4e20564c5b132efa843f51901b5ec14d654c7797
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m256d          dummy_mask,cutoff_mask;
98     __m128           tmpmask0,tmpmask1;
99     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
100     __m256d          one     = _mm256_set1_pd(1.0);
101     __m256d          two     = _mm256_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm256_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     krf              = _mm256_set1_pd(fr->ic->k_rf);
116     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
117     crf              = _mm256_set1_pd(fr->ic->c_rf);
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm256_setzero_pd();
155         fiy0             = _mm256_setzero_pd();
156         fiz0             = _mm256_setzero_pd();
157
158         /* Load parameters for i particles */
159         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
160         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
161
162         /* Reset potential sums */
163         velecsum         = _mm256_setzero_pd();
164         vvdwsum          = _mm256_setzero_pd();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             jnrC             = jjnr[jidx+2];
174             jnrD             = jjnr[jidx+3];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177             j_coord_offsetC  = DIM*jnrC;
178             j_coord_offsetD  = DIM*jnrD;
179
180             /* load j atom coordinates */
181             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
182                                                  x+j_coord_offsetC,x+j_coord_offsetD,
183                                                  &jx0,&jy0,&jz0);
184
185             /* Calculate displacement vector */
186             dx00             = _mm256_sub_pd(ix0,jx0);
187             dy00             = _mm256_sub_pd(iy0,jy0);
188             dz00             = _mm256_sub_pd(iz0,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
192
193             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
194
195             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
196
197             /* Load parameters for j particles */
198             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
199                                                                  charge+jnrC+0,charge+jnrD+0);
200             vdwjidx0A        = 2*vdwtype[jnrA+0];
201             vdwjidx0B        = 2*vdwtype[jnrB+0];
202             vdwjidx0C        = 2*vdwtype[jnrC+0];
203             vdwjidx0D        = 2*vdwtype[jnrD+0];
204
205             /**************************
206              * CALCULATE INTERACTIONS *
207              **************************/
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq00             = _mm256_mul_pd(iq0,jq0);
211             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
212                                             vdwioffsetptr0+vdwjidx0B,
213                                             vdwioffsetptr0+vdwjidx0C,
214                                             vdwioffsetptr0+vdwjidx0D,
215                                             &c6_00,&c12_00);
216
217             /* REACTION-FIELD ELECTROSTATICS */
218             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
219             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
220
221             /* LENNARD-JONES DISPERSION/REPULSION */
222
223             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
224             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
225             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
226             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
227             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
228
229             /* Update potential sum for this i atom from the interaction with this j atom. */
230             velecsum         = _mm256_add_pd(velecsum,velec);
231             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
232
233             fscal            = _mm256_add_pd(felec,fvdw);
234
235             /* Calculate temporary vectorial force */
236             tx               = _mm256_mul_pd(fscal,dx00);
237             ty               = _mm256_mul_pd(fscal,dy00);
238             tz               = _mm256_mul_pd(fscal,dz00);
239
240             /* Update vectorial force */
241             fix0             = _mm256_add_pd(fix0,tx);
242             fiy0             = _mm256_add_pd(fiy0,ty);
243             fiz0             = _mm256_add_pd(fiz0,tz);
244
245             fjptrA             = f+j_coord_offsetA;
246             fjptrB             = f+j_coord_offsetB;
247             fjptrC             = f+j_coord_offsetC;
248             fjptrD             = f+j_coord_offsetD;
249             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
250
251             /* Inner loop uses 44 flops */
252         }
253
254         if(jidx<j_index_end)
255         {
256
257             /* Get j neighbor index, and coordinate index */
258             jnrlistA         = jjnr[jidx];
259             jnrlistB         = jjnr[jidx+1];
260             jnrlistC         = jjnr[jidx+2];
261             jnrlistD         = jjnr[jidx+3];
262             /* Sign of each element will be negative for non-real atoms.
