66633ad6cbbc1b4fe9a3883e9517357a0f195805
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwLJ_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m256d          dummy_mask,cutoff_mask;
106     __m128           tmpmask0,tmpmask1;
107     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
108     __m256d          one     = _mm256_set1_pd(1.0);
109     __m256d          two     = _mm256_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm256_set1_pd(fr->ic->k_rf);
124     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
125     crf              = _mm256_set1_pd(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
133     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
134     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
135     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = jnrC = jnrD = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141     j_coord_offsetC = 0;
142     j_coord_offsetD = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169
170         fix0             = _mm256_setzero_pd();
171         fiy0             = _mm256_setzero_pd();
172         fiz0             = _mm256_setzero_pd();
173         fix1             = _mm256_setzero_pd();
174         fiy1             = _mm256_setzero_pd();
175         fiz1             = _mm256_setzero_pd();
176         fix2             = _mm256_setzero_pd();
177         fiy2             = _mm256_setzero_pd();
178         fiz2             = _mm256_setzero_pd();
179
180         /* Reset potential sums */
181         velecsum         = _mm256_setzero_pd();
182         vvdwsum          = _mm256_setzero_pd();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
201                                                  &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm256_sub_pd(ix0,jx0);
205             dy00             = _mm256_sub_pd(iy0,jy0);
206             dz00             = _mm256_sub_pd(iz0,jz0);
207             dx10             = _mm256_sub_pd(ix1,jx0);
208             dy10             = _mm256_sub_pd(iy1,jy0);
209             dz10             = _mm256_sub_pd(iz1,jz0);
210             dx20             = _mm256_sub_pd(ix2,jx0);
211             dy20             = _mm256_sub_pd(iy2,jy0);
212             dz20             = _mm256_sub_pd(iz2,jz0);
213
214             /* Calculate squared distance and things based on it */
215             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
216             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
217             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
218
219             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
220             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
221             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
222
223             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
224             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
225             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
226
227             /* Load parameters for j particles */
228             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
229                                                                  charge+jnrC+0,charge+jnrD+0);
230             vdwjidx0A        = 2*vdwtype[jnrA+0];
231             vdwjidx0B        = 2*vdwtype[jnrB+0];
232             vdwjidx0C        = 2*vdwtype[jnrC+0];
233             vdwjidx0D        = 2*vdwtype[jnrD+0];
234
235             fjx0             = _mm256_setzero_pd();
236             fjy0             = _mm256_setzero_pd();
237             fjz0             = _mm256_setzero_pd();
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             /* Compute parameters for interactions between i and j atoms */
244             qq00             = _mm256_mul_pd(iq0,jq0);
245             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
246                                             vdwioffsetptr0+vdwjidx0B,
247                                             vdwioffsetptr0+vdwjidx0C,
248                                             vdwioffsetptr0+vdwjidx0D,
249                                             &c6_00,&c12_00);
250
251             /* REACTION-FIELD ELECTROSTATICS */
252             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
253             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
254
255             /* LENNARD-JONES DISPERSION/REPULSION */
256
257             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
258             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
259             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
260             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
261             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
262
263             /* Update potential sum for this i atom from the interaction with this j atom. */
264             velecsum         = _mm256_add_pd(velecsum,velec);
265             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
266
267             fscal            = _mm256_add_pd(felec,fvdw);
268
269             /* Calculate temporary vectorial force */
270             tx               = _mm256_mul_pd(fscal,dx00);
271             ty               = _mm256_mul_pd(fscal,dy00);
272             tz               = _mm256_mul_pd(fscal,dz00);
273
274             /* Update vectorial force */
275             fix0             = _mm256_add_pd(fix0,tx);
276             fiy0             = _mm256_add_pd(fiy0,ty);
277             fiz0             = _mm256_add_pd(fiz0,tz);
278
279             fjx0             = _mm256_add_pd(fjx0,tx);
280             fjy0             = _mm256_add_pd(fjy0,ty);
281             fjz0             = _mm256_add_pd(fjz0,tz);
282
