bf82389c6b05d241dc22c79d1ccea701ce7063d8
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
98     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
105     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
106     __m128i          vfitab;
107     __m128i          ifour       = _mm_set1_epi32(4);
108     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
109     real             *vftab;
110     __m256d          dummy_mask,cutoff_mask;
111     __m128           tmpmask0,tmpmask1;
112     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
113     __m256d          one     = _mm256_set1_pd(1.0);
114     __m256d          two     = _mm256_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm256_set1_pd(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     krf              = _mm256_set1_pd(fr->ic->k_rf);
129     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
130     crf              = _mm256_set1_pd(fr->ic->c_rf);
131     nvdwtype         = fr->ntype;
132     vdwparam         = fr->nbfp;
133     vdwtype          = mdatoms->typeA;
134
135     vftab            = kernel_data->table_vdw->data;
136     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
141     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
142     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
143     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = jnrC = jnrD = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149     j_coord_offsetC = 0;
150     j_coord_offsetD = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
177
178         fix0             = _mm256_setzero_pd();
179         fiy0             = _mm256_setzero_pd();
180         fiz0             = _mm256_setzero_pd();
181         fix1             = _mm256_setzero_pd();
182         fiy1             = _mm256_setzero_pd();
183         fiz1             = _mm256_setzero_pd();
184         fix2             = _mm256_setzero_pd();
185         fiy2             = _mm256_setzero_pd();
186         fiz2             = _mm256_setzero_pd();
187         fix3             = _mm256_setzero_pd();
188         fiy3             = _mm256_setzero_pd();
189         fiz3             = _mm256_setzero_pd();
190
191         /* Reset potential sums */
192         velecsum         = _mm256_setzero_pd();
193         vvdwsum          = _mm256_setzero_pd();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             jnrC             = jjnr[jidx+2];
203             jnrD             = jjnr[jidx+3];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206             j_coord_offsetC  = DIM*jnrC;
207             j_coord_offsetD  = DIM*jnrD;
208
209             /* load j atom coordinates */
210             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
211                                                  x+j_coord_offsetC,x+j_coord_offsetD,
212                                                  &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm256_sub_pd(ix0,jx0);
216             dy00             = _mm256_sub_pd(iy0,jy0);
217             dz00             = _mm256_sub_pd(iz0,jz0);
218             dx10             = _mm256_sub_pd(ix1,jx0);
219             dy10             = _mm256_sub_pd(iy1,jy0);
220             dz10             = _mm256_sub_pd(iz1,jz0);
221             dx20             = _mm256_sub_pd(ix2,jx0);
222             dy20             = _mm256_sub_pd(iy2,jy0);
223             dz20             = _mm256_sub_pd(iz2,jz0);
224             dx30             = _mm256_sub_pd(ix3,jx0);
225             dy30             = _mm256_sub_pd(iy3,jy0);
226             dz30             = _mm256_sub_pd(iz3,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
230             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
231             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
232             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
233
234             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
235             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
236             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
237             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
238
239             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
240             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
241             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
242
243             /* Load parameters for j particles */
244             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
245                                                                  charge+jnrC+0,charge+jnrD+0);
246             vdwjidx0A        = 2*vdwtype[jnrA+0];
247             vdwjidx0B        = 2*vdwtype[jnrB+0];
248             vdwjidx0C        = 2*vdwtype[jnrC+0];
249             vdwjidx0D        = 2*vdwtype[jnrD+0];
250
251             fjx0             = _mm256_setzero_pd();
252             fjy0             = _mm256_setzero_pd();
253             fjz0             = _mm256_setzero_pd();
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             r00              = _mm256_mul_pd(rsq00,rinv00);
260
261             /* Compute parameters for interactions between i and j atoms */
262             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
263                                             vdwioffsetptr0+vdwjidx0B,
264                                             vdwioffsetptr0+vdwjidx0C,
265                                             vdwioffsetptr0+vdwjidx0D,
266                                             &c6_00,&c12_00);
267
268             /* Calculate table index by multiplying r with table scale and truncate to integer */
269             rt               = _mm256_mul_pd(r00,vftabscale);
270             vfitab           = _mm256_cvttpd_epi32(rt);
271             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
272             vfitab           = _mm_slli_epi32(vfitab,3);
273
274             /* CUBIC SPLINE TABLE DISPERSION */
275             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
276             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
277             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
278             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
279             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
