ae40acb5de13712f522174d2bbeb250d7cdeb640
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
98     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
99     __m256d          dummy_mask,cutoff_mask;
100     __m128           tmpmask0,tmpmask1;
101     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
102     __m256d          one     = _mm256_set1_pd(1.0);
103     __m256d          two     = _mm256_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm256_set1_pd(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     krf              = _mm256_set1_pd(fr->ic->k_rf);
118     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
119     crf              = _mm256_set1_pd(fr->ic->c_rf);
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm256_setzero_pd();
157         fiy0             = _mm256_setzero_pd();
158         fiz0             = _mm256_setzero_pd();
159
160         /* Load parameters for i particles */
161         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
162         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _mm256_setzero_pd();
166         vvdwsum          = _mm256_setzero_pd();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             jnrC             = jjnr[jidx+2];
176             jnrD             = jjnr[jidx+3];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179             j_coord_offsetC  = DIM*jnrC;
180             j_coord_offsetD  = DIM*jnrD;
181
182             /* load j atom coordinates */
183             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
184                                                  x+j_coord_offsetC,x+j_coord_offsetD,
185                                                  &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm256_sub_pd(ix0,jx0);
189             dy00             = _mm256_sub_pd(iy0,jy0);
190             dz00             = _mm256_sub_pd(iz0,jz0);
191
192             /* Calculate squared distance and things based on it */
193             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
194
195             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
196
197             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
198
199             /* Load parameters for j particles */
200             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
201                                                                  charge+jnrC+0,charge+jnrD+0);
202             vdwjidx0A        = 2*vdwtype[jnrA+0];
203             vdwjidx0B        = 2*vdwtype[jnrB+0];
204             vdwjidx0C        = 2*vdwtype[jnrC+0];
205             vdwjidx0D        = 2*vdwtype[jnrD+0];
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             /* Compute parameters for interactions between i and j atoms */
212             qq00             = _mm256_mul_pd(iq0,jq0);
213             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
214                                             vdwioffsetptr0+vdwjidx0B,
215                                             vdwioffsetptr0+vdwjidx0C,
216                                             vdwioffsetptr0+vdwjidx0D,
217                                             &c6_00,&c12_00);
218
219             /* REACTION-FIELD ELECTROSTATICS */
220             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
221             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
222
223             /* LENNARD-JONES DISPERSION/REPULSION */
224
225             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
226             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
227             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
228             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
229             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
230
231             /* Update potential sum for this i atom from the interaction with this j atom. */
232             velecsum         = _mm256_add_pd(velecsum,velec);
233             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
234
235             fscal            = _mm256_add_pd(felec,fvdw);
236
237             /* Calculate temporary vectorial force */
238             tx               = _mm256_mul_pd(fscal,dx00);
239             ty               = _mm256_mul_pd(fscal,dy00);
240             tz               = _mm256_mul_pd(fscal,dz00);
241
242             /* Update vectorial force */
243             fix0             = _mm256_add_pd(fix0,tx);
244             fiy0             = _mm256_add_pd(fiy0,ty);
245             fiz0             = _mm256_add_pd(fiz0,tz);
246
247             fjptrA             = f+j_coord_offsetA;
248             fjptrB             = f+j_coord_offsetB;
249             fjptrC             = f+j_coord_offsetC;
250             fjptrD             = f+j_coord_offsetD;
251             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
252
253             /* Inner loop uses 44 flops */
254         }
255
256         if(jidx<j_index_end)
257         {
258
259             /* Get j neighbor index, and coordinate index */
260             jnrlistA         = jjnr[jidx];
261             jnrlistB         = jjnr[jidx+1];
262             jnrlistC         = jjnr[jidx+2];
263             jnrlistD         = jjnr[jidx+3];
264             /* Sign of each element will be negative for non-real atoms.