283             /**************************
284              * CALCULATE INTERACTIONS *
285              **************************/
286
287             /* Compute parameters for interactions between i and j atoms */
288             qq10             = _mm256_mul_pd(iq1,jq0);
289
290             /* REACTION-FIELD ELECTROSTATICS */
291             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
292             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             velecsum         = _mm256_add_pd(velecsum,velec);
296
297             fscal            = felec;
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm256_mul_pd(fscal,dx10);
301             ty               = _mm256_mul_pd(fscal,dy10);
302             tz               = _mm256_mul_pd(fscal,dz10);
303
304             /* Update vectorial force */
305             fix1             = _mm256_add_pd(fix1,tx);
306             fiy1             = _mm256_add_pd(fiy1,ty);
307             fiz1             = _mm256_add_pd(fiz1,tz);
308
309             fjx0             = _mm256_add_pd(fjx0,tx);
310             fjy0             = _mm256_add_pd(fjy0,ty);
311             fjz0             = _mm256_add_pd(fjz0,tz);
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq20             = _mm256_mul_pd(iq2,jq0);
319
320             /* REACTION-FIELD ELECTROSTATICS */
321             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
322             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
323
324             /* Update potential sum for this i atom from the interaction with this j atom. */
325             velecsum         = _mm256_add_pd(velecsum,velec);
326
327             fscal            = felec;
328
329             /* Calculate temporary vectorial force */
330             tx               = _mm256_mul_pd(fscal,dx20);
331             ty               = _mm256_mul_pd(fscal,dy20);
332             tz               = _mm256_mul_pd(fscal,dz20);
333
334             /* Update vectorial force */
335             fix2             = _mm256_add_pd(fix2,tx);
336             fiy2             = _mm256_add_pd(fiy2,ty);
337             fiz2             = _mm256_add_pd(fiz2,tz);
338
339             fjx0             = _mm256_add_pd(fjx0,tx);
340             fjy0             = _mm256_add_pd(fjy0,ty);
341             fjz0             = _mm256_add_pd(fjz0,tz);
342
343             fjptrA             = f+j_coord_offsetA;
344             fjptrB             = f+j_coord_offsetB;
345             fjptrC             = f+j_coord_offsetC;
346             fjptrD             = f+j_coord_offsetD;
347
348             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
349
350             /* Inner loop uses 111 flops */
351         }
352
353         if(jidx<j_index_end)
354         {
355
356             /* Get j neighbor index, and coordinate index */
357             jnrlistA         = jjnr[jidx];
358             jnrlistB         = jjnr[jidx+1];
359             jnrlistC         = jjnr[jidx+2];
360             jnrlistD         = jjnr[jidx+3];
361             /* Sign of each element will be negative for non-real atoms.
362              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
363              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
364              */
365             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
366
367             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
368             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
369             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
370
371             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
372             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
373             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
374             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
375             j_coord_offsetA  = DIM*jnrA;
376             j_coord_offsetB  = DIM*jnrB;
377             j_coord_offsetC  = DIM*jnrC;
378             j_coord_offsetD  = DIM*jnrD;
379
380             /* load j atom coordinates */
381             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
382                                                  x+j_coord_offsetC,x+j_coord_offsetD,
383                                                  &jx0,&jy0,&jz0);
384
385             /* Calculate displacement vector */
386             dx00             = _mm256_sub_pd(ix0,jx0);
387             dy00             = _mm256_sub_pd(iy0,jy0);
388             dz00             = _mm256_sub_pd(iz0,jz0);
389             dx10             = _mm256_sub_pd(ix1,jx0);
390             dy10             = _mm256_sub_pd(iy1,jy0);
391             dz10             = _mm256_sub_pd(iz1,jz0);
392             dx20             = _mm256_sub_pd(ix2,jx0);
393             dy20             = _mm256_sub_pd(iy2,jy0);
394             dz20             = _mm256_sub_pd(iz2,jz0);
395
396             /* Calculate squared distance and things based on it */
397             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
398             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
399             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
400
401             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
402             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
403             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
404
405             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
406             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
407             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
408
409             /* Load parameters for j particles */
410             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