280             Heps             = _mm256_mul_pd(vfeps,H);
281             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
282             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
283             vvdw6            = _mm256_mul_pd(c6_00,VV);
284             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
285             fvdw6            = _mm256_mul_pd(c6_00,FF);
286
287             /* CUBIC SPLINE TABLE REPULSION */
288             vfitab           = _mm_add_epi32(vfitab,ifour);
289             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
290             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
291             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
292             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
293             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
294             Heps             = _mm256_mul_pd(vfeps,H);
295             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
296             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
297             vvdw12           = _mm256_mul_pd(c12_00,VV);
298             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
299             fvdw12           = _mm256_mul_pd(c12_00,FF);
300             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
301             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
305
306             fscal            = fvdw;
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm256_mul_pd(fscal,dx00);
310             ty               = _mm256_mul_pd(fscal,dy00);
311             tz               = _mm256_mul_pd(fscal,dz00);
312
313             /* Update vectorial force */
314             fix0             = _mm256_add_pd(fix0,tx);
315             fiy0             = _mm256_add_pd(fiy0,ty);
316             fiz0             = _mm256_add_pd(fiz0,tz);
317
318             fjx0             = _mm256_add_pd(fjx0,tx);
319             fjy0             = _mm256_add_pd(fjy0,ty);
320             fjz0             = _mm256_add_pd(fjz0,tz);
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq10             = _mm256_mul_pd(iq1,jq0);
328
329             /* REACTION-FIELD ELECTROSTATICS */
330             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
331             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
332
333             /* Update potential sum for this i atom from the interaction with this j atom. */
334             velecsum         = _mm256_add_pd(velecsum,velec);
335
336             fscal            = felec;
337
338             /* Calculate temporary vectorial force */
339             tx               = _mm256_mul_pd(fscal,dx10);
340             ty               = _mm256_mul_pd(fscal,dy10);
341             tz               = _mm256_mul_pd(fscal,dz10);
342
343             /* Update vectorial force */
344             fix1             = _mm256_add_pd(fix1,tx);
345             fiy1             = _mm256_add_pd(fiy1,ty);
346             fiz1             = _mm256_add_pd(fiz1,tz);
347
348             fjx0             = _mm256_add_pd(fjx0,tx);
349             fjy0             = _mm256_add_pd(fjy0,ty);
350             fjz0             = _mm256_add_pd(fjz0,tz);
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             /* Compute parameters for interactions between i and j atoms */
357             qq20             = _mm256_mul_pd(iq2,jq0);
358
359             /* REACTION-FIELD ELECTROSTATICS */
360             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
361             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velecsum         = _mm256_add_pd(velecsum,velec);
365
366             fscal            = felec;
367
368             /* Calculate temporary vectorial force */
369             tx               = _mm256_mul_pd(fscal,dx20);
370             ty               = _mm256_mul_pd(fscal,dy20);
371             tz               = _mm256_mul_pd(fscal,dz20);
372
373             /* Update vectorial force */
374             fix2             = _mm256_add_pd(fix2,tx);
375             fiy2             = _mm256_add_pd(fiy2,ty);
376             fiz2             = _mm256_add_pd(fiz2,tz);
377
378             fjx0             = _mm256_add_pd(fjx0,tx);
379             fjy0             = _mm256_add_pd(fjy0,ty);
380             fjz0             = _mm256_add_pd(fjz0,tz);
381
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             /* Compute parameters for interactions between i and j atoms */
387             qq30             = _mm256_mul_pd(iq3,jq0);
388
389             /* REACTION-FIELD ELECTROSTATICS */
390             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
391             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
392
393             /* Update potential sum for this i atom from the interaction with this j atom. */
394             velecsum         = _mm256_add_pd(velecsum,velec);
395
396             fscal            = felec;
397
398             /* Calculate temporary vectorial force */
399             tx               = _mm256_mul_pd(fscal,dx30);
400             ty               = _mm256_mul_pd(fscal,dy30);
401             tz               = _mm256_mul_pd(fscal,dz30);
402
403             /* Update vectorial force */
404             fix3             = _mm256_add_pd(fix3,tx);
405             fiy3             = _mm256_add_pd(fiy3,ty);
406             fiz3             = _mm256_add_pd(fiz3,tz);
407
408             fjx0             = _mm256_add_pd(fjx0,tx);
409             fjy0             = _mm256_add_pd(fjy0,ty);
410             fjz0             = _mm256_add_pd(fjz0,tz);
411
412             fjptrA             = f+j_coord_offsetA;
413             fjptrB             = f+j_coord_offsetB;
414             fjptrC             = f+j_coord_offsetC;
415             fjptrD             = f+j_coord_offsetD;
416
417             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
418
419             /* Inner loop uses 155 flops */
420         }
421
422         if(jidx<j_index_end)
423         {
424
425             /* Get j neighbor index, and coordinate index */
426             jnrlistA         = jjnr[jidx];
427             jnrlistB         = jjnr[jidx+1];
428             jnrlistC         = jjnr[jidx+2];
429             jnrlistD         = jjnr[jidx+3];
430             /* Sign of each element will be negative for non-real atoms.
