b9354518dc34652d549a3b4e175ac29e822f6b69
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwLJ_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
102     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
103     __m256d          dummy_mask,cutoff_mask;
104     __m128           tmpmask0,tmpmask1;
105     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106     __m256d          one     = _mm256_set1_pd(1.0);
107     __m256d          two     = _mm256_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     krf              = _mm256_set1_pd(fr->ic->k_rf);
122     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
123     crf              = _mm256_set1_pd(fr->ic->c_rf);
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
131     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
132     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
133     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     for(iidx=0;iidx<4*DIM;iidx++)
146     {
147         scratch[iidx] = 0.0;
148     }
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
166                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
167
168         fix0             = _mm256_setzero_pd();
169         fiy0             = _mm256_setzero_pd();
170         fiz0             = _mm256_setzero_pd();
171         fix1             = _mm256_setzero_pd();
172         fiy1             = _mm256_setzero_pd();
173         fiz1             = _mm256_setzero_pd();
174         fix2             = _mm256_setzero_pd();
175         fiy2             = _mm256_setzero_pd();
176         fiz2             = _mm256_setzero_pd();
177
178         /* Reset potential sums */
179         velecsum         = _mm256_setzero_pd();
180         vvdwsum          = _mm256_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             jnrC             = jjnr[jidx+2];
190             jnrD             = jjnr[jidx+3];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195
196             /* load j atom coordinates */
197             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
198                                                  x+j_coord_offsetC,x+j_coord_offsetD,
199                                                  &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm256_sub_pd(ix0,jx0);
203             dy00             = _mm256_sub_pd(iy0,jy0);
204             dz00             = _mm256_sub_pd(iz0,jz0);
205             dx10             = _mm256_sub_pd(ix1,jx0);
206             dy10             = _mm256_sub_pd(iy1,jy0);
207             dz10             = _mm256_sub_pd(iz1,jz0);
208             dx20             = _mm256_sub_pd(ix2,jx0);
209             dy20             = _mm256_sub_pd(iy2,jy0);
210             dz20             = _mm256_sub_pd(iz2,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
214             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
215             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
216
217             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
218             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
219             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
220
221             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
222             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
223             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
227                                                                  charge+jnrC+0,charge+jnrD+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230             vdwjidx0C        = 2*vdwtype[jnrC+0];
231             vdwjidx0D        = 2*vdwtype[jnrD+0];
232
233             fjx0             = _mm256_setzero_pd();
234             fjy0             = _mm256_setzero_pd();
235             fjz0             = _mm256_setzero_pd();
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             /* Compute parameters for interactions between i and j atoms */
242             qq00             = _mm256_mul_pd(iq0,jq0);
243             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
244                                             vdwioffsetptr0+vdwjidx0B,
245                                             vdwioffsetptr0+vdwjidx0C,
246                                             vdwioffsetptr0+vdwjidx0D,
247                                             &c6_00,&c12_00);
248
249             /* REACTION-FIELD ELECTROSTATICS */
250             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
251             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
252
253             /* LENNARD-JONES DISPERSION/REPULSION */
254
255             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
256             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
257             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
258             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
259             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
260
261             /* Update potential sum for this i atom from the interaction with this j atom. */
262             velecsum         = _mm256_add_pd(velecsum,velec);
263             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
264
265             fscal            = _mm256_add_pd(felec,fvdw);
266
267             /* Calculate temporary vectorial force */
268             tx               = _mm256_mul_pd(fscal,dx00);
269             ty               = _mm256_mul_pd(fscal,dy00);
270             tz               = _mm256_mul_pd(fscal,dz00);
271
272             /* Update vectorial force */
273             fix0             = _mm256_add_pd(fix0,tx);
274             fiy0             = _mm256_add_pd(fiy0,ty);
275             fiz0             = _mm256_add_pd(fiz0,tz);
276
277             fjx0             = _mm256_add_pd(fjx0,tx);
