Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
82     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
83     __m256d          dummy_mask,cutoff_mask;
84     __m128           tmpmask0,tmpmask1;
85     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
86     __m256d          one     = _mm256_set1_pd(1.0);
87     __m256d          two     = _mm256_set1_pd(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = _mm256_set1_pd(fr->epsfac);
100     charge           = mdatoms->chargeA;
101     krf              = _mm256_set1_pd(fr->ic->k_rf);
102     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
103     crf              = _mm256_set1_pd(fr->ic->c_rf);
104     nvdwtype         = fr->ntype;
105     vdwparam         = fr->nbfp;
106     vdwtype          = mdatoms->typeA;
107
108     /* Avoid stupid compiler warnings */
109     jnrA = jnrB = jnrC = jnrD = 0;
110     j_coord_offsetA = 0;
111     j_coord_offsetB = 0;
112     j_coord_offsetC = 0;
113     j_coord_offsetD = 0;
114
115     outeriter        = 0;
116     inneriter        = 0;
117
118     for(iidx=0;iidx<4*DIM;iidx++)
119     {
120         scratch[iidx] = 0.0;
121     }
122
123     /* Start outer loop over neighborlists */
124     for(iidx=0; iidx<nri; iidx++)
125     {
126         /* Load shift vector for this list */
127         i_shift_offset   = DIM*shiftidx[iidx];
128
129         /* Load limits for loop over neighbors */
130         j_index_start    = jindex[iidx];
131         j_index_end      = jindex[iidx+1];
132
133         /* Get outer coordinate index */
134         inr              = iinr[iidx];
135         i_coord_offset   = DIM*inr;
136
137         /* Load i particle coords and add shift vector */
138         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
139
140         fix0             = _mm256_setzero_pd();
141         fiy0             = _mm256_setzero_pd();
142         fiz0             = _mm256_setzero_pd();
143
144         /* Load parameters for i particles */
145         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
146         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
147
148         /* Reset potential sums */
149         velecsum         = _mm256_setzero_pd();
150         vvdwsum          = _mm256_setzero_pd();
151
152         /* Start inner kernel loop */
153         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
154         {
155
156             /* Get j neighbor index, and coordinate index */
157             jnrA             = jjnr[jidx];
158             jnrB             = jjnr[jidx+1];
159             jnrC             = jjnr[jidx+2];
160             jnrD             = jjnr[jidx+3];
161             j_coord_offsetA  = DIM*jnrA;
162             j_coord_offsetB  = DIM*jnrB;
163             j_coord_offsetC  = DIM*jnrC;
164             j_coord_offsetD  = DIM*jnrD;
165
166             /* load j atom coordinates */
167             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
168                                                  x+j_coord_offsetC,x+j_coord_offsetD,
169                                                  &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _mm256_sub_pd(ix0,jx0);
173             dy00             = _mm256_sub_pd(iy0,jy0);
174             dz00             = _mm256_sub_pd(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
178
179             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
180
181             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
182
183             /* Load parameters for j particles */
184             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
185                                                                  charge+jnrC+0,charge+jnrD+0);
186             vdwjidx0A        = 2*vdwtype[jnrA+0];
187             vdwjidx0B        = 2*vdwtype[jnrB+0];
188             vdwjidx0C        = 2*vdwtype[jnrC+0];
189             vdwjidx0D        = 2*vdwtype[jnrD+0];
190
191             /**************************
192              * CALCULATE INTERACTIONS *
193              **************************/
194
195             /* Compute parameters for interactions between i and j atoms */
196             qq00             = _mm256_mul_pd(iq0,jq0);
197             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
198                                             vdwioffsetptr0+vdwjidx0B,
199                                             vdwioffsetptr0+vdwjidx0C,
200                                             vdwioffsetptr0+vdwjidx0D,
201                                             &c6_00,&c12_00);
202
203             /* REACTION-FIELD ELECTROSTATICS */
204             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
205             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
206
207             /* LENNARD-JONES DISPERSION/REPULSION */
208
209             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
210             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
211             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
212             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
213             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
214
215             /* Update potential sum for this i atom from the interaction with this j atom. */
216             velecsum         = _mm256_add_pd(velecsum,velec);
217             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
218
219             fscal            = _mm256_add_pd(felec,fvdw);
220
221             /* Calculate temporary vectorial force */
222             tx               = _mm256_mul_pd(fscal,dx00);
223             ty               = _mm256_mul_pd(fscal,dy00);
224             tz               = _mm256_mul_pd(fscal,dz00);
225
226             /* Update vectorial force */
227             fix0             = _mm256_add_pd(fix0,tx);
228             fiy0             = _mm256_add_pd(fiy0,ty);
229             fiz0             = _mm256_add_pd(fiz0,tz);
230
231             fjptrA             = f+j_coord_offsetA;
232             fjptrB             = f+j_coord_offsetB;
233             fjptrC             = f+j_coord_offsetC;
234             fjptrD             = f+j_coord_offsetD;
235             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
236
237             /* Inner loop uses 44 flops */
238         }
239
240         if(jidx<j_index_end)
241         {
242
243             /* Get j neighbor index, and coordinate index */
244             jnrlistA         = jjnr[jidx];
245             jnrlistB         = jjnr[jidx+1];
246             jnrlistC         = jjnr[jidx+2];
247             jnrlistD         = jjnr[jidx+3];
248             /* Sign of each element will be negative for non-real atoms.