431              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
432              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
433              */
434             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
435
436             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
437             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
438             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
439
440             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
441             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
442             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
443             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
444             j_coord_offsetA  = DIM*jnrA;
445             j_coord_offsetB  = DIM*jnrB;
446             j_coord_offsetC  = DIM*jnrC;
447             j_coord_offsetD  = DIM*jnrD;
448
449             /* load j atom coordinates */
450             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
451                                                  x+j_coord_offsetC,x+j_coord_offsetD,
452                                                  &jx0,&jy0,&jz0);
453
454             /* Calculate displacement vector */
455             dx00             = _mm256_sub_pd(ix0,jx0);
456             dy00             = _mm256_sub_pd(iy0,jy0);
457             dz00             = _mm256_sub_pd(iz0,jz0);
458             dx10             = _mm256_sub_pd(ix1,jx0);
459             dy10             = _mm256_sub_pd(iy1,jy0);
460             dz10             = _mm256_sub_pd(iz1,jz0);
461             dx20             = _mm256_sub_pd(ix2,jx0);
462             dy20             = _mm256_sub_pd(iy2,jy0);
463             dz20             = _mm256_sub_pd(iz2,jz0);
464             dx30             = _mm256_sub_pd(ix3,jx0);
465             dy30             = _mm256_sub_pd(iy3,jy0);
466             dz30             = _mm256_sub_pd(iz3,jz0);
467
468             /* Calculate squared distance and things based on it */
469             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
470             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
471             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
472             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
473
474             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
475             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
476             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
477             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
478
479             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
480             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
481             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
482
483             /* Load parameters for j particles */
484             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
485                                                                  charge+jnrC+0,charge+jnrD+0);
486             vdwjidx0A        = 2*vdwtype[jnrA+0];
487             vdwjidx0B        = 2*vdwtype[jnrB+0];
488             vdwjidx0C        = 2*vdwtype[jnrC+0];
489             vdwjidx0D        = 2*vdwtype[jnrD+0];
490
491             fjx0             = _mm256_setzero_pd();
492             fjy0             = _mm256_setzero_pd();
493             fjz0             = _mm256_setzero_pd();
494
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             r00              = _mm256_mul_pd(rsq00,rinv00);
500             r00              = _mm256_andnot_pd(dummy_mask,r00);
501
502             /* Compute parameters for interactions between i and j atoms */
503             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
504                                             vdwioffsetptr0+vdwjidx0B,
505                                             vdwioffsetptr0+vdwjidx0C,
506                                             vdwioffsetptr0+vdwjidx0D,
507                                             &c6_00,&c12_00);
508
509             /* Calculate table index by multiplying r with table scale and truncate to integer */
510             rt               = _mm256_mul_pd(r00,vftabscale);
511             vfitab           = _mm256_cvttpd_epi32(rt);
512             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
513             vfitab           = _mm_slli_epi32(vfitab,3);
514
515             /* CUBIC SPLINE TABLE DISPERSION */
516             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
517             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
518             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
519             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
520             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
521             Heps             = _mm256_mul_pd(vfeps,H);
522             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
523             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
524             vvdw6            = _mm256_mul_pd(c6_00,VV);
525             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
526             fvdw6            = _mm256_mul_pd(c6_00,FF);
527
528             /* CUBIC SPLINE TABLE REPULSION */
529             vfitab           = _mm_add_epi32(vfitab,ifour);
530             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
531             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
532             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
533             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
534             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
535             Heps             = _mm256_mul_pd(vfeps,H);
536             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
537             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
538             vvdw12           = _mm256_mul_pd(c12_00,VV);
539             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
540             fvdw12           = _mm256_mul_pd(c12_00,FF);
541             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
542             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
543
544             /* Update potential sum for this i atom from the interaction with this j atom. */
545             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
546             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
547
548             fscal            = fvdw;
549
550             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
551
552             /* Calculate temporary vectorial force */
553             tx               = _mm256_mul_pd(fscal,dx00);
554             ty               = _mm256_mul_pd(fscal,dy00);
555             tz               = _mm256_mul_pd(fscal,dz00);
556
557             /* Update vectorial force */
558             fix0             = _mm256_add_pd(fix0,tx);