278             fjy0             = _mm256_add_pd(fjy0,ty);
279             fjz0             = _mm256_add_pd(fjz0,tz);
280
281             /**************************
282              * CALCULATE INTERACTIONS *
283              **************************/
284
285             /* Compute parameters for interactions between i and j atoms */
286             qq10             = _mm256_mul_pd(iq1,jq0);
287
288             /* REACTION-FIELD ELECTROSTATICS */
289             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
290             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             velecsum         = _mm256_add_pd(velecsum,velec);
294
295             fscal            = felec;
296
297             /* Calculate temporary vectorial force */
298             tx               = _mm256_mul_pd(fscal,dx10);
299             ty               = _mm256_mul_pd(fscal,dy10);
300             tz               = _mm256_mul_pd(fscal,dz10);
301
302             /* Update vectorial force */
303             fix1             = _mm256_add_pd(fix1,tx);
304             fiy1             = _mm256_add_pd(fiy1,ty);
305             fiz1             = _mm256_add_pd(fiz1,tz);
306
307             fjx0             = _mm256_add_pd(fjx0,tx);
308             fjy0             = _mm256_add_pd(fjy0,ty);
309             fjz0             = _mm256_add_pd(fjz0,tz);
310
311             /**************************
312              * CALCULATE INTERACTIONS *
313              **************************/
314
315             /* Compute parameters for interactions between i and j atoms */
316             qq20             = _mm256_mul_pd(iq2,jq0);
317
318             /* REACTION-FIELD ELECTROSTATICS */
319             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
320             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
321
322             /* Update potential sum for this i atom from the interaction with this j atom. */
323             velecsum         = _mm256_add_pd(velecsum,velec);
324
325             fscal            = felec;
326
327             /* Calculate temporary vectorial force */
328             tx               = _mm256_mul_pd(fscal,dx20);
329             ty               = _mm256_mul_pd(fscal,dy20);
330             tz               = _mm256_mul_pd(fscal,dz20);
331
332             /* Update vectorial force */
333             fix2             = _mm256_add_pd(fix2,tx);
334             fiy2             = _mm256_add_pd(fiy2,ty);
335             fiz2             = _mm256_add_pd(fiz2,tz);
336
337             fjx0             = _mm256_add_pd(fjx0,tx);
338             fjy0             = _mm256_add_pd(fjy0,ty);
339             fjz0             = _mm256_add_pd(fjz0,tz);
340
341             fjptrA             = f+j_coord_offsetA;
342             fjptrB             = f+j_coord_offsetB;
343             fjptrC             = f+j_coord_offsetC;
344             fjptrD             = f+j_coord_offsetD;
345
346             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
347
348             /* Inner loop uses 111 flops */
349         }
350
351         if(jidx<j_index_end)
352         {
353
354             /* Get j neighbor index, and coordinate index */
355             jnrlistA         = jjnr[jidx];
356             jnrlistB         = jjnr[jidx+1];
357             jnrlistC         = jjnr[jidx+2];
358             jnrlistD         = jjnr[jidx+3];
359             /* Sign of each element will be negative for non-real atoms.
360              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
361              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
362              */
363             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
364
365             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
366             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
367             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
368
369             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
370             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
371             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
372             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
373             j_coord_offsetA  = DIM*jnrA;
374             j_coord_offsetB  = DIM*jnrB;
375             j_coord_offsetC  = DIM*jnrC;
376             j_coord_offsetD  = DIM*jnrD;
377
378             /* load j atom coordinates */
379             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
380                                                  x+j_coord_offsetC,x+j_coord_offsetD,
381                                                  &jx0,&jy0,&jz0);
382
383             /* Calculate displacement vector */
384             dx00             = _mm256_sub_pd(ix0,jx0);
385             dy00             = _mm256_sub_pd(iy0,jy0);
386             dz00             = _mm256_sub_pd(iz0,jz0);
387             dx10             = _mm256_sub_pd(ix1,jx0);
388             dy10             = _mm256_sub_pd(iy1,jy0);
389             dz10             = _mm256_sub_pd(iz1,jz0);
390             dx20             = _mm256_sub_pd(ix2,jx0);
391             dy20             = _mm256_sub_pd(iy2,jy0);
392             dz20             = _mm256_sub_pd(iz2,jz0);
393
394             /* Calculate squared distance and things based on it */
395             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
396             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
397             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
398
399             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
400             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
401             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
402
403             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
