_pd(fjy0,ty);
1078             fjz0             = _mm256_add_pd(fjz0,tz);
1079
1080             /**************************
1081              * CALCULATE INTERACTIONS *
1082              **************************/
1083
1084             /* Compute parameters for interactions between i and j atoms */
1085             qq20             = _mm256_mul_pd(iq2,jq0);
1086
1087             /* REACTION-FIELD ELECTROSTATICS */
1088             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1089
1090             fscal            = felec;
1091
1092             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1093
1094             /* Calculate temporary vectorial force */
1095             tx               = _mm256_mul_pd(fscal,dx20);
1096             ty               = _mm256_mul_pd(fscal,dy20);
1097             tz               = _mm256_mul_pd(fscal,dz20);
1098
1099             /* Update vectorial force */
1100             fix2             = _mm256_add_pd(fix2,tx);
1101             fiy2             = _mm256_add_pd(fiy2,ty);
1102             fiz2             = _mm256_add_pd(fiz2,tz);
1103
1104             fjx0             = _mm256_add_pd(fjx0,tx);
1105             fjy0             = _mm256_add_pd(fjy0,ty);
1106             fjz0             = _mm256_add_pd(fjz0,tz);
1107
1108             /**************************
1109              * CALCULATE INTERACTIONS *
1110              **************************/
1111
1112             /* Compute parameters for interactions between i and j atoms */
1113             qq30             = _mm256_mul_pd(iq3,jq0);
1114
1115             /* REACTION-FIELD ELECTROSTATICS */
1116             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1117
1118             fscal            = felec;
1119
1120             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1121
1122             /* Calculate temporary vectorial force */
1123             tx               = _mm256_mul_pd(fscal,dx30);
1124             ty               = _mm256_mul_pd(fscal,dy30);
1125             tz               = _mm256_mul_pd(fscal,dz30);
1126
1127             /* Update vectorial force */
1128             fix3             = _mm256_add_pd(fix3,tx);
1129             fiy3             = _mm256_add_pd(fiy3,ty);
1130             fiz3             = _mm256_add_pd(fiz3,tz);
1131
1132             fjx0             = _mm256_add_pd(fjx0,tx);
1133             fjy0             = _mm256_add_pd(fjy0,ty);
1134             fjz0             = _mm256_add_pd(fjz0,tz);
1135
1136             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1137             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1138             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1139             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1140
1141             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1142
1143             /* Inner loop uses 111 flops */
1144         }
1145
1146         /* End of innermost loop */
1147
1148         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1149                                                  f+i_coord_offset,fshift+i_shift_offset);
1150
1151         /* Increment number of inner iterations */
1152         inneriter                  += j_index_end - j_index_start;
1153
1154         /* Outer loop uses 24 flops */
1155     }
1156
1157     /* Increment number of outer iterations */
1158     outeriter        += nri;
1159
1160     /* Update outer/inner flops */
1161
1162     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*111);
1163 }