559             fiy0             = _mm256_add_pd(fiy0,ty);
560             fiz0             = _mm256_add_pd(fiz0,tz);
561
562             fjx0             = _mm256_add_pd(fjx0,tx);
563             fjy0             = _mm256_add_pd(fjy0,ty);
564             fjz0             = _mm256_add_pd(fjz0,tz);
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             /* Compute parameters for interactions between i and j atoms */
571             qq10             = _mm256_mul_pd(iq1,jq0);
572
573             /* REACTION-FIELD ELECTROSTATICS */
574             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
575             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
576
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             velec            = _mm256_andnot_pd(dummy_mask,velec);
579             velecsum         = _mm256_add_pd(velecsum,velec);
580
581             fscal            = felec;
582
583             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
584
585             /* Calculate temporary vectorial force */
586             tx               = _mm256_mul_pd(fscal,dx10);
587             ty               = _mm256_mul_pd(fscal,dy10);
588             tz               = _mm256_mul_pd(fscal,dz10);
589
590             /* Update vectorial force */
591             fix1             = _mm256_add_pd(fix1,tx);
592             fiy1             = _mm256_add_pd(fiy1,ty);
593             fiz1             = _mm256_add_pd(fiz1,tz);
594
595             fjx0             = _mm256_add_pd(fjx0,tx);
596             fjy0             = _mm256_add_pd(fjy0,ty);
597             fjz0             = _mm256_add_pd(fjz0,tz);
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             /* Compute parameters for interactions between i and j atoms */
604             qq20             = _mm256_mul_pd(iq2,jq0);
605
606             /* REACTION-FIELD ELECTROSTATICS */
607             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
608             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
609
610             /* Update potential sum for this i atom from the interaction with this j atom. */
611             velec            = _mm256_andnot_pd(dummy_mask,velec);
612             velecsum         = _mm256_add_pd(velecsum,velec);
613
614             fscal            = felec;
615
616             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
617
618             /* Calculate temporary vectorial force */
619             tx               = _mm256_mul_pd(fscal,dx20);
620             ty               = _mm256_mul_pd(fscal,dy20);
621             tz               = _mm256_mul_pd(fscal,dz20);
622
623             /* Update vectorial force */
624             fix2             = _mm256_add_pd(fix2,tx);
625             fiy2             = _mm256_add_pd(fiy2,ty);
626             fiz2             = _mm256_add_pd(fiz2,tz);
627
628             fjx0             = _mm256_add_pd(fjx0,tx);
629             fjy0             = _mm256_add_pd(fjy0,ty);
630             fjz0             = _mm256_add_pd(fjz0,tz);
631
632             /**************************
633              * CALCULATE INTERACTIONS *
634              **************************/
635
636             /* Compute parameters for interactions between i and j atoms */
637             qq30             = _mm256_mul_pd(iq3,jq0);
638
639             /* REACTION-FIELD ELECTROSTATICS */
640             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
641             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
642
643             /* Update potential sum for this i atom from the interaction with this j atom. */
644             velec            = _mm256_andnot_pd(dummy_mask,velec);
645             velecsum         = _mm256_add_pd(velecsum,velec);
646
647             fscal            = felec;
648
649             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
650
651             /* Calculate temporary vectorial force */
652             tx               = _mm256_mul_pd(fscal,dx30);
653             ty               = _mm256_mul_pd(fscal,dy30);
654             tz               = _mm256_mul_pd(fscal,dz30);
655
656             /* Update vectorial force */
657             fix3             = _mm256_add_pd(fix3,tx);
658             fiy3             = _mm256_add_pd(fiy3,ty);
659             fiz3             = _mm256_add_pd(fiz3,tz);
660
661             fjx0             = _mm256_add_pd(fjx0,tx);
662             fjy0             = _mm256_add_pd(fjy0,ty);
663             fjz0             = _mm256_add_pd(fjz0,tz);
664
665             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
666             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
667             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
668             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
669
670             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
671
672             /* Inner loop uses 156 flops */
673         }
674
675         /* End of innermost loop */
676
677         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
678                                                  f+i_coord_offset,fshift+i_shift_offset);
679
680         ggid                        = gid[iidx];
681         /* Update potential energies */
682         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
683         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
684
685         /* Increment number of inner iterations */
686         inneriter                  += j_index_end - j_index_start;
687
688         /* Outer loop uses 26 flops */
689     }
690
691     /* Increment number of outer iterations */
692     outeriter        += nri;
693
694     /* Update outer/inner flops */
695
696     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*156);
697 }
698 /*
699  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_256_double
700  * Electrostatics interaction: ReactionField
701  * VdW interaction:            CubicSplineTable
702  * Geometry:                   Water4-Particle
703  * Calculate force/pot:        Force
704  */
705 void
706 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_256_double
707                     (t_nblist                    * gmx_restrict       nlist,
708                      rvec                        * gmx_restrict          xx,
709                      rvec                        * gmx_restrict          ff,
710                      t_forcerec                  * gmx_restrict          fr,
711                      t_mdatoms                   * gmx_restrict     mdatoms,
712                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
713                      t_nrnb                      * gmx_restrict        nrnb)
714 {
715     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
716      * just 0 for non-waters.
717      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
718      * jnr indices corresponding to data put in the four positions in the SIMD register.