404             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
405             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
406
407             /* Load parameters for j particles */
408             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
409                                                                  charge+jnrC+0,charge+jnrD+0);
410             vdwjidx0A        = 2*vdwtype[jnrA+0];
411             vdwjidx0B        = 2*vdwtype[jnrB+0];
412             vdwjidx0C        = 2*vdwtype[jnrC+0];
413             vdwjidx0D        = 2*vdwtype[jnrD+0];
414
415             fjx0             = _mm256_setzero_pd();
416             fjy0             = _mm256_setzero_pd();
417             fjz0             = _mm256_setzero_pd();
418
419             /**************************
420              * CALCULATE INTERACTIONS *
421              **************************/
422
423             /* Compute parameters for interactions between i and j atoms */
424             qq00             = _mm256_mul_pd(iq0,jq0);
425             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
426                                             vdwioffsetptr0+vdwjidx0B,
427                                             vdwioffsetptr0+vdwjidx0C,
428                                             vdwioffsetptr0+vdwjidx0D,
429                                             &c6_00,&c12_00);
430
431             /* REACTION-FIELD ELECTROSTATICS */
432             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
433             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
434
435             /* LENNARD-JONES DISPERSION/REPULSION */
436
437             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
438             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
439             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
440             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
441             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
442
443             /* Update potential sum for this i atom from the interaction with this j atom. */
444             velec            = _mm256_andnot_pd(dummy_mask,velec);
445             velecsum         = _mm256_add_pd(velecsum,velec);
446             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
447             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
448
449             fscal            = _mm256_add_pd(felec,fvdw);
450
451             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
452
453             /* Calculate temporary vectorial force */
454             tx               = _mm256_mul_pd(fscal,dx00);
455             ty               = _mm256_mul_pd(fscal,dy00);
456             tz               = _mm256_mul_pd(fscal,dz00);
457
458             /* Update vectorial force */
459             fix0             = _mm256_add_pd(fix0,tx);
460             fiy0             = _mm256_add_pd(fiy0,ty);
461             fiz0             = _mm256_add_pd(fiz0,tz);
462
463             fjx0             = _mm256_add_pd(fjx0,tx);
464             fjy0             = _mm256_add_pd(fjy0,ty);
465             fjz0             = _mm256_add_pd(fjz0,tz);
466
467             /**************************
468              * CALCULATE INTERACTIONS *
469              **************************/
470
471             /* Compute parameters for interactions between i and j atoms */
472             qq10             = _mm256_mul_pd(iq1,jq0);
473
474             /* REACTION-FIELD ELECTROSTATICS */
475             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
476             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
477
478             /* Update potential sum for this i atom from the interaction with this j atom. */
479             velec            = _mm256_andnot_pd(dummy_mask,velec);
480             velecsum         = _mm256_add_pd(velecsum,velec);
481
482             fscal            = felec;
483
484             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
485
486             /* Calculate temporary vectorial force */
487             tx               = _mm256_mul_pd(fscal,dx10);
488             ty               = _mm256_mul_pd(fscal,dy10);
489             tz               = _mm256_mul_pd(fscal,dz10);
490
491             /* Update vectorial force */
492             fix1             = _mm256_add_pd(fix1,tx);
493             fiy1             = _mm256_add_pd(fiy1,ty);
494             fiz1             = _mm256_add_pd(fiz1,tz);
495
496             fjx0             = _mm256_add_pd(fjx0,tx);
497             fjy0             = _mm256_add_pd(fjy0,ty);
498             fjz0             = _mm256_add_pd(fjz0,tz);
499
500             /**************************
501              * CALCULATE INTERACTIONS *
502              **************************/
503
504             /* Compute parameters for interactions between i and j atoms */
505             qq20             = _mm256_mul_pd(iq2,jq0);
506
507             /* REACTION-FIELD ELECTROSTATICS */
508             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
509             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
510
511             /* Update potential sum for this i atom from the interaction with this j atom. */
512             velec            = _mm256_andnot_pd(dummy_mask,velec);
513             velecsum         = _mm256_add_pd(velecsum,velec);
514
515             fscal            = felec;
516
517             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
518
519             /* Calculate temporary vectorial force */
520             tx               = _mm256_mul_pd(fscal,dx20);
521             ty               = _mm256_mul_pd(fscal,dy20);
522             tz               = _mm256_mul_pd(fscal,dz20);
523