411                                                                  charge+jnrC+0,charge+jnrD+0);
412             vdwjidx0A        = 2*vdwtype[jnrA+0];
413             vdwjidx0B        = 2*vdwtype[jnrB+0];
414             vdwjidx0C        = 2*vdwtype[jnrC+0];
415             vdwjidx0D        = 2*vdwtype[jnrD+0];
416
417             fjx0             = _mm256_setzero_pd();
418             fjy0             = _mm256_setzero_pd();
419             fjz0             = _mm256_setzero_pd();
420
421             /**************************
422              * CALCULATE INTERACTIONS *
423              **************************/
424
425             /* Compute parameters for interactions between i and j atoms */
426             qq00             = _mm256_mul_pd(iq0,jq0);
427             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
428                                             vdwioffsetptr0+vdwjidx0B,
429                                             vdwioffsetptr0+vdwjidx0C,
430                                             vdwioffsetptr0+vdwjidx0D,
431                                             &c6_00,&c12_00);
432
433             /* REACTION-FIELD ELECTROSTATICS */
434             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
435             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
436
437             /* LENNARD-JONES DISPERSION/REPULSION */
438
439             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
440             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
441             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
442             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
443             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
444
445             /* Update potential sum for this i atom from the interaction with this j atom. */
446             velec            = _mm256_andnot_pd(dummy_mask,velec);
447             velecsum         = _mm256_add_pd(velecsum,velec);
448             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
449             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
450
451             fscal            = _mm256_add_pd(felec,fvdw);
452
453             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
454
455             /* Calculate temporary vectorial force */
456             tx               = _mm256_mul_pd(fscal,dx00);
457             ty               = _mm256_mul_pd(fscal,dy00);
458             tz               = _mm256_mul_pd(fscal,dz00);
459
460             /* Update vectorial force */
461             fix0             = _mm256_add_pd(fix0,tx);
462             fiy0             = _mm256_add_pd(fiy0,ty);
463             fiz0             = _mm256_add_pd(fiz0,tz);
464
465             fjx0             = _mm256_add_pd(fjx0,tx);
466             fjy0             = _mm256_add_pd(fjy0,ty);
467             fjz0             = _mm256_add_pd(fjz0,tz);
468
469             /**************************
470              * CALCULATE INTERACTIONS *
471              **************************/
472
473             /* Compute parameters for interactions between i and j atoms */
474             qq10             = _mm256_mul_pd(iq1,jq0);
475
476             /* REACTION-FIELD ELECTROSTATICS */
477             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
478             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
479
480             /* Update potential sum for this i atom from the interaction with this j atom. */
481             velec            = _mm256_andnot_pd(dummy_mask,velec);
482             velecsum         = _mm256_add_pd(velecsum,velec);
483
484             fscal            = felec;
485
486             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
487
488             /* Calculate temporary vectorial force */
489             tx               = _mm256_mul_pd(fscal,dx10);
490             ty               = _mm256_mul_pd(fscal,dy10);
491             tz               = _mm256_mul_pd(fscal,dz10);
492
493             /* Update vectorial force */
494             fix1             = _mm256_add_pd(fix1,tx);
495             fiy1             = _mm256_add_pd(fiy1,ty);
496             fiz1             = _mm256_add_pd(fiz1,tz);
497
498             fjx0             = _mm256_add_pd(fjx0,tx);
499             fjy0             = _mm256_add_pd(fjy0,ty);
500             fjz0             = _mm256_add_pd(fjz0,tz);
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             /* Compute parameters for interactions between i and j atoms */
507             qq20             = _mm256_mul_pd(iq2,jq0);
508
509             /* REACTION-FIELD ELECTROSTATICS */
510             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
511             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
512
513             /* Update potential sum for this i atom from the interaction with this j atom. */
514             velec            = _mm256_andnot_pd(dummy_mask,velec);
515             velecsum         = _mm256_add_pd(velecsum,velec);
516
517             fscal            = felec;
518
519             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
520
521             /* Calculate temporary vectorial force */
522             tx               = _mm256_mul_pd(fscal,dx20);
523             ty               = _mm256_mul_pd(fscal,dy20);
524             tz               = _mm256_mul_pd(fscal,dz20);
525
526             /* Update vectorial force */
527             fix2             = _mm256_add_pd(fix2,tx);
528             fiy2             = _mm256_add_pd(fiy2,ty);
529             fiz2             = _mm256_add_pd(fiz2,tz);
530
531             fjx0             = _mm256_add_pd(fjx0,tx);