265              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
266              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
267              */
268             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
269
270             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
271             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
272             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
273
274             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
275             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
276             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
277             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
278             j_coord_offsetA  = DIM*jnrA;
279             j_coord_offsetB  = DIM*jnrB;
280             j_coord_offsetC  = DIM*jnrC;
281             j_coord_offsetD  = DIM*jnrD;
282
283             /* load j atom coordinates */
284             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
285                                                  x+j_coord_offsetC,x+j_coord_offsetD,
286                                                  &jx0,&jy0,&jz0);
287
288             /* Calculate displacement vector */
289             dx00             = _mm256_sub_pd(ix0,jx0);
290             dy00             = _mm256_sub_pd(iy0,jy0);
291             dz00             = _mm256_sub_pd(iz0,jz0);
292
293             /* Calculate squared distance and things based on it */
294             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
295
296             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
297
298             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
299
300             /* Load parameters for j particles */
301             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
302                                                                  charge+jnrC+0,charge+jnrD+0);
303             vdwjidx0A        = 2*vdwtype[jnrA+0];
304             vdwjidx0B        = 2*vdwtype[jnrB+0];
305             vdwjidx0C        = 2*vdwtype[jnrC+0];
306             vdwjidx0D        = 2*vdwtype[jnrD+0];
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             /* Compute parameters for interactions between i and j atoms */
313             qq00             = _mm256_mul_pd(iq0,jq0);
314             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
315                                             vdwioffsetptr0+vdwjidx0B,
316                                             vdwioffsetptr0+vdwjidx0C,
317                                             vdwioffsetptr0+vdwjidx0D,
318                                             &c6_00,&c12_00);
319
320             /* REACTION-FIELD ELECTROSTATICS */
321             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
322             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
323
324             /* LENNARD-JONES DISPERSION/REPULSION */
325
326             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
327             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
328             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
329             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
330             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             velec            = _mm256_andnot_pd(dummy_mask,velec);
334             velecsum         = _mm256_add_pd(velecsum,velec);
335             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
336             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
337
338             fscal            = _mm256_add_pd(felec,fvdw);
339
340             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
341
342             /* Calculate temporary vectorial force */
343             tx               = _mm256_mul_pd(fscal,dx00);
344             ty               = _mm256_mul_pd(fscal,dy00);
345             tz               = _mm256_mul_pd(fscal,dz00);
346
347             /* Update vectorial force */
348             fix0             = _mm256_add_pd(fix0,tx);
349             fiy0             = _mm256_add_pd(fiy0,ty);
350             fiz0             = _mm256_add_pd(fiz0,tz);
351
352             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
353             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
354             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
355             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
356             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
357
358             /* Inner loop uses 44 flops */
359         }
360
361         /* End of innermost loop */
362
363         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
364                                                  f+i_coord_offset,fshift+i_shift_offset);
365
366         ggid                        = gid[iidx];
367         /* Update potential energies */
368         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
369         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
370
371         /* Increment number of inner iterations */
372         inneriter                  += j_index_end - j_index_start;
373
374         /* Outer loop uses 9 flops */
375     }
376
377     /* Increment number of outer iterations */
378     outeriter        += nri;
379
380     /* Update outer/inner flops */
381
382     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*44);
383 }
384 /*
385  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_avx_256_double
386  * Electrostatics interaction: ReactionField
387  * VdW interaction:            LennardJones
388  * Geometry:                   Particle-Particle
389  * Calculate force/pot:        Force
390  */
391 void
392 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_avx_256_double
393                     (t_nblist                    * gmx_restrict       nlist,
394                      rvec                        * gmx_restrict          xx,
395                      rvec                        * gmx_restrict          ff,
396                      t_forcerec                  * gmx_restrict          fr,
397                      t_mdatoms                   * gmx_restrict     mdatoms,
398                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
399                      t_nrnb                      * gmx_restrict        nrnb)
400 {
401     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
402      * just 0 for non-waters.
403      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
404      * jnr indices corresponding to data put in the four positions in the SIMD register.