524             /* Update vectorial force */
525             fix2             = _mm256_add_pd(fix2,tx);
526             fiy2             = _mm256_add_pd(fiy2,ty);
527             fiz2             = _mm256_add_pd(fiz2,tz);
528
529             fjx0             = _mm256_add_pd(fjx0,tx);
530             fjy0             = _mm256_add_pd(fjy0,ty);
531             fjz0             = _mm256_add_pd(fjz0,tz);
532
533             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
534             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
535             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
536             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
537
538             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
539
540             /* Inner loop uses 111 flops */
541         }
542
543         /* End of innermost loop */
544
545         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
546                                                  f+i_coord_offset,fshift+i_shift_offset);
547
548         ggid                        = gid[iidx];
549         /* Update potential energies */
550         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
551         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
552
553         /* Increment number of inner iterations */
554         inneriter                  += j_index_end - j_index_start;
555
556         /* Outer loop uses 20 flops */
557     }
558
559     /* Increment number of outer iterations */
560     outeriter        += nri;
561
562     /* Update outer/inner flops */
563
564     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*111);
565 }
566 /*
567  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_256_double
568  * Electrostatics interaction: ReactionField
569  * VdW interaction:            LennardJones
570  * Geometry:                   Water3-Particle
571  * Calculate force/pot:        Force
572  */
573 void
574 nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_256_double
575                     (t_nblist                    * gmx_restrict       nlist,
576                      rvec                        * gmx_restrict          xx,
577                      rvec                        * gmx_restrict          ff,
578                      t_forcerec                  * gmx_restrict          fr,
579                      t_mdatoms                   * gmx_restrict     mdatoms,
580                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
581                      t_nrnb                      * gmx_restrict        nrnb)
582 {
583     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
584      * just 0 for non-waters.
585      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
586      * jnr indices corresponding to data put in the four positions in the SIMD register.
587      */
588     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
589     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
590     int              jnrA,jnrB,jnrC,jnrD;
591     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
592     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
593     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
594     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
595     real             rcutoff_scalar;
596     real             *shiftvec,*fshift,*x,*f;
597     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
598     real             scratch[4*DIM];
599     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
600     real *           vdwioffsetptr0;
601     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
602     real *           vdwioffsetptr1;
603     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
604     real *           vdwioffsetptr2;
605     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
606     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
607     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
608     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
609     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
610     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
611     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
612     real             *charge;
613     int              nvdwtype;
614     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
615     int              *vdwtype;
616     real             *vdwparam;
617     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
618     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
619     __m256d          dummy_mask,cutoff_mask;
620     __m128           tmpmask0,tmpmask1;
621     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
622     __m256d          one     = _mm256_set1_pd(1.0);
623     __m256d          two     = _mm256_set1_pd(2.0);
624     x                = xx[0];
625     f                = ff[0];
626
627     nri              = nlist->nri;
628     iinr             = nlist->iinr;
629     jindex           = nlist->jindex;
630     jjnr             = nlist->jjnr;
631     shiftidx         = nlist->shift;
632     gid              = nlist->gid;
633     shiftvec         = fr->shift_vec[0];
634     fshift           = fr->fshift[0];
635     facel            = _mm256_set1_pd(fr->epsfac);
636     charge           = mdatoms->chargeA;
637     krf              = _mm256_set1_pd(fr->ic->k_rf);
638     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
639     crf              = _mm256_set1_pd(fr->ic->c_rf);
640     nvdwtype         = fr->ntype;
641     vdwparam         = fr->nbfp;
642     vdwtype          = mdatoms->typeA;
643
644     /* Setup water-specific parameters */
645     inr              = nlist->iinr[0];
646     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
647     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