532             fjy0             = _mm256_add_pd(fjy0,ty);
533             fjz0             = _mm256_add_pd(fjz0,tz);
534
535             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
536             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
537             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
538             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
539
540             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
541
542             /* Inner loop uses 111 flops */
543         }
544
545         /* End of innermost loop */
546
547         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
548                                                  f+i_coord_offset,fshift+i_shift_offset);
549
550         ggid                        = gid[iidx];
551         /* Update potential energies */
552         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
553         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
554
555         /* Increment number of inner iterations */
556         inneriter                  += j_index_end - j_index_start;
557
558         /* Outer loop uses 20 flops */
559     }
560
561     /* Increment number of outer iterations */
562     outeriter        += nri;
563
564     /* Update outer/inner flops */
565
566     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*111);
567 }
568 /*
569  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_256_double
570  * Electrostatics interaction: ReactionField
571  * VdW interaction:            LennardJones
572  * Geometry:                   Water3-Particle
573  * Calculate force/pot:        Force
574  */
575 void
576 nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_256_double
577                     (t_nblist                    * gmx_restrict       nlist,
578                      rvec                        * gmx_restrict          xx,
579                      rvec                        * gmx_restrict          ff,
580                      t_forcerec                  * gmx_restrict          fr,
581                      t_mdatoms                   * gmx_restrict     mdatoms,
582                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
583                      t_nrnb                      * gmx_restrict        nrnb)
584 {
585     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
586      * just 0 for non-waters.
587      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
588      * jnr indices corresponding to data put in the four positions in the SIMD register.
589      */
590     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
591     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
592     int              jnrA,jnrB,jnrC,jnrD;
593     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
594     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
595     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
596     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
597     real             rcutoff_scalar;
598     real             *shiftvec,*fshift,*x,*f;
599     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
600     real             scratch[4*DIM];
601     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
602     real *           vdwioffsetptr0;
603     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
604     real *           vdwioffsetptr1;
605     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
606     real *           vdwioffsetptr2;
607     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
608     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
609     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
610     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
611     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
612     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
613     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
614     real             *charge;
615     int              nvdwtype;
616     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
617     int              *vdwtype;
618     real             *vdwparam;
619     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
620     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
621     __m256d          dummy_mask,cutoff_mask;
622     __m128           tmpmask0,tmpmask1;
623     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
624     __m256d          one     = _mm256_set1_pd(1.0);
625     __m256d          two     = _mm256_set1_pd(2.0);
626     x                = xx[0];
627     f                = ff[0];
628
629     nri              = nlist->nri;
630     iinr             = nlist->iinr;
631     jindex           = nlist->jindex;
632     jjnr             = nlist->jjnr;
633     shiftidx         = nlist->shift;
634     gid              = nlist->gid;
635     shiftvec         = fr->shift_vec[0];
636     fshift           = fr->fshift[0];
637     facel            = _mm256_set1_pd(fr->epsfac);
638     charge           = mdatoms->chargeA;
639     krf              = _mm256_set1_pd(fr->ic->k_rf);
640     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
641     crf              = _mm256_set1_pd(fr->ic->c_rf);
642     nvdwtype         = fr->ntype;
643     vdwparam         = fr->nbfp;
644     vdwtype          = mdatoms->typeA;
645
646     /* Setup water-specific parameters */
647     inr              = nlist->iinr[0];
648     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
649     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
650     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
651     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
652
653     /* Avoid stupid compiler warnings */
654     jnrA = jnrB = jnrC = jnrD = 0;