249              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
250              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
251              */
252             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
253
254             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
255             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
256             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
257
258             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
259             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
260             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
261             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
262             j_coord_offsetA  = DIM*jnrA;
263             j_coord_offsetB  = DIM*jnrB;
264             j_coord_offsetC  = DIM*jnrC;
265             j_coord_offsetD  = DIM*jnrD;
266
267             /* load j atom coordinates */
268             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
269                                                  x+j_coord_offsetC,x+j_coord_offsetD,
270                                                  &jx0,&jy0,&jz0);
271
272             /* Calculate displacement vector */
273             dx00             = _mm256_sub_pd(ix0,jx0);
274             dy00             = _mm256_sub_pd(iy0,jy0);
275             dz00             = _mm256_sub_pd(iz0,jz0);
276
277             /* Calculate squared distance and things based on it */
278             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
279
280             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
281
282             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
283
284             /* Load parameters for j particles */
285             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
286                                                                  charge+jnrC+0,charge+jnrD+0);
287             vdwjidx0A        = 2*vdwtype[jnrA+0];
288             vdwjidx0B        = 2*vdwtype[jnrB+0];
289             vdwjidx0C        = 2*vdwtype[jnrC+0];
290             vdwjidx0D        = 2*vdwtype[jnrD+0];
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             /* Compute parameters for interactions between i and j atoms */
297             qq00             = _mm256_mul_pd(iq0,jq0);
298             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
299                                             vdwioffsetptr0+vdwjidx0B,
300                                             vdwioffsetptr0+vdwjidx0C,
301                                             vdwioffsetptr0+vdwjidx0D,
302                                             &c6_00,&c12_00);
303
304             /* REACTION-FIELD ELECTROSTATICS */
305             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
306             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
307
308             /* LENNARD-JONES DISPERSION/REPULSION */
309
310             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
311             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
312             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
313             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
314             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velec            = _mm256_andnot_pd(dummy_mask,velec);
318             velecsum         = _mm256_add_pd(velecsum,velec);
319             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
320             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
321
322             fscal            = _mm256_add_pd(felec,fvdw);
323
324             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
325
326             /* Calculate temporary vectorial force */
327             tx               = _mm256_mul_pd(fscal,dx00);
328             ty               = _mm256_mul_pd(fscal,dy00);
329             tz               = _mm256_mul_pd(fscal,dz00);
330
331             /* Update vectorial force */
332             fix0             = _mm256_add_pd(fix0,tx);
333             fiy0             = _mm256_add_pd(fiy0,ty);
334             fiz0             = _mm256_add_pd(fiz0,tz);
335
336             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
337             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
338             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
339             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
340             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
341
342             /* Inner loop uses 44 flops */
343         }
344
345         /* End of innermost loop */
346
347         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
348                                                  f+i_coord_offset,fshift+i_shift_offset);
349
350         ggid                        = gid[iidx];
351         /* Update potential energies */
352         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
353         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
354
355         /* Increment number of inner iterations */
356         inneriter                  += j_index_end - j_index_start;
357
358         /* Outer loop uses 9 flops */
359     }
360
361     /* Increment number of outer iterations */
362     outeriter        += nri;
363
364     /* Update outer/inner flops */
365
366     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*44);
367 }
368 /*
369  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_avx_256_double
370  * Electrostatics interaction: ReactionField
371  * VdW interaction:            LennardJones
372  * Geometry:                   Particle-Particle
373  * Calculate force/pot:        Force
374  */
375 void
376 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_avx_256_double
377                     (t_nblist * gmx_restrict                nlist,
378                      rvec * gmx_restrict                    xx,
379                      rvec * gmx_restrict                    ff,
380                      t_forcerec * gmx_restrict              fr,
381                      t_mdatoms * gmx_restrict               mdatoms,
382                      nb_kernel_data_t * gmx_restrict        kernel_data,
383                      t_nrnb * gmx_restrict                  nrnb)
384 {
385     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
386      * just 0 for non-waters.