263              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
264              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
265              */
266             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
267
268             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
269             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
270             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
271
272             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
273             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
274             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
275             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
276             j_coord_offsetA  = DIM*jnrA;
277             j_coord_offsetB  = DIM*jnrB;
278             j_coord_offsetC  = DIM*jnrC;
279             j_coord_offsetD  = DIM*jnrD;
280
281             /* load j atom coordinates */
282             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
283                                                  x+j_coord_offsetC,x+j_coord_offsetD,
284                                                  &jx0,&jy0,&jz0);
285
286             /* Calculate displacement vector */
287             dx00             = _mm256_sub_pd(ix0,jx0);
288             dy00             = _mm256_sub_pd(iy0,jy0);
289             dz00             = _mm256_sub_pd(iz0,jz0);
290
291             /* Calculate squared distance and things based on it */
292             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
293
294             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
295
296             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
297
298             /* Load parameters for j particles */
299             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
300                                                                  charge+jnrC+0,charge+jnrD+0);
301             vdwjidx0A        = 2*vdwtype[jnrA+0];
302             vdwjidx0B        = 2*vdwtype[jnrB+0];
303             vdwjidx0C        = 2*vdwtype[jnrC+0];
304             vdwjidx0D        = 2*vdwtype[jnrD+0];
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             /* Compute parameters for interactions between i and j atoms */
311             qq00             = _mm256_mul_pd(iq0,jq0);
312             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
313                                             vdwioffsetptr0+vdwjidx0B,
314                                             vdwioffsetptr0+vdwjidx0C,
315                                             vdwioffsetptr0+vdwjidx0D,
316                                             &c6_00,&c12_00);
317
318             /* REACTION-FIELD ELECTROSTATICS */
319             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
320             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
321
322             /* LENNARD-JONES DISPERSION/REPULSION */
323
324             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
325             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
326             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
327             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
328             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velec            = _mm256_andnot_pd(dummy_mask,velec);
332             velecsum         = _mm256_add_pd(velecsum,velec);
333             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
334             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
335
336             fscal            = _mm256_add_pd(felec,fvdw);
337
338             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
339
340             /* Calculate temporary vectorial force */
341             tx               = _mm256_mul_pd(fscal,dx00);
342             ty               = _mm256_mul_pd(fscal,dy00);
343             tz               = _mm256_mul_pd(fscal,dz00);
344
345             /* Update vectorial force */
346             fix0             = _mm256_add_pd(fix0,tx);
347             fiy0             = _mm256_add_pd(fiy0,ty);
348             fiz0             = _mm256_add_pd(fiz0,tz);
349
350             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
351             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
352             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
353             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
354             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
355
356             /* Inner loop uses 44 flops */
357         }
358
359         /* End of innermost loop */
360
361         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
362                                                  f+i_coord_offset,fshift+i_shift_offset);
363
364         ggid                        = gid[iidx];
365         /* Update potential energies */
366         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
367         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
368
369         /* Increment number of inner iterations */
370         inneriter                  += j_index_end - j_index_start;
371
372         /* Outer loop uses 9 flops */
373     }
374
375     /* Increment number of outer iterations */
376     outeriter        += nri;
377
378     /* Update outer/inner flops */
379
380     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*44);
381 }
382 /*
383  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_avx_256_double
384  * Electrostatics interaction: ReactionField
385  * VdW interaction:            LennardJones
386  * Geometry:                   Particle-Particle
387  * Calculate force/pot:        Force
388  */
389 void
390 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_avx_256_double
391                     (t_nblist                    * gmx_restrict       nlist,
392                      rvec                        * gmx_restrict          xx,
393                      rvec                        * gmx_restrict          ff,
394                      t_forcerec                  * gmx_restrict          fr,
395                      t_mdatoms                   * gmx_restrict     mdatoms,
396                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
397                      t_nrnb                      * gmx_restrict        nrnb)
398 {
399     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
400      * just 0 for non-waters.
401      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
402      * jnr indices corresponding to data put in the four positions in the SIMD register.