655     j_coord_offsetA = 0;
656     j_coord_offsetB = 0;
657     j_coord_offsetC = 0;
658     j_coord_offsetD = 0;
659
660     outeriter        = 0;
661     inneriter        = 0;
662
663     for(iidx=0;iidx<4*DIM;iidx++)
664     {
665         scratch[iidx] = 0.0;
666     }
667
668     /* Start outer loop over neighborlists */
669     for(iidx=0; iidx<nri; iidx++)
670     {
671         /* Load shift vector for this list */
672         i_shift_offset   = DIM*shiftidx[iidx];
673
674         /* Load limits for loop over neighbors */
675         j_index_start    = jindex[iidx];
676         j_index_end      = jindex[iidx+1];
677
678         /* Get outer coordinate index */
679         inr              = iinr[iidx];
680         i_coord_offset   = DIM*inr;
681
682         /* Load i particle coords and add shift vector */
683         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
684                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
685
686         fix0             = _mm256_setzero_pd();
687         fiy0             = _mm256_setzero_pd();
688         fiz0             = _mm256_setzero_pd();
689         fix1             = _mm256_setzero_pd();
690         fiy1             = _mm256_setzero_pd();
691         fiz1             = _mm256_setzero_pd();
692         fix2             = _mm256_setzero_pd();
693         fiy2             = _mm256_setzero_pd();
694         fiz2             = _mm256_setzero_pd();
695
696         /* Start inner kernel loop */
697         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
698         {
699
700             /* Get j neighbor index, and coordinate index */
701             jnrA             = jjnr[jidx];
702             jnrB             = jjnr[jidx+1];
703             jnrC             = jjnr[jidx+2];
704             jnrD             = jjnr[jidx+3];
705             j_coord_offsetA  = DIM*jnrA;
706             j_coord_offsetB  = DIM*jnrB;
707             j_coord_offsetC  = DIM*jnrC;
708             j_coord_offsetD  = DIM*jnrD;
709
710             /* load j atom coordinates */
711             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
712                                                  x+j_coord_offsetC,x+j_coord_offsetD,
713                                                  &jx0,&jy0,&jz0);
714
715             /* Calculate displacement vector */
716             dx00             = _mm256_sub_pd(ix0,jx0);
717             dy00             = _mm256_sub_pd(iy0,jy0);
718             dz00             = _mm256_sub_pd(iz0,jz0);
719             dx10             = _mm256_sub_pd(ix1,jx0);
720             dy10             = _mm256_sub_pd(iy1,jy0);
721             dz10             = _mm256_sub_pd(iz1,jz0);
722             dx20             = _mm256_sub_pd(ix2,jx0);
723             dy20             = _mm256_sub_pd(iy2,jy0);
724             dz20             = _mm256_sub_pd(iz2,jz0);
725
726             /* Calculate squared distance and things based on it */
727             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
728             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
729             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
730
731             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
732             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
733             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
734
735             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
736             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
737             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
738
739             /* Load parameters for j particles */
740             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
741                                                                  charge+jnrC+0,charge+jnrD+0);
742             vdwjidx0A        = 2*vdwtype[jnrA+0];
743             vdwjidx0B        = 2*vdwtype[jnrB+0];
744             vdwjidx0C        = 2*vdwtype[jnrC+0];
745             vdwjidx0D        = 2*vdwtype[jnrD+0];
746
747             fjx0             = _mm256_setzero_pd();
748             fjy0             = _mm256_setzero_pd();
749             fjz0             = _mm256_setzero_pd();
750
751             /**************************
752              * CALCULATE INTERACTIONS *
753              **************************/
754
755             /* Compute parameters for interactions between i and j atoms */
756             qq00             = _mm256_mul_pd(iq0,jq0);
757             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
758                                             vdwioffsetptr0+vdwjidx0B,
759                                             vdwioffsetptr0+vdwjidx0C,
760                                             vdwioffsetptr0+vdwjidx0D,
761                                             &c6_00,&c12_00);
762
763             /* REACTION-FIELD ELECTROSTATICS */
764             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
765
766             /* LENNARD-JONES DISPERSION/REPULSION */
767
768             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
769             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
770
771             fscal            = _mm256_add_pd(felec,fvdw);
772
773             /* Calculate temporary vectorial force */
774             tx               = _mm256_mul_pd(fscal,dx00);
775             ty               = _mm256_mul_pd(fscal,dy00);
776             tz               = _mm256_mul_pd(fscal,dz00);
777
778             /* Update vectorial force */
779             fix0             = _mm256_add_pd(fix0,tx);
780             fiy0             = _mm256_add_pd(fiy0,ty);
781             fiz0             = _mm256_add_pd(fiz0,tz);
782