719      */
720     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
721     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
722     int              jnrA,jnrB,jnrC,jnrD;
723     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
724     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
725     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
726     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
727     real             rcutoff_scalar;
728     real             *shiftvec,*fshift,*x,*f;
729     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
730     real             scratch[4*DIM];
731     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
732     real *           vdwioffsetptr0;
733     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
734     real *           vdwioffsetptr1;
735     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
736     real *           vdwioffsetptr2;
737     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
738     real *           vdwioffsetptr3;
739     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
740     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
741     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
742     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
743     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
744     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
745     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
746     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
747     real             *charge;
748     int              nvdwtype;
749     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
750     int              *vdwtype;
751     real             *vdwparam;
752     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
753     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
754     __m128i          vfitab;
755     __m128i          ifour       = _mm_set1_epi32(4);
756     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
757     real             *vftab;
758     __m256d          dummy_mask,cutoff_mask;
759     __m128           tmpmask0,tmpmask1;
760     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
761     __m256d          one     = _mm256_set1_pd(1.0);
762     __m256d          two     = _mm256_set1_pd(2.0);
763     x                = xx[0];
764     f                = ff[0];
765
766     nri              = nlist->nri;
767     iinr             = nlist->iinr;
768     jindex           = nlist->jindex;
769     jjnr             = nlist->jjnr;
770     shiftidx         = nlist->shift;
771     gid              = nlist->gid;
772     shiftvec         = fr->shift_vec[0];
773     fshift           = fr->fshift[0];
774     facel            = _mm256_set1_pd(fr->epsfac);
775     charge           = mdatoms->chargeA;
776     krf              = _mm256_set1_pd(fr->ic->k_rf);
777     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
778     crf              = _mm256_set1_pd(fr->ic->c_rf);
779     nvdwtype         = fr->ntype;
780     vdwparam         = fr->nbfp;
781     vdwtype          = mdatoms->typeA;
782
783     vftab            = kernel_data->table_vdw->data;
784     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
785
786     /* Setup water-specific parameters */
787     inr              = nlist->iinr[0];
788     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
789     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
790     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
791     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
792
793     /* Avoid stupid compiler warnings */
794     jnrA = jnrB = jnrC = jnrD = 0;
795     j_coord_offsetA = 0;
796     j_coord_offsetB = 0;
797     j_coord_offsetC = 0;
798     j_coord_offsetD = 0;
799
800     outeriter        = 0;
801     inneriter        = 0;
802
803     for(iidx=0;iidx<4*DIM;iidx++)
804     {
805         scratch[iidx] = 0.0;
806     }
807
808     /* Start outer loop over neighborlists */
809     for(iidx=0; iidx<nri; iidx++)
810     {
811         /* Load shift vector for this list */
812         i_shift_offset   = DIM*shiftidx[iidx];
813
814         /* Load limits for loop over neighbors */
815         j_index_start    = jindex[iidx];
816         j_index_end      = jindex[iidx+1];
817
818         /* Get outer coordinate index */
819         inr              = iinr[iidx];
820         i_coord_offset   = DIM*inr;
821
822         /* Load i particle coords and add shift vector */
823         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
824                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
825
826         fix0             = _mm256_setzero_pd();
827         fiy0             = _mm256_setzero_pd();
828         fiz0             = _mm256_setzero_pd();
829         fix1             = _mm256_setzero_pd();
830         fiy1             = _mm256_setzero_pd();
831         fiz1             = _mm256_setzero_pd();
832         fix2             = _mm256_setzero_pd();
833         fiy2             = _mm256_setzero_pd();
834         fiz2             = _mm256_setzero_pd();
835         fix3             = _mm256_setzero_pd();
836         fiy3             = _mm256_setzero_pd();
837         fiz3             = _mm256_setzero_pd();
838
839         /* Start inner kernel loop */
840         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
841         {
842
843             /* Get j neighbor index, and coordinate index */
844             jnrA             = jjnr[jidx];
845             jnrB             = jjnr[jidx+1];
846             jnrC             = jjnr[jidx+2];
847             jnrD             = jjnr[jidx+3];
848             j_coord_offsetA  = DIM*jnrA;
849             j_coord_offsetB  = DIM*jnrB;
850             j_coord_offsetC  = DIM*jnrC;
851             j_coord_offsetD  = DIM*jnrD;
852
853             /* load j atom coordinates */
854             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
855                                                  x+j_coord_offsetC,x+j_coord_offsetD,
856                                                  &jx0,&jy0,&jz0);
857
858             /* Calculate displacement vector */
859             dx00             = _mm256_sub_pd(ix0,jx0);
860             dy00             = _mm256_sub_pd(iy0,jy0);
861             dz00             = _mm256_sub_pd(iz0,jz0);
862             dx10             = _mm256_sub_pd(ix1,jx0);
863             dy10             = _mm256_sub_pd(iy1,jy0);
864             dz10             = _mm256_sub_pd(iz1,jz0);
865             dx20             = _mm256_sub_pd(ix2,jx0);
866             dy20             = _mm256_sub_pd(iy2,jy0);
867             dz20             = _mm256_sub_pd(iz2,jz0);
868             dx30             = _mm256_sub_pd(ix3,jx0);
869             dy30             = _mm256_sub_pd(iy3,jy0);
870             dz30             = _mm256_sub_pd(iz3,jz0);
871
872             /* Calculate squared distance and things based on it */
873             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
874             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
875             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
876             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
877
878             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
879             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
880             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
881             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
882
883             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
884             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
885             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
886
887             /* Load parameters for j particles */
888             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