648     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
649     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
650
651     /* Avoid stupid compiler warnings */
652     jnrA = jnrB = jnrC = jnrD = 0;
653     j_coord_offsetA = 0;
654     j_coord_offsetB = 0;
655     j_coord_offsetC = 0;
656     j_coord_offsetD = 0;
657
658     outeriter        = 0;
659     inneriter        = 0;
660
661     for(iidx=0;iidx<4*DIM;iidx++)
662     {
663         scratch[iidx] = 0.0;
664     }
665
666     /* Start outer loop over neighborlists */
667     for(iidx=0; iidx<nri; iidx++)
668     {
669         /* Load shift vector for this list */
670         i_shift_offset   = DIM*shiftidx[iidx];
671
672         /* Load limits for loop over neighbors */
673         j_index_start    = jindex[iidx];
674         j_index_end      = jindex[iidx+1];
675
676         /* Get outer coordinate index */
677         inr              = iinr[iidx];
678         i_coord_offset   = DIM*inr;
679
680         /* Load i particle coords and add shift vector */
681         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
682                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
683
684         fix0             = _mm256_setzero_pd();
685         fiy0             = _mm256_setzero_pd();
686         fiz0             = _mm256_setzero_pd();
687         fix1             = _mm256_setzero_pd();
688         fiy1             = _mm256_setzero_pd();
689         fiz1             = _mm256_setzero_pd();
690         fix2             = _mm256_setzero_pd();
691         fiy2             = _mm256_setzero_pd();
692         fiz2             = _mm256_setzero_pd();
693
694         /* Start inner kernel loop */
695         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
696         {
697
698             /* Get j neighbor index, and coordinate index */
699             jnrA             = jjnr[jidx];
700             jnrB             = jjnr[jidx+1];
701             jnrC             = jjnr[jidx+2];
702             jnrD             = jjnr[jidx+3];
703             j_coord_offsetA  = DIM*jnrA;
704             j_coord_offsetB  = DIM*jnrB;
705             j_coord_offsetC  = DIM*jnrC;
706             j_coord_offsetD  = DIM*jnrD;
707
708             /* load j atom coordinates */
709             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
710                                                  x+j_coord_offsetC,x+j_coord_offsetD,
711                                                  &jx0,&jy0,&jz0);
712
713             /* Calculate displacement vector */
714             dx00             = _mm256_sub_pd(ix0,jx0);
715             dy00             = _mm256_sub_pd(iy0,jy0);
716             dz00             = _mm256_sub_pd(iz0,jz0);
717             dx10             = _mm256_sub_pd(ix1,jx0);
718             dy10             = _mm256_sub_pd(iy1,jy0);
719             dz10             = _mm256_sub_pd(iz1,jz0);
720             dx20             = _mm256_sub_pd(ix2,jx0);
721             dy20             = _mm256_sub_pd(iy2,jy0);
722             dz20             = _mm256_sub_pd(iz2,jz0);
723
724             /* Calculate squared distance and things based on it */
725             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
726             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
727             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
728
729             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
730             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
731             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
732
733             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
734             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
735             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
736
737             /* Load parameters for j particles */
738             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
739                                                                  charge+jnrC+0,charge+jnrD+0);
740             vdwjidx0A        = 2*vdwtype[jnrA+0];
741             vdwjidx0B        = 2*vdwtype[jnrB+0];
742             vdwjidx0C        = 2*vdwtype[jnrC+0];
743             vdwjidx0D        = 2*vdwtype[jnrD+0];
744
745             fjx0             = _mm256_setzero_pd();
746             fjy0             = _mm256_setzero_pd();
747             fjz0             = _mm256_setzero_pd();
748
749             /**************************
750              * CALCULATE INTERACTIONS *
751              **************************/
752
753             /* Compute parameters for interactions between i and j atoms */
754             qq00             = _mm256_mul_pd(iq0,jq0);
755             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
756                                             vdwioffsetptr0+vdwjidx0B,
757                                             vdwioffsetptr0+vdwjidx0C,
758                                             vdwioffsetptr0+vdwjidx0D,
759                                             &c6_00,&c12_00);
760
761             /* REACTION-FIELD ELECTROSTATICS */
762             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
763
764             /* LENNARD-JONES DISPERSION/REPULSION */
765
766             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
767             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
768
769             fscal            = _mm256_add_pd(felec,fvdw);
770
771             /* Calculate temporary vectorial force */
772             tx               = _mm256_mul_pd(fscal,dx00);
773             ty               = _mm256_mul_pd(fscal,dy00);
774             tz               = _mm256_mul_pd(fscal,dz00);
775
776             /* Update vectorial force */
777             fix0             = _mm256_add_pd(fix0,tx);