405      */
406     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
407     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
408     int              jnrA,jnrB,jnrC,jnrD;
409     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
410     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
411     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
412     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
413     real             rcutoff_scalar;
414     real             *shiftvec,*fshift,*x,*f;
415     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
416     real             scratch[4*DIM];
417     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
418     real *           vdwioffsetptr0;
419     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
420     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
421     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
422     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
423     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
424     real             *charge;
425     int              nvdwtype;
426     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
427     int              *vdwtype;
428     real             *vdwparam;
429     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
430     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
431     __m256d          dummy_mask,cutoff_mask;
432     __m128           tmpmask0,tmpmask1;
433     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
434     __m256d          one     = _mm256_set1_pd(1.0);
435     __m256d          two     = _mm256_set1_pd(2.0);
436     x                = xx[0];
437     f                = ff[0];
438
439     nri              = nlist->nri;
440     iinr             = nlist->iinr;
441     jindex           = nlist->jindex;
442     jjnr             = nlist->jjnr;
443     shiftidx         = nlist->shift;
444     gid              = nlist->gid;
445     shiftvec         = fr->shift_vec[0];
446     fshift           = fr->fshift[0];
447     facel            = _mm256_set1_pd(fr->epsfac);
448     charge           = mdatoms->chargeA;
449     krf              = _mm256_set1_pd(fr->ic->k_rf);
450     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
451     crf              = _mm256_set1_pd(fr->ic->c_rf);
452     nvdwtype         = fr->ntype;
453     vdwparam         = fr->nbfp;
454     vdwtype          = mdatoms->typeA;
455
456     /* Avoid stupid compiler warnings */
457     jnrA = jnrB = jnrC = jnrD = 0;
458     j_coord_offsetA = 0;
459     j_coord_offsetB = 0;
460     j_coord_offsetC = 0;
461     j_coord_offsetD = 0;
462
463     outeriter        = 0;
464     inneriter        = 0;
465
466     for(iidx=0;iidx<4*DIM;iidx++)
467     {
468         scratch[iidx] = 0.0;
469     }
470
471     /* Start outer loop over neighborlists */
472     for(iidx=0; iidx<nri; iidx++)
473     {
474         /* Load shift vector for this list */
475         i_shift_offset   = DIM*shiftidx[iidx];
476
477         /* Load limits for loop over neighbors */
478         j_index_start    = jindex[iidx];
479         j_index_end      = jindex[iidx+1];
480
481         /* Get outer coordinate index */
482         inr              = iinr[iidx];
483         i_coord_offset   = DIM*inr;
484
485         /* Load i particle coords and add shift vector */
486         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
487
488         fix0             = _mm256_setzero_pd();
489         fiy0             = _mm256_setzero_pd();
490         fiz0             = _mm256_setzero_pd();
491
492         /* Load parameters for i particles */
493         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
494         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
495
496         /* Start inner kernel loop */
497         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
498         {
499
500             /* Get j neighbor index, and coordinate index */
501             jnrA             = jjnr[jidx];
502             jnrB             = jjnr[jidx+1];
503             jnrC             = jjnr[jidx+2];
504             jnrD             = jjnr[jidx+3];
505             j_coord_offsetA  = DIM*jnrA;
506             j_coord_offsetB  = DIM*jnrB;
507             j_coord_offsetC  = DIM*jnrC;
508             j_coord_offsetD  = DIM*jnrD;
509
510             /* load j atom coordinates */
511             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
512                                                  x+j_coord_offsetC,x+j_coord_offsetD,
513                                                  &jx0,&jy0,&jz0);
514
515             /* Calculate displacement vector */
516             dx00             = _mm256_sub_pd(ix0,jx0);
517             dy00             = _mm256_sub_pd(iy0,jy0);
518             dz00             = _mm256_sub_pd(iz0,jz0);
519
520             /* Calculate squared distance and things based on it */
521             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
522
523             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
524
525             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
526
527             /* Load parameters for j particles */
528             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
529                                                                  charge+jnrC+0,charge+jnrD+0);
530             vdwjidx0A        = 2*vdwtype[jnrA+0];
531             vdwjidx0B        = 2*vdwtype[jnrB+0];
532             vdwjidx0C        = 2*vdwtype[jnrC+0];
533             vdwjidx0D        = 2*vdwtype[jnrD+0];
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             /* Compute parameters for interactions between i and j atoms */
540             qq00             = _mm256_mul_pd(iq0,jq0);
541             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
542                                             vdwioffsetptr0+vdwjidx0B,
543                                             vdwioffsetptr0+vdwjidx0C,
544                                             vdwioffsetptr0+vdwjidx0D,
545                                             &c6_00,&c12_00);
546
547             /* REACTION-FIELD ELECTROSTATICS */
548             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
549
550             /* LENNARD-JONES DISPERSION/REPULSION */
551
552             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
553             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
554
555             fscal            = _mm256_add_pd(felec,fvdw);
556
557             /* Calculate temporary vectorial force */
558             tx               = _mm256_mul_pd(fscal,dx00);
559             ty               = _mm256_mul_pd(fscal,dy00);
560             tz               = _mm256_mul_pd(fscal,dz00);
561
562             /* Update vectorial force */
563             fix0             = _mm256_add_pd(fix0,tx);
564             fiy0             = _mm256_add_pd(fiy0,ty);
565             fiz0             = _mm256_add_pd(fiz0,tz);
566
567             fjptrA             = f+j_coord_offsetA;
568             fjptrB             = f+j_coord_offsetB;
569             fjptrC             = f+j_coord_offsetC;
570             fjptrD             = f+j_coord_offsetD;
571             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
572
573             /* Inner loop uses 34 flops */
574         }
575
576         if(jidx<j_index_end)
577         {
578
579             /* Get j neighbor index, and coordinate index */
580             jnrlistA         = jjnr[jidx];
581             jnrlistB         = jjnr[jidx+1];
582             jnrlistC         = jjnr[jidx+2];
583             jnrlistD         = jjnr[jidx+3];
584             /* Sign of each element will be negative for non-real atoms.