889                                                                  charge+jnrC+0,charge+jnrD+0);
890             vdwjidx0A        = 2*vdwtype[jnrA+0];
891             vdwjidx0B        = 2*vdwtype[jnrB+0];
892             vdwjidx0C        = 2*vdwtype[jnrC+0];
893             vdwjidx0D        = 2*vdwtype[jnrD+0];
894
895             fjx0             = _mm256_setzero_pd();
896             fjy0             = _mm256_setzero_pd();
897             fjz0             = _mm256_setzero_pd();
898
899             /**************************
900              * CALCULATE INTERACTIONS *
901              **************************/
902
903             r00              = _mm256_mul_pd(rsq00,rinv00);
904
905             /* Compute parameters for interactions between i and j atoms */
906             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
907                                             vdwioffsetptr0+vdwjidx0B,
908                                             vdwioffsetptr0+vdwjidx0C,
909                                             vdwioffsetptr0+vdwjidx0D,
910                                             &c6_00,&c12_00);
911
912             /* Calculate table index by multiplying r with table scale and truncate to integer */
913             rt               = _mm256_mul_pd(r00,vftabscale);
914             vfitab           = _mm256_cvttpd_epi32(rt);
915             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
916             vfitab           = _mm_slli_epi32(vfitab,3);
917
918             /* CUBIC SPLINE TABLE DISPERSION */
919             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
920             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
921             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
922             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
923             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
924             Heps             = _mm256_mul_pd(vfeps,H);
925             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
926             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
927             fvdw6            = _mm256_mul_pd(c6_00,FF);
928
929             /* CUBIC SPLINE TABLE REPULSION */
930             vfitab           = _mm_add_epi32(vfitab,ifour);
931             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
932             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
933             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
934             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
935             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
936             Heps             = _mm256_mul_pd(vfeps,H);
937             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
938             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
939             fvdw12           = _mm256_mul_pd(c12_00,FF);
940             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
941
942             fscal            = fvdw;
943
944             /* Calculate temporary vectorial force */
945             tx               = _mm256_mul_pd(fscal,dx00);
946             ty               = _mm256_mul_pd(fscal,dy00);
947             tz               = _mm256_mul_pd(fscal,dz00);
948
949             /* Update vectorial force */
950             fix0             = _mm256_add_pd(fix0,tx);
951             fiy0             = _mm256_add_pd(fiy0,ty);
952             fiz0             = _mm256_add_pd(fiz0,tz);
953
954             fjx0             = _mm256_add_pd(fjx0,tx);
955             fjy0             = _mm256_add_pd(fjy0,ty);
956             fjz0             = _mm256_add_pd(fjz0,tz);
957
958             /**************************
959              * CALCULATE INTERACTIONS *
960              **************************/
961
962             /* Compute parameters for interactions between i and j atoms */
963             qq10             = _mm256_mul_pd(iq1,jq0);
964
965             /* REACTION-FIELD ELECTROSTATICS */
966             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
967
968             fscal            = felec;
969
970             /* Calculate temporary vectorial force */
971             tx               = _mm256_mul_pd(fscal,dx10);
972             ty               = _mm256_mul_pd(fscal,dy10);
973             tz               = _mm256_mul_pd(fscal,dz10);
974
975             /* Update vectorial force */
976             fix1             = _mm256_add_pd(fix1,tx);
977             fiy1             = _mm256_add_pd(fiy1,ty);
978             fiz1             = _mm256_add_pd(fiz1,tz);
979
980             fjx0             = _mm256_add_pd(fjx0,tx);
981             fjy0             = _mm256_add_pd(fjy0,ty);
982             fjz0             = _mm256_add_pd(fjz0,tz);
983
984             /**************************
985              * CALCULATE INTERACTIONS *
986              **************************/
987
988             /* Compute parameters for interactions between i and j atoms */
989             qq20             = _mm256_mul_pd(iq2,jq0);
990
991             /* REACTION-FIELD ELECTROSTATICS */
992             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
993
994             fscal            = felec;
995
996             /* Calculate temporary vectorial force */
997             tx               = _mm256_mul_pd(fscal,dx20);
998             ty               = _mm256_mul_pd(fscal,dy20);
999             tz               = _mm256_mul_pd(fscal,dz20);
1000
1001             /* Update vectorial force */
1002             fix2             = _mm256_add_pd(fix2,tx);
1003             fiy2             = _mm256_add_pd(fiy2,ty);
1004             fiz2             = _mm256_add_pd(fiz2,tz);
1005
1006             fjx0             = _mm256_add_pd(fjx0,tx);
1007             fjy0             = _mm256_add_pd(fjy0,ty);
1008             fjz0             = _mm256_add_pd(fjz0,tz);
1009
1010             /**************************
1011              * CALCULATE INTERACTIONS *
1012              **************************/
1013
1014             /* Compute parameters for interactions between i and j atoms */
1015             qq30             = _mm256_mul_pd(iq3,jq0);
1016
1017             /* REACTION-FIELD ELECTROSTATICS */
1018             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1019
1020             fscal            = felec;
1021
1022             /* Calculate temporary vectorial force */
1023             tx               = _mm256_mul_pd(fscal,dx30);
1024             ty               = _mm256_mul_pd(fscal,dy30);
1025             tz               = _mm256_mul_pd(fscal,dz30);
1026
1027             /* Update vectorial force */
1028             fix3             = _mm256_add_pd(fix3,tx);
1029             fiy3             = _mm256_add_pd(fiy3,ty);
1030             fiz3             = _mm256_add_pd(fiz3,tz);
1031
1032             fjx0             = _mm256_add_pd(fjx0,tx);
1033             fjy0             = _mm256_add_pd(fjy0,ty);
1034             fjz0             = _mm256_add_pd(fjz0,tz);
1035
1036             fjptrA             = f+j_coord_offsetA;
1037             fjptrB             = f+j_coord_offsetB;
1038             fjptrC             = f+j_coord_offsetC;
1039             fjptrD             = f+j_coord_offsetD;
1040
1041             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1042
1043             /* Inner loop uses 132 flops */
1044         }
1045
1046         if(jidx<j_index_end)
1047         {
1048
1049             /* Get j neighbor index, and coordinate index */
1050             jnrlistA         = jjnr[jidx];
1051             jnrlistB         = jjnr[jidx+1];
1052             jnrlistC         = jjnr[jidx+2];
1053             jnrlistD         = jjnr[jidx+3];
1054             /* Sign of each element will be negative for non-real atoms.