387      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
388      * jnr indices corresponding to data put in the four positions in the SIMD register.
389      */
390     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
391     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
392     int              jnrA,jnrB,jnrC,jnrD;
393     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
394     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
395     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
396     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
397     real             rcutoff_scalar;
398     real             *shiftvec,*fshift,*x,*f;
399     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
400     real             scratch[4*DIM];
401     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
402     real *           vdwioffsetptr0;
403     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
404     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
405     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
406     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
407     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
408     real             *charge;
409     int              nvdwtype;
410     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
411     int              *vdwtype;
412     real             *vdwparam;
413     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
414     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
415     __m256d          dummy_mask,cutoff_mask;
416     __m128           tmpmask0,tmpmask1;
417     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
418     __m256d          one     = _mm256_set1_pd(1.0);
419     __m256d          two     = _mm256_set1_pd(2.0);
420     x                = xx[0];
421     f                = ff[0];
422
423     nri              = nlist->nri;
424     iinr             = nlist->iinr;
425     jindex           = nlist->jindex;
426     jjnr             = nlist->jjnr;
427     shiftidx         = nlist->shift;
428     gid              = nlist->gid;
429     shiftvec         = fr->shift_vec[0];
430     fshift           = fr->fshift[0];
431     facel            = _mm256_set1_pd(fr->epsfac);
432     charge           = mdatoms->chargeA;
433     krf              = _mm256_set1_pd(fr->ic->k_rf);
434     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
435     crf              = _mm256_set1_pd(fr->ic->c_rf);
436     nvdwtype         = fr->ntype;
437     vdwparam         = fr->nbfp;
438     vdwtype          = mdatoms->typeA;
439
440     /* Avoid stupid compiler warnings */
441     jnrA = jnrB = jnrC = jnrD = 0;
442     j_coord_offsetA = 0;
443     j_coord_offsetB = 0;
444     j_coord_offsetC = 0;
445     j_coord_offsetD = 0;
446
447     outeriter        = 0;
448     inneriter        = 0;
449
450     for(iidx=0;iidx<4*DIM;iidx++)
451     {
452         scratch[iidx] = 0.0;
453     }
454
455     /* Start outer loop over neighborlists */
456     for(iidx=0; iidx<nri; iidx++)
457     {
458         /* Load shift vector for this list */
459         i_shift_offset   = DIM*shiftidx[iidx];
460
461         /* Load limits for loop over neighbors */
462         j_index_start    = jindex[iidx];
463         j_index_end      = jindex[iidx+1];
464
465         /* Get outer coordinate index */
466         inr              = iinr[iidx];
467         i_coord_offset   = DIM*inr;
468
469         /* Load i particle coords and add shift vector */
470         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
471
472         fix0             = _mm256_setzero_pd();
473         fiy0             = _mm256_setzero_pd();
474         fiz0             = _mm256_setzero_pd();
475
476         /* Load parameters for i particles */
477         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
478         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
479
480         /* Start inner kernel loop */
481         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
482         {
483
484             /* Get j neighbor index, and coordinate index */
485             jnrA             = jjnr[jidx];
486             jnrB             = jjnr[jidx+1];
487             jnrC             = jjnr[jidx+2];
488             jnrD             = jjnr[jidx+3];
489             j_coord_offsetA  = DIM*jnrA;
490             j_coord_offsetB  = DIM*jnrB;
491             j_coord_offsetC  = DIM*jnrC;
492             j_coord_offsetD  = DIM*jnrD;
493
494             /* load j atom coordinates */
495             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
496                                                  x+j_coord_offsetC,x+j_coord_offsetD,
497                                                  &jx0,&jy0,&jz0);
498
499             /* Calculate displacement vector */
500             dx00             = _mm256_sub_pd(ix0,jx0);
501             dy00             = _mm256_sub_pd(iy0,jy0);
502             dz00             = _mm256_sub_pd(iz0,jz0);
503
504             /* Calculate squared distance and things based on it */
505             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
506
507             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
508
509             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
510
511             /* Load parameters for j particles */
512             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
513                                                                  charge+jnrC+0,charge+jnrD+0);
514             vdwjidx0A        = 2*vdwtype[jnrA+0];
515             vdwjidx0B        = 2*vdwtype[jnrB+0];
516             vdwjidx0C        = 2*vdwtype[jnrC+0];
517             vdwjidx0D        = 2*vdwtype[jnrD+0];
518
519             /**************************
520              * CALCULATE INTERACTIONS *
521              **************************/
522
523             /* Compute parameters for interactions between i and j atoms */
524             qq00             = _mm256_mul_pd(iq0,jq0);
525             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
526                                             vdwioffsetptr0+vdwjidx0B,
527                                             vdwioffsetptr0+vdwjidx0C,
528                                             vdwioffsetptr0+vdwjidx0D,
529                                             &c6_00,&c12_00);
530