403      */
404     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
405     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
406     int              jnrA,jnrB,jnrC,jnrD;
407     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
408     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
409     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
410     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
411     real             rcutoff_scalar;
412     real             *shiftvec,*fshift,*x,*f;
413     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
414     real             scratch[4*DIM];
415     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
416     real *           vdwioffsetptr0;
417     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
418     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
419     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
420     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
421     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
422     real             *charge;
423     int              nvdwtype;
424     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
425     int              *vdwtype;
426     real             *vdwparam;
427     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
428     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
429     __m256d          dummy_mask,cutoff_mask;
430     __m128           tmpmask0,tmpmask1;
431     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
432     __m256d          one     = _mm256_set1_pd(1.0);
433     __m256d          two     = _mm256_set1_pd(2.0);
434     x                = xx[0];
435     f                = ff[0];
436
437     nri              = nlist->nri;
438     iinr             = nlist->iinr;
439     jindex           = nlist->jindex;
440     jjnr             = nlist->jjnr;
441     shiftidx         = nlist->shift;
442     gid              = nlist->gid;
443     shiftvec         = fr->shift_vec[0];
444     fshift           = fr->fshift[0];
445     facel            = _mm256_set1_pd(fr->epsfac);
446     charge           = mdatoms->chargeA;
447     krf              = _mm256_set1_pd(fr->ic->k_rf);
448     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
449     crf              = _mm256_set1_pd(fr->ic->c_rf);
450     nvdwtype         = fr->ntype;
451     vdwparam         = fr->nbfp;
452     vdwtype          = mdatoms->typeA;
453
454     /* Avoid stupid compiler warnings */
455     jnrA = jnrB = jnrC = jnrD = 0;
456     j_coord_offsetA = 0;
457     j_coord_offsetB = 0;
458     j_coord_offsetC = 0;
459     j_coord_offsetD = 0;
460
461     outeriter        = 0;
462     inneriter        = 0;
463
464     for(iidx=0;iidx<4*DIM;iidx++)
465     {
466         scratch[iidx] = 0.0;
467     }
468
469     /* Start outer loop over neighborlists */
470     for(iidx=0; iidx<nri; iidx++)
471     {
472         /* Load shift vector for this list */
473         i_shift_offset   = DIM*shiftidx[iidx];
474
475         /* Load limits for loop over neighbors */
476         j_index_start    = jindex[iidx];
477         j_index_end      = jindex[iidx+1];
478
479         /* Get outer coordinate index */
480         inr              = iinr[iidx];
481         i_coord_offset   = DIM*inr;
482
483         /* Load i particle coords and add shift vector */
484         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
485
486         fix0             = _mm256_setzero_pd();
487         fiy0             = _mm256_setzero_pd();
488         fiz0             = _mm256_setzero_pd();
489
490         /* Load parameters for i particles */
491         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
492         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
493
494         /* Start inner kernel loop */
495         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
496         {
497
498             /* Get j neighbor index, and coordinate index */
499             jnrA             = jjnr[jidx];
500             jnrB             = jjnr[jidx+1];
501             jnrC             = jjnr[jidx+2];
502             jnrD             = jjnr[jidx+3];
503             j_coord_offsetA  = DIM*jnrA;
504             j_coord_offsetB  = DIM*jnrB;
505             j_coord_offsetC  = DIM*jnrC;
506             j_coord_offsetD  = DIM*jnrD;
507
508             /* load j atom coordinates */
509             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
510                                                  x+j_coord_offsetC,x+j_coord_offsetD,
511                                                  &jx0,&jy0,&jz0);
512
513             /* Calculate displacement vector */
514             dx00             = _mm256_sub_pd(ix0,jx0);
515             dy00             = _mm256_sub_pd(iy0,jy0);
516             dz00             = _mm256_sub_pd(iz0,jz0);
517
518             /* Calculate squared distance and things based on it */
519             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
520
521             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
522
523             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
524
525             /* Load parameters for j particles */
526             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
527                                                                  charge+jnrC+0,charge+jnrD+0);
528             vdwjidx0A        = 2*vdwtype[jnrA+0];
529             vdwjidx0B        = 2*vdwtype[jnrB+0];
530             vdwjidx0C        = 2*vdwtype[jnrC+0];
531             vdwjidx0D        = 2*vdwtype[jnrD+0];
532
533             /**************************
534              * CALCULATE INTERACTIONS *
535              **************************/
536
537             /* Compute parameters for interactions between i and j atoms */
538             qq00             = _mm256_mul_pd(iq0,jq0);
539             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
540                                             vdwioffsetptr0+vdwjidx0B,
541                                             vdwioffsetptr0+vdwjidx0C,
542                                             vdwioffsetptr0+vdwjidx0D,
543                                             &c6_00,&c12_00);
544
545             /* REACTION-FIELD ELECTROSTATICS */