1055              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1056              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1057              */
1058             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1059
1060             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1061             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1062             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1063
1064             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1065             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1066             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1067             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1068             j_coord_offsetA  = DIM*jnrA;
1069             j_coord_offsetB  = DIM*jnrB;
1070             j_coord_offsetC  = DIM*jnrC;
1071             j_coord_offsetD  = DIM*jnrD;
1072
1073             /* load j atom coordinates */
1074             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1075                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1076                                                  &jx0,&jy0,&jz0);
1077
1078             /* Calculate displacement vector */
1079             dx00             = _mm256_sub_pd(ix0,jx0);
1080             dy00             = _mm256_sub_pd(iy0,jy0);
1081             dz00             = _mm256_sub_pd(iz0,jz0);
1082             dx10             = _mm256_sub_pd(ix1,jx0);
1083             dy10             = _mm256_sub_pd(iy1,jy0);
1084             dz10             = _mm256_sub_pd(iz1,jz0);
1085             dx20             = _mm256_sub_pd(ix2,jx0);
1086             dy20             = _mm256_sub_pd(iy2,jy0);
1087             dz20             = _mm256_sub_pd(iz2,jz0);
1088             dx30             = _mm256_sub_pd(ix3,jx0);
1089             dy30             = _mm256_sub_pd(iy3,jy0);
1090             dz30             = _mm256_sub_pd(iz3,jz0);
1091
1092             /* Calculate squared distance and things based on it */
1093             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1094             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1095             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1096             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1097
1098             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1099             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1100             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1101             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1102
1103             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1104             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1105             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1106
1107             /* Load parameters for j particles */
1108             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1109                                                                  charge+jnrC+0,charge+jnrD+0);
1110             vdwjidx0A        = 2*vdwtype[jnrA+0];
1111             vdwjidx0B        = 2*vdwtype[jnrB+0];
1112             vdwjidx0C        = 2*vdwtype[jnrC+0];
1113             vdwjidx0D        = 2*vdwtype[jnrD+0];
1114
1115             fjx0             = _mm256_setzero_pd();
1116             fjy0             = _mm256_setzero_pd();
1117             fjz0             = _mm256_setzero_pd();
1118
1119             /**************************
1120              * CALCULATE INTERACTIONS *
1121              **************************/
1122
1123             r00              = _mm256_mul_pd(rsq00,rinv00);
1124             r00              = _mm256_andnot_pd(dummy_mask,r00);
1125
1126             /* Compute parameters for interactions between i and j atoms */
1127             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1128                                             vdwioffsetptr0+vdwjidx0B,
1129                                             vdwioffsetptr0+vdwjidx0C,
1130                                             vdwioffsetptr0+vdwjidx0D,
1131                                             &c6_00,&c12_00);
1132
1133             /* Calculate table index by multiplying r with table scale and truncate to integer */
1134             rt               = _mm256_mul_pd(r00,vftabscale);
1135             vfitab           = _mm256_cvttpd_epi32(rt);
1136             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1137             vfitab           = _mm_slli_epi32(vfitab,3);
1138
1139             /* CUBIC SPLINE TABLE DISPERSION */
1140             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1141             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1142             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1143             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1144             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1145             Heps             = _mm256_mul_pd(vfeps,H);
1146             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1147             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1148             fvdw6            = _mm256_mul_pd(c6_00,FF);
1149
1150             /* CUBIC SPLINE TABLE REPULSION */
1151             vfitab           = _mm_add_epi32(vfitab,ifour);
1152             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1153             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1154             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1155             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1156             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1157             Heps             = _mm256_mul_pd(vfeps,H);