778             fiy0             = _mm256_add_pd(fiy0,ty);
779             fiz0             = _mm256_add_pd(fiz0,tz);
780
781             fjx0             = _mm256_add_pd(fjx0,tx);
782             fjy0             = _mm256_add_pd(fjy0,ty);
783             fjz0             = _mm256_add_pd(fjz0,tz);
784
785             /**************************
786              * CALCULATE INTERACTIONS *
787              **************************/
788
789             /* Compute parameters for interactions between i and j atoms */
790             qq10             = _mm256_mul_pd(iq1,jq0);
791
792             /* REACTION-FIELD ELECTROSTATICS */
793             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
794
795             fscal            = felec;
796
797             /* Calculate temporary vectorial force */
798             tx               = _mm256_mul_pd(fscal,dx10);
799             ty               = _mm256_mul_pd(fscal,dy10);
800             tz               = _mm256_mul_pd(fscal,dz10);
801
802             /* Update vectorial force */
803             fix1             = _mm256_add_pd(fix1,tx);
804             fiy1             = _mm256_add_pd(fiy1,ty);
805             fiz1             = _mm256_add_pd(fiz1,tz);
806
807             fjx0             = _mm256_add_pd(fjx0,tx);
808             fjy0             = _mm256_add_pd(fjy0,ty);
809             fjz0             = _mm256_add_pd(fjz0,tz);
810
811             /**************************
812              * CALCULATE INTERACTIONS *
813              **************************/
814
815             /* Compute parameters for interactions between i and j atoms */
816             qq20             = _mm256_mul_pd(iq2,jq0);
817
818             /* REACTION-FIELD ELECTROSTATICS */
819             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
820
821             fscal            = felec;
822
823             /* Calculate temporary vectorial force */
824             tx               = _mm256_mul_pd(fscal,dx20);
825             ty               = _mm256_mul_pd(fscal,dy20);
826             tz               = _mm256_mul_pd(fscal,dz20);
827
828             /* Update vectorial force */
829             fix2             = _mm256_add_pd(fix2,tx);
830             fiy2             = _mm256_add_pd(fiy2,ty);
831             fiz2             = _mm256_add_pd(fiz2,tz);
832
833             fjx0             = _mm256_add_pd(fjx0,tx);
834             fjy0             = _mm256_add_pd(fjy0,ty);
835             fjz0             = _mm256_add_pd(fjz0,tz);
836
837             fjptrA             = f+j_coord_offsetA;
838             fjptrB             = f+j_coord_offsetB;
839             fjptrC             = f+j_coord_offsetC;
840             fjptrD             = f+j_coord_offsetD;
841
842             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
843
844             /* Inner loop uses 91 flops */
845         }
846
847         if(jidx<j_index_end)
848         {
849
850             /* Get j neighbor index, and coordinate index */
851             jnrlistA         = jjnr[jidx];
852             jnrlistB         = jjnr[jidx+1];
853             jnrlistC         = jjnr[jidx+2];
854             jnrlistD         = jjnr[jidx+3];
855             /* Sign of each element will be negative for non-real atoms.
856              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
857              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
858              */
859             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
860
861             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
862             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
863             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
864
865             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
866             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
867             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
868             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
869             j_coord_offsetA  = DIM*jnrA;
870             j_coord_offsetB  = DIM*jnrB;
871             j_coord_offsetC  = DIM*jnrC;
872             j_coord_offsetD  = DIM*jnrD;
873
874             /* load j atom coordinates */
875             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
876                                                  x+j_coord_offsetC,x+j_coord_offsetD,
877                                                  &jx0,&jy0,&jz0);
878
879             /* Calculate displacement vector */
880             dx00             = _mm256_sub_pd(ix0,jx0);
881             dy00             = _mm256_sub_pd(iy0,jy0);
882             dz00             = _mm256_sub_pd(iz0,jz0);
883             dx10             = _mm256_sub_pd(ix1,jx0);
884             dy10             = _mm256_sub_pd(iy1,jy0);
885             dz10             = _mm256_sub_pd(iz1,jz0);
886             dx20             = _mm256_sub_pd(ix2,jx0);
887             dy20             = _mm256_sub_pd(iy2,jy0);
888             dz20             = _mm256_sub_pd(iz2,jz0);
889
890             /* Calculate squared distance and things based on it */
891             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
892             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
893             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
894
895             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
896             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
897             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
898
899             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
900             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
901             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
902