546             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
547
548             /* LENNARD-JONES DISPERSION/REPULSION */
549
550             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
551             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
552
553             fscal            = _mm256_add_pd(felec,fvdw);
554
555             /* Calculate temporary vectorial force */
556             tx               = _mm256_mul_pd(fscal,dx00);
557             ty               = _mm256_mul_pd(fscal,dy00);
558             tz               = _mm256_mul_pd(fscal,dz00);
559
560             /* Update vectorial force */
561             fix0             = _mm256_add_pd(fix0,tx);
562             fiy0             = _mm256_add_pd(fiy0,ty);
563             fiz0             = _mm256_add_pd(fiz0,tz);
564
565             fjptrA             = f+j_coord_offsetA;
566             fjptrB             = f+j_coord_offsetB;
567             fjptrC             = f+j_coord_offsetC;
568             fjptrD             = f+j_coord_offsetD;
569             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
570
571             /* Inner loop uses 34 flops */
572         }
573
574         if(jidx<j_index_end)
575         {
576
577             /* Get j neighbor index, and coordinate index */
578             jnrlistA         = jjnr[jidx];
579             jnrlistB         = jjnr[jidx+1];
580             jnrlistC         = jjnr[jidx+2];
581             jnrlistD         = jjnr[jidx+3];
582             /* Sign of each element will be negative for non-real atoms.
583              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
584              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
585              */
586             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
587
588             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
589             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
590             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
591
592             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
593             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
594             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
595             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
596             j_coord_offsetA  = DIM*jnrA;
597             j_coord_offsetB  = DIM*jnrB;
598             j_coord_offsetC  = DIM*jnrC;
599             j_coord_offsetD  = DIM*jnrD;
600
601             /* load j atom coordinates */
602             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
603                                                  x+j_coord_offsetC,x+j_coord_offsetD,
604                                                  &jx0,&jy0,&jz0);
605
606             /* Calculate displacement vector */
607             dx00             = _mm256_sub_pd(ix0,jx0);
608             dy00             = _mm256_sub_pd(iy0,jy0);
609             dz00             = _mm256_sub_pd(iz0,jz0);
610
611             /* Calculate squared distance and things based on it */
612             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
613
614             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
615
616             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
617
618             /* Load parameters for j particles */
619             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
620                                                                  charge+jnrC+0,charge+jnrD+0);
621             vdwjidx0A        = 2*vdwtype[jnrA+0];
622             vdwjidx0B        = 2*vdwtype[jnrB+0];
623             vdwjidx0C        = 2*vdwtype[jnrC+0];
624             vdwjidx0D        = 2*vdwtype[jnrD+0];
625
626             /**************************
627              * CALCULATE INTERACTIONS *
628              **************************/
629
630             /* Compute parameters for interactions between i and j atoms */
631             qq00             = _mm256_mul_pd(iq0,jq0);
632             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
633                                             vdwioffsetptr0+vdwjidx0B,
634                                             vdwioffsetptr0+vdwjidx0C,
635                                             vdwioffsetptr0+vdwjidx0D,
636                                             &c6_00,&c12_00);
637
638             /* REACTION-FIELD ELECTROSTATICS */
639             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
640
641             /* LENNARD-JONES DISPERSION/REPULSION */
642
643             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
644             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
645
646             fscal            = _mm256_add_pd(felec,fvdw);
647
648             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm256_mul_pd(fscal,dx00);
652             ty               = _mm256_mul_pd(fscal,dy00);
653             tz               = _mm256_mul_pd(fscal,dz00);
654
655             /* Update vectorial force */
656             fix0             = _mm256_add_pd(fix0,tx);
657             fiy0             = _mm256_add_pd(fiy0,ty);
658             fiz0             = _mm256_add_pd(fiz0,tz);
659
660             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
661             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
662             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
663             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
664             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
665
666             /* Inner loop uses 34 flops */
667         }
668
669         /* End of innermost loop */
670
671         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
672                                                  f+i_coord_offset,fshift+i_shift_offset);
673
674         /* Increment number of inner iterations */
675         inneriter                  += j_index_end - j_index_start;
676
677         /* Outer loop uses 7 flops */
678     }
679
680     /* Increment number of outer iterations */
681     outeriter        += nri;
682
683     /* Update outer/inner flops */
684
685     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*34);
686 }