585              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
586              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
587              */
588             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
589
590             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
591             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
592             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
593
594             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
595             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
596             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
597             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
598             j_coord_offsetA  = DIM*jnrA;
599             j_coord_offsetB  = DIM*jnrB;
600             j_coord_offsetC  = DIM*jnrC;
601             j_coord_offsetD  = DIM*jnrD;
602
603             /* load j atom coordinates */
604             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
605                                                  x+j_coord_offsetC,x+j_coord_offsetD,
606                                                  &jx0,&jy0,&jz0);
607
608             /* Calculate displacement vector */
609             dx00             = _mm256_sub_pd(ix0,jx0);
610             dy00             = _mm256_sub_pd(iy0,jy0);
611             dz00             = _mm256_sub_pd(iz0,jz0);
612
613             /* Calculate squared distance and things based on it */
614             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
615
616             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
617
618             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
619
620             /* Load parameters for j particles */
621             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
622                                                                  charge+jnrC+0,charge+jnrD+0);
623             vdwjidx0A        = 2*vdwtype[jnrA+0];
624             vdwjidx0B        = 2*vdwtype[jnrB+0];
625             vdwjidx0C        = 2*vdwtype[jnrC+0];
626             vdwjidx0D        = 2*vdwtype[jnrD+0];
627
628             /**************************
629              * CALCULATE INTERACTIONS *
630              **************************/
631
632             /* Compute parameters for interactions between i and j atoms */
633             qq00             = _mm256_mul_pd(iq0,jq0);
634             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
635                                             vdwioffsetptr0+vdwjidx0B,
636                                             vdwioffsetptr0+vdwjidx0C,
637                                             vdwioffsetptr0+vdwjidx0D,
638                                             &c6_00,&c12_00);
639
640             /* REACTION-FIELD ELECTROSTATICS */
641             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
642
643             /* LENNARD-JONES DISPERSION/REPULSION */
644
645             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
646             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
647
648             fscal            = _mm256_add_pd(felec,fvdw);
649
650             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
651
652             /* Calculate temporary vectorial force */
653             tx               = _mm256_mul_pd(fscal,dx00);
654             ty               = _mm256_mul_pd(fscal,dy00);
655             tz               = _mm256_mul_pd(fscal,dz00);
656
657             /* Update vectorial force */
658             fix0             = _mm256_add_pd(fix0,tx);
659             fiy0             = _mm256_add_pd(fiy0,ty);
660             fiz0             = _mm256_add_pd(fiz0,tz);
661
662             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
663             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
664             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
665             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
666             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
667
668             /* Inner loop uses 34 flops */
669         }
670
671         /* End of innermost loop */
672
673         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
674                                                  f+i_coord_offset,fshift+i_shift_offset);
675
676         /* Increment number of inner iterations */
677         inneriter                  += j_index_end - j_index_start;
678
679         /* Outer loop uses 7 flops */
680     }
681
682     /* Increment number of outer iterations */
683     outeriter        += nri;
684
685     /* Update outer/inner flops */
686
687     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*34);
688 }