783             fjx0             = _mm256_add_pd(fjx0,tx);
784             fjy0             = _mm256_add_pd(fjy0,ty);
785             fjz0             = _mm256_add_pd(fjz0,tz);
786
787             /**************************
788              * CALCULATE INTERACTIONS *
789              **************************/
790
791             /* Compute parameters for interactions between i and j atoms */
792             qq10             = _mm256_mul_pd(iq1,jq0);
793
794             /* REACTION-FIELD ELECTROSTATICS */
795             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
796
797             fscal            = felec;
798
799             /* Calculate temporary vectorial force */
800             tx               = _mm256_mul_pd(fscal,dx10);
801             ty               = _mm256_mul_pd(fscal,dy10);
802             tz               = _mm256_mul_pd(fscal,dz10);
803
804             /* Update vectorial force */
805             fix1             = _mm256_add_pd(fix1,tx);
806             fiy1             = _mm256_add_pd(fiy1,ty);
807             fiz1             = _mm256_add_pd(fiz1,tz);
808
809             fjx0             = _mm256_add_pd(fjx0,tx);
810             fjy0             = _mm256_add_pd(fjy0,ty);
811             fjz0             = _mm256_add_pd(fjz0,tz);
812
813             /**************************
814              * CALCULATE INTERACTIONS *
815              **************************/
816
817             /* Compute parameters for interactions between i and j atoms */
818             qq20             = _mm256_mul_pd(iq2,jq0);
819
820             /* REACTION-FIELD ELECTROSTATICS */
821             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
822
823             fscal            = felec;
824
825             /* Calculate temporary vectorial force */
826             tx               = _mm256_mul_pd(fscal,dx20);
827             ty               = _mm256_mul_pd(fscal,dy20);
828             tz               = _mm256_mul_pd(fscal,dz20);
829
830             /* Update vectorial force */
831             fix2             = _mm256_add_pd(fix2,tx);
832             fiy2             = _mm256_add_pd(fiy2,ty);
833             fiz2             = _mm256_add_pd(fiz2,tz);
834
835             fjx0             = _mm256_add_pd(fjx0,tx);
836             fjy0             = _mm256_add_pd(fjy0,ty);
837             fjz0             = _mm256_add_pd(fjz0,tz);
838
839             fjptrA             = f+j_coord_offsetA;
840             fjptrB             = f+j_coord_offsetB;
841             fjptrC             = f+j_coord_offsetC;
842             fjptrD             = f+j_coord_offsetD;
843
844             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
845
846             /* Inner loop uses 91 flops */
847         }
848
849         if(jidx<j_index_end)
850         {
851
852             /* Get j neighbor index, and coordinate index */
853             jnrlistA         = jjnr[jidx];
854             jnrlistB         = jjnr[jidx+1];
855             jnrlistC         = jjnr[jidx+2];
856             jnrlistD         = jjnr[jidx+3];
857             /* Sign of each element will be negative for non-real atoms.
858              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
859              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
860              */
861             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
862
863             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
864             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
865             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
866
867             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
868             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
869             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
870             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
871             j_coord_offsetA  = DIM*jnrA;
872             j_coord_offsetB  = DIM*jnrB;
873             j_coord_offsetC  = DIM*jnrC;
874             j_coord_offsetD  = DIM*jnrD;
875
876             /* load j atom coordinates */
877             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
878                                                  x+j_coord_offsetC,x+j_coord_offsetD,
879                                                  &jx0,&jy0,&jz0);
880
881             /* Calculate displacement vector */
882             dx00             = _mm256_sub_pd(ix0,jx0);
883             dy00             = _mm256_sub_pd(iy0,jy0);
884             dz00             = _mm256_sub_pd(iz0,jz0);
885             dx10             = _mm256_sub_pd(ix1,jx0);
886             dy10             = _mm256_sub_pd(iy1,jy0);
887             dz10             = _mm256_sub_pd(iz1,jz0);
888             dx20             = _mm256_sub_pd(ix2,jx0);
889             dy20             = _mm256_sub_pd(iy2,jy0);
890             dz20             = _mm256_sub_pd(iz2,jz0);
891
892             /* Calculate squared distance and things based on it */
893             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
894             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
895             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
896
897             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
898             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
899             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
900
901             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
902             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
903             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
904
905             /* Load parameters for j particles */