1158             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1159             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1160             fvdw12           = _mm256_mul_pd(c12_00,FF);
1161             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1162
1163             fscal            = fvdw;
1164
1165             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1166
1167             /* Calculate temporary vectorial force */
1168             tx               = _mm256_mul_pd(fscal,dx00);
1169             ty               = _mm256_mul_pd(fscal,dy00);
1170             tz               = _mm256_mul_pd(fscal,dz00);
1171
1172             /* Update vectorial force */
1173             fix0             = _mm256_add_pd(fix0,tx);
1174             fiy0             = _mm256_add_pd(fiy0,ty);
1175             fiz0             = _mm256_add_pd(fiz0,tz);
1176
1177             fjx0             = _mm256_add_pd(fjx0,tx);
1178             fjy0             = _mm256_add_pd(fjy0,ty);
1179             fjz0             = _mm256_add_pd(fjz0,tz);
1180
1181             /**************************
1182              * CALCULATE INTERACTIONS *
1183              **************************/
1184
1185             /* Compute parameters for interactions between i and j atoms */
1186             qq10             = _mm256_mul_pd(iq1,jq0);
1187
1188             /* REACTION-FIELD ELECTROSTATICS */
1189             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1190
1191             fscal            = felec;
1192
1193             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1194
1195             /* Calculate temporary vectorial force */
1196             tx               = _mm256_mul_pd(fscal,dx10);
1197             ty               = _mm256_mul_pd(fscal,dy10);
1198             tz               = _mm256_mul_pd(fscal,dz10);
1199
1200             /* Update vectorial force */
1201             fix1             = _mm256_add_pd(fix1,tx);
1202             fiy1             = _mm256_add_pd(fiy1,ty);
1203             fiz1             = _mm256_add_pd(fiz1,tz);
1204
1205             fjx0             = _mm256_add_pd(fjx0,tx);
1206             fjy0             = _mm256_add_pd(fjy0,ty);
1207             fjz0             = _mm256_add_pd(fjz0,tz);
1208
1209             /**************************
1210              * CALCULATE INTERACTIONS *
1211              **************************/
1212
1213             /* Compute parameters for interactions between i and j atoms */
1214             qq20             = _mm256_mul_pd(iq2,jq0);
1215
1216             /* REACTION-FIELD ELECTROSTATICS */
1217             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1218
1219             fscal            = felec;
1220
1221             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1222
1223             /* Calculate temporary vectorial force */
1224             tx               = _mm256_mul_pd(fscal,dx20);
1225             ty               = _mm256_mul_pd(fscal,dy20);
1226             tz               = _mm256_mul_pd(fscal,dz20);
1227
1228             /* Update vectorial force */
1229             fix2             = _mm256_add_pd(fix2,tx);
1230             fiy2             = _mm256_add_pd(fiy2,ty);
1231             fiz2             = _mm256_add_pd(fiz2,tz);
1232
1233             fjx0             = _mm256_add_pd(fjx0,tx);
1234             fjy0             = _mm256_add_pd(fjy0,ty);
1235             fjz0             = _mm256_add_pd(fjz0,tz);
1236
1237             /**************************
1238              * CALCULATE INTERACTIONS *
1239              **************************/
1240
1241             /* Compute parameters for interactions between i and j atoms */
1242             qq30             = _mm256_mul_pd(iq3,jq0);
1243
1244             /* REACTION-FIELD ELECTROSTATICS */
1245             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1246
1247             fscal            = felec;
1248
1249             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1250
1251             /* Calculate temporary vectorial force */
1252             tx               = _mm256_mul_pd(fscal,dx30);
1253             ty               = _mm256_mul_pd(fscal,dy30);
1254             tz               = _mm256_mul_pd(fscal,dz30);
1255
1256             /* Update vectorial force */
1257             fix3             = _mm256_add_pd(fix3,tx);
1258             fiy3             = _mm256_add_pd(fiy3,ty);
1259             fiz3             = _mm256_add_pd(fiz3,tz);
1260
1261             fjx0             = _mm256_add_pd(fjx0,tx);
1262             fjy0             = _mm256_add_pd(fjy0,ty);
1263             fjz0             = _mm256_add_pd(fjz0,tz);
1264
1265             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1266             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1267             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1268             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1269
1270             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1271
1272             /* Inner loop uses 133 flops */
1273         }
1274
1275         /* End of innermost loop */
1276
1277         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1278                                                  f+i_coord_offset,fshift+i_shift_offset);
1279
1280         /* Increment number of inner iterations */
1281         inneriter                  += j_index_end - j_index_start;
1282
1283         /* Outer loop uses 24 flops */
1284     }
1285
1286     /* Increment number of outer iterations */
1287     outeriter        += nri;
1288
1289     /* Update outer/inner flops */
1290
1291     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*133);
1292 }