531             /* REACTION-FIELD ELECTROSTATICS */
532             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
533
534             /* LENNARD-JONES DISPERSION/REPULSION */
535
536             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
537             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
538
539             fscal            = _mm256_add_pd(felec,fvdw);
540
541             /* Calculate temporary vectorial force */
542             tx               = _mm256_mul_pd(fscal,dx00);
543             ty               = _mm256_mul_pd(fscal,dy00);
544             tz               = _mm256_mul_pd(fscal,dz00);
545
546             /* Update vectorial force */
547             fix0             = _mm256_add_pd(fix0,tx);
548             fiy0             = _mm256_add_pd(fiy0,ty);
549             fiz0             = _mm256_add_pd(fiz0,tz);
550
551             fjptrA             = f+j_coord_offsetA;
552             fjptrB             = f+j_coord_offsetB;
553             fjptrC             = f+j_coord_offsetC;
554             fjptrD             = f+j_coord_offsetD;
555             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
556
557             /* Inner loop uses 34 flops */
558         }
559
560         if(jidx<j_index_end)
561         {
562
563             /* Get j neighbor index, and coordinate index */
564             jnrlistA         = jjnr[jidx];
565             jnrlistB         = jjnr[jidx+1];
566             jnrlistC         = jjnr[jidx+2];
567             jnrlistD         = jjnr[jidx+3];
568             /* Sign of each element will be negative for non-real atoms.
569              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
570              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
571              */
572             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
573
574             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
575             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
576             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
577
578             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
579             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
580             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
581             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
582             j_coord_offsetA  = DIM*jnrA;
583             j_coord_offsetB  = DIM*jnrB;
584             j_coord_offsetC  = DIM*jnrC;
585             j_coord_offsetD  = DIM*jnrD;
586
587             /* load j atom coordinates */
588             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
589                                                  x+j_coord_offsetC,x+j_coord_offsetD,
590                                                  &jx0,&jy0,&jz0);
591
592             /* Calculate displacement vector */
593             dx00             = _mm256_sub_pd(ix0,jx0);
594             dy00             = _mm256_sub_pd(iy0,jy0);
595             dz00             = _mm256_sub_pd(iz0,jz0);
596
597             /* Calculate squared distance and things based on it */
598             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
599
600             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
601
602             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
603
604             /* Load parameters for j particles */
605             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
606                                                                  charge+jnrC+0,charge+jnrD+0);
607             vdwjidx0A        = 2*vdwtype[jnrA+0];
608             vdwjidx0B        = 2*vdwtype[jnrB+0];
609             vdwjidx0C        = 2*vdwtype[jnrC+0];
610             vdwjidx0D        = 2*vdwtype[jnrD+0];
611
612             /**************************
613              * CALCULATE INTERACTIONS *
614              **************************/
615
616             /* Compute parameters for interactions between i and j atoms */
617             qq00             = _mm256_mul_pd(iq0,jq0);
618             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
619                                             vdwioffsetptr0+vdwjidx0B,
620                                             vdwioffsetptr0+vdwjidx0C,
621                                             vdwioffsetptr0+vdwjidx0D,
622                                             &c6_00,&c12_00);
623
624             /* REACTION-FIELD ELECTROSTATICS */
625             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
626
627             /* LENNARD-JONES DISPERSION/REPULSION */
628
629             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
630             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
631
632             fscal            = _mm256_add_pd(felec,fvdw);
633
634             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
635
636             /* Calculate temporary vectorial force */
637             tx               = _mm256_mul_pd(fscal,dx00);
638             ty               = _mm256_mul_pd(fscal,dy00);
639             tz               = _mm256_mul_pd(fscal,dz00);
640
641             /* Update vectorial force */
642             fix0             = _mm256_add_pd(fix0,tx);
643             fiy0             = _mm256_add_pd(fiy0,ty);
644             fiz0             = _mm256_add_pd(fiz0,tz);
645
646             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
647             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
648             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
649             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
650             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
651
652             /* Inner loop uses 34 flops */
653         }
654
655         /* End of innermost loop */
656
657         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
658                                                  f+i_coord_offset,fshift+i_shift_offset);
659
660         /* Increment number of inner iterations */
661         inneriter                  += j_index_end - j_index_start;
662
663         /* Outer loop uses 7 flops */
664     }
665
666     /* Increment number of outer iterations */
667     outeriter        += nri;
668
669     /* Update outer/inner flops */
670
671     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*34);
672 }