906             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
907                                                                  charge+jnrC+0,charge+jnrD+0);
908             vdwjidx0A        = 2*vdwtype[jnrA+0];
909             vdwjidx0B        = 2*vdwtype[jnrB+0];
910             vdwjidx0C        = 2*vdwtype[jnrC+0];
911             vdwjidx0D        = 2*vdwtype[jnrD+0];
912
913             fjx0             = _mm256_setzero_pd();
914             fjy0             = _mm256_setzero_pd();
915             fjz0             = _mm256_setzero_pd();
916
917             /**************************
918              * CALCULATE INTERACTIONS *
919              **************************/
920
921             /* Compute parameters for interactions between i and j atoms */
922             qq00             = _mm256_mul_pd(iq0,jq0);
923             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
924                                             vdwioffsetptr0+vdwjidx0B,
925                                             vdwioffsetptr0+vdwjidx0C,
926                                             vdwioffsetptr0+vdwjidx0D,
927                                             &c6_00,&c12_00);
928
929             /* REACTION-FIELD ELECTROSTATICS */
930             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
931
932             /* LENNARD-JONES DISPERSION/REPULSION */
933
934             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
935             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
936
937             fscal            = _mm256_add_pd(felec,fvdw);
938
939             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
940
941             /* Calculate temporary vectorial force */
942             tx               = _mm256_mul_pd(fscal,dx00);
943             ty               = _mm256_mul_pd(fscal,dy00);
944             tz               = _mm256_mul_pd(fscal,dz00);
945
946             /* Update vectorial force */
947             fix0             = _mm256_add_pd(fix0,tx);
948             fiy0             = _mm256_add_pd(fiy0,ty);
949             fiz0             = _mm256_add_pd(fiz0,tz);
950
951             fjx0             = _mm256_add_pd(fjx0,tx);
952             fjy0             = _mm256_add_pd(fjy0,ty);
953             fjz0             = _mm256_add_pd(fjz0,tz);
954
955             /**************************
956              * CALCULATE INTERACTIONS *
957              **************************/
958
959             /* Compute parameters for interactions between i and j atoms */
960             qq10             = _mm256_mul_pd(iq1,jq0);
961
962             /* REACTION-FIELD ELECTROSTATICS */
963             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
964
965             fscal            = felec;
966
967             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
968
969             /* Calculate temporary vectorial force */
970             tx               = _mm256_mul_pd(fscal,dx10);
971             ty               = _mm256_mul_pd(fscal,dy10);
972             tz               = _mm256_mul_pd(fscal,dz10);
973
974             /* Update vectorial force */
975             fix1             = _mm256_add_pd(fix1,tx);
976             fiy1             = _mm256_add_pd(fiy1,ty);
977             fiz1             = _mm256_add_pd(fiz1,tz);
978
979             fjx0             = _mm256_add_pd(fjx0,tx);
980             fjy0             = _mm256_add_pd(fjy0,ty);
981             fjz0             = _mm256_add_pd(fjz0,tz);
982
983             /**************************
984              * CALCULATE INTERACTIONS *
985              **************************/
986
987             /* Compute parameters for interactions between i and j atoms */
988             qq20             = _mm256_mul_pd(iq2,jq0);
989
990             /* REACTION-FIELD ELECTROSTATICS */
991             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
992
993             fscal            = felec;
994
995             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
996
997             /* Calculate temporary vectorial force */
998             tx               = _mm256_mul_pd(fscal,dx20);
999             ty               = _mm256_mul_pd(fscal,dy20);
1000             tz               = _mm256_mul_pd(fscal,dz20);
1001
1002             /* Update vectorial force */
1003             fix2             = _mm256_add_pd(fix2,tx);
1004             fiy2             = _mm256_add_pd(fiy2,ty);
1005             fiz2             = _mm256_add_pd(fiz2,tz);
1006
1007             fjx0             = _mm256_add_pd(fjx0,tx);
1008             fjy0             = _mm256_add_pd(fjy0,ty);
1009             fjz0             = _mm256_add_pd(fjz0,tz);
1010
1011             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1012             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1013             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1014             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1015
1016             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1017
1018             /* Inner loop uses 91 flops */
1019         }
1020
1021         /* End of innermost loop */
1022
1023         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1024                                                  f+i_coord_offset,fshift+i_shift_offset);
1025
1026         /* Increment number of inner iterations */
1027         inneriter                  += j_index_end - j_index_start;
1028
1029         /* Outer loop uses 18 flops */
1030     }
1031
1032     /* Increment number of outer iterations */
1033     outeriter        += nri;
1034
1035     /* Update outer/inner flops */
1036
1037     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*91);
1038 }