903             /* Load parameters for j particles */
904             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
905                                                                  charge+jnrC+0,charge+jnrD+0);
906             vdwjidx0A        = 2*vdwtype[jnrA+0];
907             vdwjidx0B        = 2*vdwtype[jnrB+0];
908             vdwjidx0C        = 2*vdwtype[jnrC+0];
909             vdwjidx0D        = 2*vdwtype[jnrD+0];
910
911             fjx0             = _mm256_setzero_pd();
912             fjy0             = _mm256_setzero_pd();
913             fjz0             = _mm256_setzero_pd();
914
915             /**************************
916              * CALCULATE INTERACTIONS *
917              **************************/
918
919             /* Compute parameters for interactions between i and j atoms */
920             qq00             = _mm256_mul_pd(iq0,jq0);
921             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
922                                             vdwioffsetptr0+vdwjidx0B,
923                                             vdwioffsetptr0+vdwjidx0C,
924                                             vdwioffsetptr0+vdwjidx0D,
925                                             &c6_00,&c12_00);
926
927             /* REACTION-FIELD ELECTROSTATICS */
928             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
929
930             /* LENNARD-JONES DISPERSION/REPULSION */
931
932             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
933             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
934
935             fscal            = _mm256_add_pd(felec,fvdw);
936
937             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
938
939             /* Calculate temporary vectorial force */
940             tx               = _mm256_mul_pd(fscal,dx00);
941             ty               = _mm256_mul_pd(fscal,dy00);
942             tz               = _mm256_mul_pd(fscal,dz00);
943
944             /* Update vectorial force */
945             fix0             = _mm256_add_pd(fix0,tx);
946             fiy0             = _mm256_add_pd(fiy0,ty);
947             fiz0             = _mm256_add_pd(fiz0,tz);
948
949             fjx0             = _mm256_add_pd(fjx0,tx);
950             fjy0             = _mm256_add_pd(fjy0,ty);
951             fjz0             = _mm256_add_pd(fjz0,tz);
952
953             /**************************
954              * CALCULATE INTERACTIONS *
955              **************************/
956
957             /* Compute parameters for interactions between i and j atoms */
958             qq10             = _mm256_mul_pd(iq1,jq0);
959
960             /* REACTION-FIELD ELECTROSTATICS */
961             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
962
963             fscal            = felec;
964
965             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
966
967             /* Calculate temporary vectorial force */
968             tx               = _mm256_mul_pd(fscal,dx10);
969             ty               = _mm256_mul_pd(fscal,dy10);
970             tz               = _mm256_mul_pd(fscal,dz10);
971
972             /* Update vectorial force */
973             fix1             = _mm256_add_pd(fix1,tx);
974             fiy1             = _mm256_add_pd(fiy1,ty);
975             fiz1             = _mm256_add_pd(fiz1,tz);
976
977             fjx0             = _mm256_add_pd(fjx0,tx);
978             fjy0             = _mm256_add_pd(fjy0,ty);
979             fjz0             = _mm256_add_pd(fjz0,tz);
980
981             /**************************
982              * CALCULATE INTERACTIONS *
983              **************************/
984
985             /* Compute parameters for interactions between i and j atoms */
986             qq20             = _mm256_mul_pd(iq2,jq0);
987
988             /* REACTION-FIELD ELECTROSTATICS */
989             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
990
991             fscal            = felec;
992
993             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
994
995             /* Calculate temporary vectorial force */
996             tx               = _mm256_mul_pd(fscal,dx20);
997             ty               = _mm256_mul_pd(fscal,dy20);
998             tz               = _mm256_mul_pd(fscal,dz20);
999
1000             /* Update vectorial force */
1001             fix2             = _mm256_add_pd(fix2,tx);
1002             fiy2             = _mm256_add_pd(fiy2,ty);
1003             fiz2             = _mm256_add_pd(fiz2,tz);
1004
1005             fjx0             = _mm256_add_pd(fjx0,tx);
1006             fjy0             = _mm256_add_pd(fjy0,ty);
1007             fjz0             = _mm256_add_pd(fjz0,tz);
1008
1009             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1010             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1011             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1012             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1013
1014             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1015
1016             /* Inner loop uses 91 flops */
1017         }
1018
1019         /* End of innermost loop */
1020
1021         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1022                                                  f+i_coord_offset,fshift+i_shift_offset);
1023
1024         /* Increment number of inner iterations */
1025         inneriter                  += j_index_end - j_index_start;
1026
1027         /* Outer loop uses 18 flops */
1028     }
1029
1030     /* Increment number of outer iterations */
1031     outeriter        += nri;
1032
1033     /* Update outer/inner flops */
1034
1035     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*91);
1036 }